Accurate computa tion of laminar boundary-layer flows using a residual-based scheme

The calculation of viscous compressible flows makes routine use of discretization schemes which are numerically dissi pative. This numerical dissipation , us ually tailored within the framework of t he Euler equations, is likely to affect the global accuracy of the solution when applied to a viscou s problem : such a contamination of a laminar bou ndary layer by scalar arti:fical dissipat ion was pointed out for in stance by Allrnaras in [START_REF] Allmaras | Contamination of lamina r boundary-layers by a rtificial dissipation in N a vier-Stokes solutions[END_REF]. In the same 'vvork , Allmaras observed that matrix dissipation allowed a large improvement of the velocity profile prediction, even on rather coarse grids, t hanks to a better scaled dissipation; t his result was later con• firmed in [START_REF] Tatsumi | Flux-Limited Schemes for the Compressible Navier-Stokes Equations[END_REF]. In t he present work, an original scheme with residual-based dissipation, :first introduced in [START_REF] Lerat | A Residual-Based Com pact Scheme for t he Compressible N avier-Stokes Equations[END_REF] to solve the compressible Navier-Stokes equation s, is compared "vith st andard scalar and matrix dissipat ion schemes in order to assess its accuracy properties. The computation of a flat-plate boundary layer flow as well as a viscous flow with pressure gradient and t he careful analysis of the results allow to conclude that the residual-based scheme yields very accurate velocity and temperature profiles even on extremely coarse grids.

. Description of the numerical methods

Consider the two-dimensional Navier-Stokes equations -.,vritten in conservative form : [START_REF] Allmaras | Contamination of lamina r boundary-layers by a rtificial dissipation in N a vier-Stokes solutions[END_REF] where t is the t ime, x andy are space coordinates, w = w(x, y, t) is the state vector, jE , gE are the inviscid flu x vector fu nctions a nd jv , gv are the viscous flux vector functio ns. Let Vj,k be a mesh function defined on a uniform Cartesian mesh (xi = j 8x, Yk = k 8y), with steps 8x and 8y of order O(h) a nd Jet us defi ne the basic difference and average operators :

(8lv)i+Lk = Vj+l,k -Vj,k (J.tlv)i+t,k = !(vj+l,k + Vj,k) (82v)j,k+~ = Vj,k+l -Vj,k (J.t2v)j,k+t = Hv. i,k+l + Vj,k) •
For t he sake of clarity in the description of the numerical methods, let us assume in a :first step that th e viscous fluxes are zero so that (1) reduces to the Euler system of equation s. It can be approximated using a conservative semi-discrete scheme written in t his case as : [START_REF] Tatsumi | Flux-Limited Schemes for the Compressible Navier-Stokes Equations[END_REF] with the n u me rica] fluxes given for a large class of schemes by :

(3)
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where F, G denote centered fluxes a pproximating respectively JE a nd gE while d 1 , d 2 are numerical dissipat ion fluxes. The inviscid fluxes are cl assically discretized wit h second-order accuracy using simple centered di• fferences :

- E - E F = ttd ' G = J.L29 . ( 4 
)
which lead to a t runcation error of the form E = 8 ~2 f xxx + 8 ~2 9 yyy + O(h 4 ). The second-orde r error terms can be cancelled using third-order differences in each space direction ; the following expressions : [START_REF] Martinelli | Validation of a Multigrid Method for the Reynolds Averaged Equat ions[END_REF] lead to a fourth-order non-dissipative approximation of the Euler equations ( E = 0 (h 4 )). Alternatjvely, fourth-ord e r accuracy can be obtained in a com pact way using the fact the resid ual r = f! + g : vanishes at steady-state [START_REF] Lerat | A Residual-Based Com pact Scheme for t he Compressible N avier-Stokes Equations[END_REF]. It is easy to check the following non-dissipative approximations : [START_REF] Van Leer | Towards the ultimate conservative difference scheme. V . A second-order sequel to Godurwv's method[END_REF] yield a truncation error of the form E = r + tox 2 r'xx + toy 2 ryy +0(h 4 ) a nd since r = 0 at steadystate, E = O(h 4 ) . For compressible flow calculations, approximations (4) , ( 5) or ( 6) cannot be used as s uch and need to be completed wit h num erical dissipation . Three choices are considered in the present work, namely a high-order either scalar or matrix dissipation leading respectively to the well-known Jameson [START_REF] Schmidt | Numerical Solutions of the Euler Equations by Fjnite Volume Methods with Runge-Ku tta Time Stepping Schemes[END_REF] and Roe-MUSCL [START_REF] Van Leer | Towards the ultimate conservative difference scheme. V . A second-order sequel to Godurwv's method[END_REF]- [START_REF] Roc | Approximate Riemann solvers, parameter vectors and difference schemes[END_REF] schemes, a nd a n odginal residu al-based dissipation [START_REF] Lerat | A Residual-Based Com pact Scheme for t he Compressible N avier-Stokes Equations[END_REF]. The scalar dissipation of t he J ameson scheme is scaled by t he spectral radii PA , PB of t he inviscid flux Jacobians A= djE /dw and B = dgE /dw; more precisely : [START_REF] Roc | Approximate Riemann solvers, parameter vectors and difference schemes[END_REF] where k( 4) is a t una ble coefficient and PA , PB are modified expressions of the spectral radii including t he correction proposed by Martinelli [START_REF] Martinelli | Validation of a Multigrid Method for the Reynolds Averaged Equat ions[END_REF] to reduce t he numerical dissipation on highly stretched grids. The matrix dissipation scheme is defined by :

1 3 1 ' 3 dl=-12 1ARI8 1 w, d2= -12 IBRI8 2 w (8) 
where AR (resp. BR) denotes the Roe a verage [START_REF] Roc | Approximate Riemann solvers, parameter vectors and difference schemes[END_REF] of the J acobian A (resp. B ). The thirdorder error introduced by both scalar and matrix dissipation terms can be written in the form Ed = ox 3 (DIW3x)x + oy 3 (D2W3y)y • The residual-based dissipation differs strongly from the previo•us choices si nce it is based on a low-order term \ovhich becomes thhd-order at steady-state, when r vanishes; it is given by : (

where <I> 2 , <I> 2 are matrix coefficients depending on the inviscid Jacobia ns eigenvalues which are designed t o ensure t he sche me dissjpation (see [START_REF] Lerat | A Residual-Based Com pact Scheme for t he Compressible N avier-Stokes Equations[END_REF] for more details) . It is easy to check that the e rror introduced by t he residuaJ-based dissipat ion reads Ed = 0 2 x (~lr) x + 8 21/ (cl>2r)y + O(h 3 ) a nd becom es third-order at steady-state where r = 0.

Let us now consider the full Navier-Stokes equations (1) a nd detail how t he previous methods extend to the viscous case. The centered fluxes F and G approximate respectively JEfv and gE-gv so t hat the formulae (4) become :

- E rv - E -V F = ttd -f , G = tt29 -g (10) V 01W 02J-l1fl2W -V V 0 1J-l1J.L2W 02W • . .
with f = f (J.tl w, -,-, 0 ) and g = g (p2 w, 0 , -,-). Usmg directiOnal corux y X uy rections to cancel the second-order error terms in (10) would considerably increase t he scheme stencil because of the high-order derivatives introduced by t he viscous fluxes; for practical applications, the following simplified high-order approximations are used : (ll) which yield a second-order scheme in the general case since t he viscous fluxes centered discretizat ion is unchanged but lead to a fou r th-order approximation of the Euler equations governing the flow outside the boundary layer. A truly fourth-order compact approximatio n of the Navier-Stokes equations was derived in [START_REF] Lerat | A Residual-Based Com pact Scheme for t he Compressible N avier-Stokes Equations[END_REF] using the residual-based idea, with the residual now defined by r = (! 5 -fv )x + (g 5 -gv )y. In the present work , a simpli'fied version is used because it was observed on the applications presented in the next section t hat a high-order approximation of t he inviscid flow region only was sufficient t o improve the prediction of boundary layer flow with pressure gradients; thus the residual-based high-order discretizations of j 5 -fv and gE-gv read :

(12) a nd yield a fourth-ord er approximation of the E uler equat ions but are only second-order inside the boundary-layer. The scalar and matrix third-order dissipation ( 7), (8) remain unchanged for viscous problems while the residual-based dissipatio n is modified to take into account the viscous fluxes in t he residual; the residual-based dissipative fluxes read : and yield a third-order error at steady-state -<1? 1 and <1?2 are unchanged with res p ect to the inviscid case -. From now on, the second-order schemes built using (2)-(10) with t he dissipation flux formula [START_REF] Roc | Approximate Riemann solvers, parameter vectors and difference schemes[END_REF] , (8) or (13) will be denoted respectively S D , MD and RB (scalar, matrix or residu al-based dissipation) . The scheme de• fin ed by t he directional correction (ll) a nd matrix dissipat ion (8) will be denoted M D(3) to indicate it is t hird-order outside the boundary-layer, while t he approxjma.tion based on the residu al-based correction (12) a nd dissipation (13) will be referred to as RB [START_REF] Lerat | A Residual-Based Com pact Scheme for t he Compressible N avier-Stokes Equations[END_REF]. None of the schemes makes use of a limiter fun ction.

Application to boundary-la yer flows

Supersonic laminar flow over a flat-plate Schemes SD, MD and RB are now applied to the computation of the la minar flo\v over a flat-plate at M = 2 a nd Re = 100000 per unit length. The supersonic regime is considered because t he solution is m uch less dependent on the proper choice of inlet a nd outlet bound ary conditions t ha n in the subsonic case, which allows to focus on t he comparison of space discretizations. Note t hat the coefficient k( 4 ) for SD is taken equal to 0.008; MD and RB are parameter free. T he computation al domain extends along the x -axis from x = 0 where all t he free-stream values are imposed (supersonic inlet) up to x = 4 where the conserved quantities are extrapolated at 'first-order from the values at the nearest upstream location (s upersonic outlet) and along t hey-axis from y = 0, where adia batic wall conditjons are prescribed , up toy= 0.16 t reated as a s upersonic outlet. The upper boundary is located at about 4 times t he boundary layer thickness at station x = 4. Three grids a re used in the com putations, each containing 120 poin ts uniformly distributed along t he x -axis : the fine (resp. medium and coarse) grid contains 80 (resp. 40 and 20) points in t he direction normal to which yields about 42 (resp. 16, 5) points within the bounda ry layer at the exit station.

The longitudinal velocity and temperature profiles computed at station x = 3 are displayed in Fig. 1 and 2 versus the boundary layer coordinate TJ = y-/l[e;; / x . On t he fine grid , the 3 schemes yield velocity profiles in good agreement with the reference solution obtained using a boundary-layer code, t hough SD is less accurate t han MD or RB; however, with 42 points in the boundary layer , SD is unabJe to predict the correct wall temperature while both MD and RB yield valu es very close to the recovery temperature. When using the medium grid, M D and RB solutions remain almost unchanged while the SD solu tion dev: iates strongly from the fin e grid solution . On the coarse grid, the SD prediction becomes meaningless; MD could not be s uccessfully converged to steady-state on this grid while RB is still able to provide an accurate solution •with no more than 5 points in the boundary layer. Using MD(3) (resp. RB( 3)) instead of MD (resp. RB) yields very sim j)ar results . Subsonic laminar flow over a N ACA0012 airfoil The flow at Moo = 0.5 a nd Re = 5000 over a thermally insulated NACA0012 airfoil at zero incidence is computed using t hree C-meshes containing the same number of points (128 x 83) -only t he upper part of the airfoil is considered owin g to the problem symmetry -but with different mesh spacing at t he wall varying from 1.2 x 10-2 for the coarse grid down to 4.8 x 10-3 and 4.8 x 10-4 respectively for the medium and fin e grids. The main • flow feature is a sepa ration region occuring near the ai rfoil trailing edge caused by t he adverse pressure gradient starting at about 10% of the chord. SD, with k( 4 ) set equal to 0.016 for this problem and the second or third-order versions of MD and RB yield very similar results on the fine grid (see Table 1 below where the computed drag coefficients and separation location are s ummarized) . However, the much higher sensitivity of SD to grid coarsening is observed again, as can be seen on the skin-friction distribution plotted in Fig. 3. The s kin-friction peak located near the leading edge rapidly decreases with SD while the separation point, identified as the point where skin-friction becomes zero, is strongly shifted towards the leading edge on the medium grid; the flo"v computed with SD is fully attached on the coarse grid. Meanwhile, bot h second-order MD and RB preserve rather well the solution accuracy on the medium grid but fail to do so on the coarse grid : t he s kin-friction distri bution strongly deviates from the fine a nd medium grid solution with a separation point located at about Xs = 0 .7c. Using M D(3) does not improve the prediction (see F ig.4) whereas using RB(3) allows to obtain an accurate solution even on the coarse grid, with no s hift in the separation location. The especially low se nsitivity of this latter method is also made visible on the pressure coefficient distribution in Fig. 5. . t: 
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Figure 1 :

 1 Figure 1: Laminar boundary layer over a • fiat plate. Effect of grid coarsening on the u-velocity profile at station x = 3 for the different schemes used. Left: SD; cent€r : MD; right: RB .

Figure 2 : 1 F igure 3 :

 213 Figure 2: Laminar boundary layer over a flat plate. Effect of grid coarsening on the temperature profile at station x = 3 for the different schemes used. Left : SD; center : MD; right : RB .

Figure 5 :

 5 Figure 5: Laminar flow over an airfoil. Effect of grid-coarsening on the pressure coefficient distribution . Left : SD; center : MD(3); right: RB(3) .

Table 1 :

 1 Laminar flow over a n airfoil. Viscous a nd inviscid drag coefficients a nd separation location (chord %) .
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