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Introduction

A remarkable fact, discovered by Wang in [START_REF] Wang | Quantum symmetry groups of finite spaces[END_REF], is that the set {1, . . . , n} has a quantum permutation group. For n = 1, 2, 3 this the usual symmetric group S n . However, starting from n = 4 the "quantum permutations" do exist. They form a compact quantum group Q n , satisfying the axioms of Woronowicz in [START_REF] Woronowicz | Compact matrix pseudogroups[END_REF].

The next step is to look at "simplest" subgroups of Q n . There are many natural degrees of complexity for such a subgroup, and the notion that emerged is that of quantum automorphism group of a vertex-transitive graph.

These quantum groups are studied in [START_REF] Bichon | Quantum automorphism groups of finite graphs[END_REF], [START_REF] Bichon | Free wreath product by the quantum permutation group[END_REF] and [START_REF] Banica | Quantum automorphism groups of small metric spaces[END_REF], [START_REF] Banica | Quantum automorphism groups of homogeneous graphs[END_REF], then in [START_REF] Banica | Free product formulae for quantum permutation groups[END_REF], [START_REF] Banica | Quantum automorphism groups of vertex-transitive graphs of order ≤ 11[END_REF].

The motivation comes from certain combinatorial aspects of subfactors, free probability, and statistical mechanical models. See [START_REF] Banica | Quantum automorphism groups of homogeneous graphs[END_REF], [START_REF] Banica | Free product formulae for quantum permutation groups[END_REF], [START_REF] Banica | Integration over compact quantum groups[END_REF].

A fascinating question here, whose origins go back to Wang's paper [START_REF] Wang | Quantum symmetry groups of finite spaces[END_REF], is to decide whether a given graph has quantum symmetry or not. There are basically two series of graphs where the answer is understood: the n-element sets X n , and the n-cycles C n . The graphs having no quantum symmetry are as follows:

(1) X n , n < 4. This is proved in [START_REF] Wang | Quantum symmetry groups of finite spaces[END_REF], by direct algebraic computation. An explanation is proposed in [START_REF] Banica | Symmetries of a generic coaction[END_REF], where the number n ∈ N is interpreted as a Jones index. This is further refined in [START_REF] Banica | Quantum automorphism groups of homogeneous graphs[END_REF], where Q n is shown to appear as Tannakian realisation of the Temperley-Lieb planar algebra of index n, known to be degenerate in the index range 1 ≤ n < 4. (2) C n , n = 4. This is proved in [START_REF] Banica | Quantum automorphism groups of small metric spaces[END_REF], by direct algebraic computation. An explanation regarding C 4 is proposed in [START_REF] Banica | Free product formulae for quantum permutation groups[END_REF]: this graph is exceptional in the series because it is the one having non-trivial disconnected complement. Indeed, the quantum symmetry group is the same for a graph and for its complement, and duplication of graphs corresponds to free wreath products, known from [START_REF] Bichon | Free wreath product by the quantum permutation group[END_REF] to be highly non-commutative operations.

Some other results on lack of quantum symmetry include verifications for a number of cycles with chords, for a special graph called discrete torus, and stability/not stability under various product operations. See [START_REF] Banica | Quantum automorphism groups of homogeneous graphs[END_REF], [START_REF] Banica | Free product formulae for quantum permutation groups[END_REF], [START_REF] Banica | Quantum automorphism groups of vertex-transitive graphs of order ≤ 11[END_REF].

Although most such results have ad-hoc proofs, there is an idea emerging from this work, namely that computations become simpler with n → ∞.

In this paper we find an asymptotic result of non-quantum symmetry. We consider circulant graphs having prime number of vertices. To any such graph we associate a number k, that we call type, and which measures in a certain sense the complexity of the graph (as an example, for C n we have k = 2). Our result is that a type k graph having enough vertices has no quantum symmetry.

The proof uses a standard technique, gradually developed since Wang's paper [START_REF] Wang | Quantum symmetry groups of finite spaces[END_REF], and pushed here one step forward, by combination with a Galois theory argument. We should mention that the combination is done only at the end: it is not clear how to include in the coaction formalism the underlying arithmetics.

We don't know what happens when the number of vertices is not prime:

(1) Most ingredients have extensions to the general case, and it won't be surprising that some kind of asymptotic result holds here as well. However, there are a number of obstructions to be overcome. These seem to come from complexity of the usual automorphism group. For a prime number of vertices this group is quite easy to describe, as shown by Alspach in [START_REF] Alspach | Point-symmetric graphs and digraphs of prime order and transitive permutation groups of prime degree[END_REF], but in general the situation is quite complicated, as shown for instance by Klin and Pöschel in [START_REF] Klin | The König problem, the isomorphism problem for cyclic graphs and the method of Schur rings[END_REF], or by Dobson and Morris in [START_REF] Dobson | On automorphism groups of circulant digraphs of square-free order[END_REF]. (2) A vertex-transitive graph having a prime number of vertices is necessary circulant. So, in order to extend our result, it is not clear whether to remain or not in the realm of circulant graphs. Moreover, it would be interesting to switch at some point to higher combinatorial structures, describing arbitrary subgroups of Q n . In other words, there is a lot of work to be done, and this paper should be regarded as a first one on the subject. We should probably say a word about the original motivating problems. As explained in [START_REF] Banica | Quantum automorphism groups of small metric spaces[END_REF], [START_REF] Banica | Quantum automorphism groups of homogeneous graphs[END_REF], [START_REF] Banica | Integration over compact quantum groups[END_REF], quantum permutation groups are closely related to the "2box", "spin model" and "meander" problems, discussed in [START_REF] Bisch | Singly generated planar algebras of small dimension[END_REF], [START_REF] Francesco | Meander determinants[END_REF], [START_REF] Jones | Introduction to subfactors[END_REF]. We think that the idea in this paper is new in the area -for instance, it is not of topological nature -and it is our hope that further developments of it, along the above lines, might be of help in connection with these problems.

Finally, let us mention that the idea of letting n → ∞ is very familiar in certain areas of representation theory, developed by Weingarten ([20]), Biane ([8]), Collins ([12]) and many others. For quantum groups such methods are worked out in [START_REF] Banica | Integration over compact quantum groups[END_REF], but their relation with the present results is very unclear.

The paper is organized as follows. Sections 1-2 are a quick introduction to the problem, in 3 we fix some notations, and in 4-5 we prove the main result.

Magic unitary matrices

Let A be a C * -algebra. That is, we have a complex algebra with a norm and an involution, such that Cauchy sequences converge, and ||aa * || = ||a|| 2 .

The basic examples are B(H), the algebra of bounded operators on a Hilbert space H, and C(X), the algebra of continuous functions on a compact space X.

In fact, any C * -algebra is a subalgebra of some B(H), and any commutative C * -algebra is of the form C(X). These are results of Gelfand-Naimark-Segal and Gelfand, both related to the spectral theorem for self-adjoint operators.

Definition 1.1. Let A be a C * -algebra.

(1) A projection is an element p ∈ A satisfying p 2 = p = p * .

(2) Two projections p, q ∈ A are called orthogonal when pq = 0.

(3) A partition of unity is a set of orthogonal projections, which sum up to 1.

A projection in B(H) is an orthogonal projection π(K), where K ⊂ H is a closed subspace. Orthogonality of projections corresponds to orthogonality of subspaces, and partitions of unity correspond to decompositions of H.

A projection in C(X) is a characteristic function χ(Y ), where Y ⊂ X is an open and closed subset. Orthogonality of projections corresponds to disjointness of subsets, and partitions of unity correspond to partitions of X. Definition 1.2. A magic unitary is a square matrix u ∈ M n (A), all whose rows and columns are partitions of unity in A.

Such a matrix is indeed unitary, in the sense that we have uu * = u * u = 1. Over B(H) these are the matrices π(K ij ) with K ij magic decomposition of H, meaning that each row and column of K is a decomposition of H.

Over C(X) these are the matrices χ(Y ij ) with Y ij magic partition of X, meaning that each row and column of Y is a partition of X.

We are interested in the following example. Consider a finite graph X. In this paper this means that we have a finite set of vertices, and certain pairs of distinct vertices are connected by unoriented edges. We do not allow multiple edges.

Definition 1.3. The magic unitary of a finite graph X is given by

u ij = χ{g ∈ G | g(j) = i}
where i, j are vertices of X, and G is the automorphism group of X. This is by definition a V × V matrix over the algebra A = C(G), where V is the vertex set. In case vertices are labeled 1, . . . , n, we can write u ∈ M n (A).

The fact that the characteristic functions u ij form indeed a magic unitary follows from the fact that the corresponding sets form a magic partition of G.

We have the following presentation result.

Theorem 1.1. The algebra A = C(G) is isomorphic to the universal C * -algebra generated by n 2 elements u ij , with the following relations:

(1) The matrix u = (u ij ) is a magic unitary.

(2) We have du = ud, where d is the adjacency matrix of X.

(3) The elements u ij commute with each other.

Proof. Let A ′ be the universal algebra in the statement. The magic unitary of X commutes with d, so we have a morphism p : A ′ → A. By applying Gelfand's theorem, p comes from an inclusion i : G ⊂ G ′ , where G ′ is the spectrum of A ′ . By using the universal property of A ′ , we see that the formulae

∆(u ij ) = u ik ⊗ u kj ε(u ij ) = δ ij S(u ij ) = u ji define morphisms of algebras. These must come from maps G ′ × G ′ , {.}, G ′ → G ′ , making G ′ into
a group, acting on X, and we get G = G ′ . See [START_REF] Banica | Quantum automorphism groups of homogeneous graphs[END_REF] for details.

Quantum permutation groups

Let X be a graph as in previous section. Its quantum automorphism group is constructed by removing commutativity from Theorem 1.1 and its proof.

Definition 2.1. The Hopf algebra associated to X is the universal C * -algebra A generated by entries u ij of a n × n magic unitary commuting with d, with

∆(u ij ) = u ik ⊗ u kj ε(u ij ) = δ ij S(u ij ) = u ji
as comultiplication, counit and antipode maps.

The precise structure of A is that of a co-involutive unital Hopf C * -algebra of finite type. That is, A satisfies the axioms of Woronowicz in [START_REF] Woronowicz | Compact matrix pseudogroups[END_REF], along with the extra axiom S 2 = id. See [START_REF] Banica | Quantum automorphism groups of homogeneous graphs[END_REF], [START_REF] Klimyk | Quantum groups and their representations, Texts and Monographs in Physics[END_REF] for more details on this subject.

For the purposes of this paper, let us just mention that we have the formula

A = C(G)
where G is a compact quantum group. This quantum group doesn't exist as a concrete object, but several tools from Woronowicz's paper [START_REF] Woronowicz | Compact matrix pseudogroups[END_REF], such as an analogue of the Peter-Weyl theory, are available for it, in the form of functional analytic statements regarding its algebra of continuous functions A.

Comparison of Theorem 1.1 and Definition 2.1 shows that we have a morphism A → C(G). This can be thought of as coming from an inclusion G ⊂ G. Definition 2.2. We say that X has no quantum symmetry if A = C(G).

It is not clear at this point whether there exist graphs X which do have quantum symmetry. Before getting into the subject, let us state the following useful result.

Theorem 2.1. The following are equivalent.

(1) X has no quantum symmetry.

(2) A is commutative.

(3) For u magic unitary, du = ud implies that u ij commute with each other.

Proof. All equivalences are clear from definitions, and from the Gelfand theorem argument in proof of Theorem 1.1.

The very first graphs to be investigated are the n-element sets X n . Here the incidency matrix is d = 0, so the above condition (3) is that for any n × n magic unitary matrix u, the entries u ij have to commute with each other.

(1) The graph X 2 . This has no quantum symmetry, because a 2 × 2 magic unitary has to be of the form

u p = p 1 -p 1 -p p
with p projection, and entries of this matrix commute with each other. (2) The graph X 3 . This has no quantum symmetry either, as shown in [START_REF] Wang | Quantum symmetry groups of finite spaces[END_REF].

(3) The graph X 4 . This has quantum symmetry, because the matrix

u pq =     p 1 -p 0 0 1 -p p 0 0 0 0 q 1 -q 0 0 1 -q q    
is a magic unitary, whose entries don't commute if pq = qp. (4) The graph X 5+ . This has no quantum symmetry either, as one can see by adding to u pq a diagonal tail formed of 1's.

The other series of graphs where complete results are available are the n-cycles C n . The situation here is as follows.

(1) The graph C 2 . This has no quantum symmetry, because X 2 doesn't.

(2) The graph C 3 . This has no quantum symmetry, because X 3 doesn't.

(3) The graph C 4 . This has quantum symmetry, because its adjacency matrix

d =     0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0    
written here according to the scheme ( 1 4 3

2 ), commutes with u pq . (4) The graph C 5+ . This has no quantum symmetry, as shown in [START_REF] Banica | Quantum automorphism groups of small metric spaces[END_REF].

Summarizing, the subtle results in these series are those regarding lack of quantum symmetry of cycles C n , with n = 3, 5+. In what follows we present a general result, which applies in particular to C p with p big prime (in fact p ≥ 7). As explained in the introduction, we hope to extend at some point our techniques, as to apply to C n with big n.

As for C n with small n, we won't think about it for some time. This is an exceptional graph, at least until the asymptotic area is well understood.

Remark. The lack of quantum symmetry also can be characterized in a purely algebraic manner. Indeed, consider A 0 , the universal * -algebra generated by entries u ij of a n×n magic unitary commuting with d. Then by [START_REF] Klimyk | Quantum groups and their representations, Texts and Monographs in Physics[END_REF], Theorem 27 of Chapter 11, A is a CQG algebra, and hence by [START_REF] Klimyk | Quantum groups and their representations, Texts and Monographs in Physics[END_REF], Proposition 32 of Chapter 11, there is a * -algebra embedding A 0 ֒→ A. Thus A is commutative if and only if A 0 is. In this way, in this paper, one may use equally the algebra A 0 or the C * -algebra A.

Circulant graphs

A graph X having n vertices is called circulant if its automorphism group contains a cycle of length n, and hence a copy of the cyclic group Z n . This is the same as saying that vertices of X are n-th roots of unity, edges are represented by certain segments, and the whole picture has the property of being invariant under the 2π/n rotation centered at 0. Here the rotation is either the clockwise or the counterclockwise one: the two conditions are equivalent.

For the purposes of this paper, best is to assume that vertices of X are elements of Z n , and i ∼ j (connection by an edge) implies i + k ∼ j + k for any k.

We denote by Z * n the group of invertible elements of the ring Z n . Our study of circulant graphs is based on diagonalisation of corresponding adjacency matrices. This is in turn related to certain arithmetic invariants of the graph -an abelian group E and a number k -constructed in the following way. Definition 3.1. Let X be a circulant graph on n vertices.

(1) The set S ⊂ Z n is given by i ∼ j ⇐⇒ ji ∈ S.

(

) 2 
The group E ⊂ Z * n consists of elements a such that aS = S. (3) The order of E is denoted k, and is called type of X.

The interest in k is that this is the good parameter measuring complexity of the spectral theory of X. Calling it "type" might seem a bit unnatural at this point; but the terminology will be justified by the main result in this paper.

Here are a few basic examples and properties:

(1) The type can be 2, 4, 6, 8, . . . This is because {±1} ⊂ E.

(2) C n is of type 2. Indeed, we have S = {±1}, E = {±1}.

(3) X n is of type ϕ(n). Indeed, here S = ∅, E = Z * n . It is possible to make an extensive study of this notion, but we won't get into the subject. Let us just mention that the graphs 2C 5 , C 10 studied in [START_REF] Banica | Quantum automorphism groups of vertex-transitive graphs of order ≤ 11[END_REF] have the same E group, but the first one has quantum symmetry, while the second one hasn't.

Consider the Hopf algebra A associated to X, as in previous section.

Definition 3.2. The linear map α : C n → C n ⊗ A given by the formula α(e i ) = e j ⊗ u ji where e 1 , . . . , e n is the canonical basis of C n , is called coaction of A.

It follows from the magic unitarity condition that α is a morphism of algebras, which satisfies indeed the axioms of coactions. See [START_REF] Banica | Quantum automorphism groups of homogeneous graphs[END_REF] for details.

For the purposes of this paper, let us just mention that α appears as functional analytic transpose of the action of G on the set X n = {1, . . . , n}. In other words, with heuristic notations from section 2, we have α(ϕ) = ϕa, where

a : X n × G → X n
is the action map of G on X n , given by the heuristic formula a(i, g) = g(i).

These general considerations are valid in fact for any graph. In what follows we use the following simple fact, valid as well in the general case.

Theorem 3.1. If F is an eigenspace of d then α(F ) ⊂ F ⊗ A.
Proof. Since u commutes with d, it commutes with the C * -algebra generated by d, and in particular with the projection π(F ). The relation uπ(F ) = π(F )u can be translated in terms of α, and we get α(F ) ⊂ F ⊗ A. See [START_REF] Banica | Quantum automorphism groups of homogeneous graphs[END_REF] for details.

Spectral decomposition

In what follows X is a circulant graph having p vertices, with p prime. We denote by d, A, α the associated adjacency matrix, Hopf algebra and coaction, and by S, E, k the set, group and number in Definition 3.1.

We denote by ξ the column vector (1, w, w 2 , . . . , w p-1 ), where w = e 2πi/p . Let K = Q(w) and let H be the Galois group of the Galois extension Q ⊂ K. It is well-known that we have a group isomorphism

Z * p -→ H x -→ s x
with the automorphism s x given by the following formula:

s x (w) = w x
Also, we know from a theorem of Dedekind that the family {s x | x ∈ Z * p } is free in End Q (K). Now for x, y ∈ Z * p consider the following operator:

L = t∈S s xt - t∈S s yt ∈ End Q (K)
Proof. We use Lemma 4.1, which ensures that V 1 , V 2 , V 3 are eigenspaces of d. By 2-maximality of E, these three eigenspaces are different.

From eigenspace preservation in Theorem 3.1 we get formulae of the following type, with r a , r ′ a , r ′′ a ∈ A:

α(ξ) = a∈E ξ a ⊗ r a α(ξ 2 ) = a∈E ξ 2a ⊗ r ′ a α(ξ 3 ) = a∈E ξ 3a ⊗ r ′′ a
We take the square of the first relation, we compare with the formula of α(ξ 2 ), and we use 2-maximality:

α(ξ 2 ) = a∈E ξ a ⊗ r a 2 = x ξ x ⊗   a,b∈E δ a+b,x r a r b   = c∈E ξ 2c ⊗   a,b∈E δ a+b,2c r a r b   = c∈E ξ 2c ⊗ r 2 c
We multiply this relation by the formula of α(ξ), we compare with the formula of α(ξ 3 ), and we use 2-maximality:

α(ξ 3 ) = a∈E ξ a ⊗ r a c∈E ξ 2c ⊗ r 2 c = x ξ x ⊗   a,c∈E δ a+2c,x r a r 2 c   = b∈E ξ 3b ⊗   a,c∈E δ a+2c,3b r a r 2 c   = b∈E ξ 3b ⊗ r 3 b
Summarizing, the three formulae in the beginning are in fact:

α(ξ) = a∈E ξ a ⊗ r a α(ξ 2 ) = a∈E ξ 2a ⊗ r 2 a α(ξ 3 ) = a∈E ξ 3a ⊗ r 3 a
We claim now that for a = b, we have the following "key formula": r a r 3 b = 0 Indeed, consider the following equality:

a∈E ξ a ⊗ r a b∈E ξ 2b ⊗ r 2 b = c∈E ξ 3c ⊗ r 3 c
By eliminating all a = b terms, which produce the sum on the right, we get:

ξ a+2b ⊗ r a r 2 b | a, b ∈ E, a = b = 0
By taking the coefficient of ξ x , with x arbitrary, we get:

r a r 2 b | a, b ∈ E, a = b, a + 2b = x = 0 We fix now a, b ∈ E satisfying a = b.
We know from 2-maximality that the equation a + 2b = a ′ + 2b ′ with a ′ , b ′ ∈ E has at most one non-trivial solution, namely the hexagonal one, given by a ′ = -a and b ′ = a + b. Now with x = a + 2b, we get that the above equality is in fact one of the following two equalities: 

+ 2b 1 = a ′ 1 + 2b ′ 1 with a ′ 1 , b ′
1 ∈ E has only trivial solutions, and with x = a 1 + 2b 1 in the above considerations we get: r a 1 r 2 b 1 = 0 Now remember that this follows by identifying coefficients in α(ξ)α(ξ 2 ) = α(ξ 3 ). The same method applies to the formula α(ξ 2 )α(ξ) = α(ξ 3 ), and we get: On the other hand, A is generated by coefficients of α, which are in turn powers of elements r a . It follows that A is commutative, and we are done.

The main result

Let k be an even number, and consider the group of k-th roots of unity G = {1, ζ, . . . , ζ k-1 }, where ζ = e 2πi/k . We use the Euler function ϕ. Let n be the order of the root of unity z. By [START_REF] Wang | Quantum symmetry groups of finite spaces[END_REF], chap. 2, the Q(z)-norm N (1z) of 1z is ±1 if n is not the power of a prime l, and ±l otherwise. Applying the Q(z)-norm to 1z = 2u, and using that u is an algebraic integer, we get 2 ϕ(n) | N (1z)

hence n ≤ 2, z = ±1, and we are done.

Let p be a prime number.

Lemma 5.2. For p > 6 ϕ(k) , any subgroup E ⊂ Z * p of order k is 2-maximal.

Lemma 4 . 1 .

 41 The eigenspaces of d are given by V 0 = C1 andV x = a∈E C ξ xa with x ∈ Z *p . Moreover, we have V x = V y if and only if xE = yE. Proof. The matrix d being circulant, we have the formulad(ξ x ) = f (x)ξ xwhere f : Z p → C is the following function:f (x) = t∈S w xt

r a r 2 b = 0 r a r 2 b

 02 + r -a r 2 a+b = 0 In the first situation, we have r a r 3 b = 0 as claimed. In the second situation, we proceed as follows. We know that a 1 = b and b 1 = a + b are distinct elements of E. Consider now the equationa 1 + 2b 1 = a ′ 1 + 2b ′ 1 with a ′ 1 , b ′ 1 ∈ E.The hexagonal solution of this equation, given by a ′ 1 = -a 1 and b ′ 1 = a 1 + b 1 , cannot appear: indeed, b ′ 1 = a 1 + b 1 can be written as b ′ 1 = a + 2b, and by 2-maximality we get b ′ 1 = -a = b, which contradicts a + b ∈ E. Thus the equation a 1

r 2 b 1 r a 1 1 a 1 a

 111 = 0We have now all ingredients for finishing the proof of the key formula:r a r 3 b = r a r 2 b r b = -r -a r 2 a+b r b = -r -a r 2 b 1 r a 1 = 0We come back to the following formula, proved for s = 1, 2, 3:α(ξ s ) = a∈E ξ sa ⊗ r s aBy using the key formula, we get by induction on s ≥ 3 that this holds in general:α ξ 1+s = a∈E ξ a ⊗ r a b∈E ξ sb ⊗ r s b = a∈E ξ (1+s)a ⊗ r 1+s a + a,b∈E, a =b ξ a+sb ⊗ r a r s b = a∈E ξ (1+s)a ⊗ r 1+s aIn particular with s = p -1 we get:α(ξ -1 ) = a∈E ξ -a ⊗ r p-On the other hand, from ξ * = ξ -1 we getα(ξ -1 ) = a∈E ξ -a ⊗ r *a which gives r * a = r p-for any a. Now by using the key formula we get (r a r b )(r a r b ) * = r a r b r * b r * a = r a r p b r * a = (r a r 3 b )(r p-3 b r * a ) = 0 which gives r a r b = 0. Thus we have r a r b = r b r a = 0.

Lemma 5 . 1 .

 51 G is 2-maximal in C. Proof. Assume that we have ab = 2(cd) with a, b, c, d ∈ G. With z = b/a and u = (cd)/a, we have 1z = 2u.
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We have L(w) = f (x)-f (y), and since L commutes with the action of the abelian group H, we have

and by linear independence of the family {s x | x ∈ Z * p } we get:

It follows that d has precisely 1 + (p -1)/k distinct eigenvalues, the corresponding eigenspaces being those in the statement.

Consider now a commutative ring (R, +, •). We denote by R * the group of invertibles, and we assume 2 Proof.

(1) This follows from the following formulae, which cannot hold in G:

Indeed, the first one would imply 4 = ±2, and the second one would imply 3 = ±1. But from 2 ∈ R * and 3 = 0 we get 2, 4, 6 = 0, contradiction.

( We use these facts several times in the proof below, by refering to them as "2maximality" properties, without special mention to Proposition 4.1.

Theorem 4.1. If E ⊂ Z p is 2-maximal (p ≥ 5) then X has no quantum symmetry.

Proof. Consider the following set of complex numbers:

, recall that A is the ring of algebraic integers of Q(ζ), and in particular a Dedekind ring. If p is any prime number such that k divides p -1, it is well-known that the ideal pA is a product P 1 . . . P ϕ(k) of prime ideals of A such that A/P i ≃ Z p for each i. Choosing an i we get a surjective ring morphism:

p is a cyclic subgroup of order k. As Z * p is known to be a cyclic group, Φ(G) is actually the unique subgroup of order k of Z * p , hence it coincides with the subgroup E in the statement. We claim that for p as in the statement, the induced map Φ : Σ → Z p is injective. Together with Lemma 5.1, this would prove the assertion.

So, assume Φ(x) = Φ(y). The Dedekind property gives an ideal Q ⊂ A such that:

For I a nonzero ideal of A, let us denote by N (I) := A/I the norm of I, and set also N (0) = 0. Recall that by the Dedekind property, N is multiplicative with respect to the product of ideals in A and that for any z ∈ A, the norm N (z) of the principal ideal zA coincides with the absolute value of the following integer:

Applying norms to (xy) = P i Q shows that N (P i ) = p divides the integer N (xy). Now with p as in the statement we have N (xy) ≤ p 0 for any x, y ∈ Σ, so the induced map Φ : Σ → Z p is injective, and we are done. Proof. This follows from Theorem 4.1 and Lemma 5.2, with p > 6 ϕ(k) .