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Accurate computation of laminar boundary-layer flows 
using a residual-based scheme 

1. Introduction 

C. Corre, G. Hanss and E. Goncalves 

SINUMEF Laboratory- ENSAM 
151 , Bd de l'Hopital, 75013 Paris, France 

corre@paris .ensam.fr 

The calculation of viscous compressible flows makes routine use of discretization schemes which 
are numerically dissipative. This numerical dissipation , usually tailored within the framework 
of the Euler equations, is likely to affect the global accuracy of the solution when applied to a 
viscous problem : such a contamination of a laminar bou ndary layer by scalar arti:fical dissipat ion 
was pointed out for instance by Allrnaras in [1]. In the same 'vvork , Allmaras observed that matrix 
dissipation allowed a large improvement of the velocity profile prediction, even on rather coarse 
grids, t hanks to a better scaled dissipation; t his result was later con·firmed in [2]. In t he present 
work, an original scheme with residual-based dissipation, :first introduced in [3] to solve the 
compressible Navier-Stokes equations, is compared "vith st andard scalar and matrix dissipat ion 
schemes in order to assess its accuracy properties. The computation of a flat-plate boundary 
layer flow as well as a viscous flow with pressure gradient and the careful analysis of the results 
allow to conclude that the residual-based scheme yields very accurate velocity and temperature 
profiles even on extremely coarse grids. 

2 . Description of the numerical methods 

Consider the two-dimensional Navier-Stokes equations -.,vritten in conservative form : 

(1) 

where t is the t ime, x andy are space coordinates, w = w(x, y, t) is the state vector, jE , gE are 
the inviscid flux vector fu nctions a nd jv , gv are the viscous flux vector functions. Let Vj,k be 
a mesh function defined on a uniform Cartesian mesh (xi = j 8x, Yk = k 8y), with steps 8x and 
8y of order O(h) a nd Jet us defi ne the basic difference and average operators : 

(8lv)i+Lk = Vj+l,k - Vj,k 

(J.t lv)i+t,k = !(vj+l,k + Vj,k) 

(82v)j,k+~ = Vj,k+l - Vj,k 

(J.t2v)j,k+t = Hv.i,k+l + Vj,k) · 

For the sake of clarity in the description of the numerical methods, let us assume in a :first step 
that the viscous fluxes are zero so that (1) reduces to the Euler system of equations. It can be 
approximated using a conservative semi-discrete scheme written in t his case as : 

(2) 

with the n u me rica] fluxes given for a large class of schemes by : 

(3) 
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where F, G denote centered fluxes approximating respectively JE a nd gE while d1 , d2 are 
numerical dissipat ion fluxes. The inviscid fluxes are classically discretized wit h second-order 
accuracy using simple centered di·fferences : 

- E - E 
F = ttd ' G = J.L29 . (4) 

which lead to a t runcation error of the form E = 8~2 f xxx + 8~2 9 yyy + O(h4
). The second-order 

error terms can be cancelled using third-order differences in each space direction; the following 
expressions : 

(5) 

lead to a fourth-order non-dissipative approximation of the Euler equations ( E = 0 (h4
)). Al­

ternatjvely, fourth-order accuracy can be obtained in a compact way using the fact the resid ual 
r = f! + g: vanishes at steady-state [3]. It is easy to check the following non-dissipative 
approximations : 

(6) 

yield a truncation error of the form E = r + tox2
r'xx + toy2ryy +0(h4

) and since r = 0 at steady­
state, E = O(h4

) . For compressible flow calculations, approximations (4) , (5) or (6) cannot be 
used as such and need to be completed wit h numerical dissipation . Three choices are considered 
in the present work, namely a high-order either scalar or matrix dissipation leading respectively 
to the well-known Jameson [4] and Roe-MUSCL [6]-[7] schemes, a nd a n odginal residual-based 
dissipation [3]. The scalar dissipation of t he J ameson scheme is scaled by t he spectral radii PA , 
PB of t he inviscid flux Jacobians A= djE /dw and B = dgE /dw; more precisely : 

(7) 

where k(4
) is a t una ble coefficient and PA , PB are modified expressions of the spectral radii 

including t he correction proposed by Martinelli [5] to reduce t he numerical dissipation on highly 
stretched grids. The matrix dissipation scheme is defined by : 

1 3 1 ' 3 
dl=-

12
1ARI81w, d2= -

12
IBRI82w (8) 

where AR (resp. BR) denotes the Roe average [7] of the J acobian A (resp. B ). The third­
order error introduced by both scalar and matrix dissipation terms can be written in the form 
Ed = ox3 (DIW3x)x + oy3(D2W3y)y · The residual-based dissipation differs strongly from the 
previo·us choices since it is based on a low-order term \ovhich becomes thhd-order at steady-state, 
when r vanishes; it is given by : 

(9) 

where <I>2 , <I>2 are matrix coefficients depending on the inviscid Jacobia ns eigenvalues which are 
designed to ensure t he scheme dissjpation (see [3] for more details) . It is easy to check that the 
error introduced by t he residuaJ-based dissipat ion reads Ed = 0

2x (~lr)x + 821/ (cl>2r)y + O(h3) a nd 
becomes third-order at steady-state where r = 0. 
Let us now consider the full Navier-Stokes equations (1) and detail how t he previous methods 
extend to the viscous case. The centered fluxes F and G approximate respectively JE- fv and 
gE- gv so t hat the formulae (4) become : 

- E rv - E -V F = ttd - f , G = tt29 - g (10) 
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. -v V 01W 02J-l1fl2W -V V 0 1J-l1J.L2W 02W • . . 
with f = f (J.tl w, -,-, 

0 
) and g = g (p2 w, 

0 
, -,-). Usmg directiOnal cor-

ux y X uy 
rections to cancel the second-order error terms in (10) would considerably increase t he scheme 
stencil because of the high-order derivatives introduced by the viscous fluxes; for practical ap­
plications, the following simplified high-order approximations are used : 

(ll) 

which yield a second-order scheme in the general case since the viscous fluxes centered discretiza­
t ion is unchanged but lead to a four th-order approximation of the Euler equations governing the 
flow outside the boundary layer. A truly fourth-order compact approximation of the Navier­
Stokes equations was derived in [3] using the residual-based idea, with the residual now defined 
by r = (!5 - fv )x + (g5 - gv )y. In the present work , a simpli'fied version is used because it was 
observed on the applications presented in the next section that a high-order approximation of 
t he inviscid flow region only was sufficient to improve the prediction of boundary layer flow with 
pressure gradients; thus the residual-based high-order discretizations of j 5 - fv and gE- gv 
read : 

(12) 

a nd yield a fourth-order approximation of the E uler equat ions but are only second-order inside 
the boundary-layer. The scalar and matrix third-order dissipation (7), (8) remain unchanged 
for viscous problems while the residual-based dissipatio n is modified to take into account the 
viscous fluxes in t he residual; the residual-based dissipative fluxes read : 

and yield a third-order error at steady-state - <1?1 and <1?2 are unchanged with respect to the 
inviscid case -. From now on, the second-order schemes built using (2)-(10) with t he dissipation 
flux formula (7) , (8) or (13) will be denoted respectively S D , MD and RB (scalar, matrix or 
residual-based dissipation) . The scheme de·fined by the directional correction (ll) a nd matrix 
dissipat ion (8) will be denoted M D(3) to indicate it is t hird-order outside the boundary-layer, 
while t he approxjma.tion based on the residual-based correction (12) a nd dissipation (13) will 
be referred to as RB(3). None of the schemes makes use of a limiter function. 

3. Application to boundary-la yer flows 

Supersonic laminar flow over a flat-plate Schemes SD, MD and RB are now applied 
to the computation of the la minar flo\v over a flat-plate at M = 2 a nd Re = 100000 per unit 
length. The supersonic regime is considered because the solution is much less dependent on the 
proper choice of inlet a nd outlet boundary conditions tha n in the subsonic case, which allows to 
focus on the comparison of space discretizations. Note that the coefficient k(4) for SD is taken 
equal to 0.008; MD and RB are parameter free. T he computational domain extends along the 
x- axis from x = 0 where all t he free-stream values are imposed (supersonic inlet) up to x = 4 
where the conserved quantities are extrapolated at 'first-order from the values at the nearest 
upstream location (supersonic outlet) and along they-axis from y = 0, where adia batic wall 
conditjons are prescribed , up toy= 0.16 t reated as a supersonic outlet. The upper boundary is 
located at about 4 times the boundary layer thickness at station x = 4. Three grids a re used in 
the computations, each containing 120 poin ts uniformly distributed along the x- axis : the fine 
(resp. medium and coarse) grid contains 80 (resp. 40 and 20) points in the direction normal to 
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the plate, with a mesh spacing at the wall D..yw equal to 5 x 10-4 (resp. 2 x 10-3 , 8 x 10-3) 

which yields about 42 (resp. 16, 5) points within the bounda ry layer at the exit station. 
The longitudinal velocity and temperature profiles computed at station x = 3 are displayed 
in Fig. 1 and 2 versus the boundary layer coordinate TJ = y-/l[e;; / x . On t he fine grid , the 3 
schemes yield velocity profiles in good agreement with the reference solution obtained using a 
boundary-layer code, t hough SD is less accurate t han MD or RB; however, with 42 points in 
the boundary layer , SD is unabJe to predict the correct wall temperature while both MD and 
RB yield values very close to the recovery temperature. When using the medium grid, M D and 
RB solutions remain almost unchanged while the SD solu tion dev:iates strongly from the fin e 
grid solution . On the coarse grid, the SD prediction becomes meaningless; MD could not be 
successfully converged to steady-state on this grid while RB is still able to provide an accurate 
solution ·with no more than 5 points in the boundary layer. Using MD(3) (resp. RB(3)) instead 
of MD (resp. RB) yields very simj)ar results . 

Subsonic laminar flow over a N ACA0012 airfoil The flow at Moo = 0.5 and Re = 5000 
over a thermally insulated NACA0012 airfoil at zero incidence is computed using t hree C-meshes 
containing the same number of points (128 x 83) - only t he upper part of the airfoil is considered 
owing to the problem symmetry - but with different mesh spacing at t he wall varying from 
1.2 x 10- 2 for the coarse grid down to 4.8 x 10- 3 and 4.8 x 10- 4 respectively for the medium 
and fin e grids. The main ·flow feature is a sepa ration region occuring near the ai rfoil trailing 
edge caused by t he adverse pressure gradient starting at about 10% of the chord. SD, with 
k(4 ) set equal to 0.016 for this problem and the second or third-order versions of MD and 
RB yield very similar results on the fine grid (see Table 1 below where the computed drag 
coefficients and separation location are summarized) . However, the much higher sensitivity of 
SD to grid coarsening is observed again, as can be seen on the skin-friction distribution plotted 
in Fig. 3. The skin-friction peak located near the leading edge rapidly decreases with SD while 
the separation point, identified as the point where skin-friction becomes zero, is strongly shifted 
towards the leading edge on the medium grid; the flo"v computed with SD is fully attached on 
the coarse grid. Meanwhile, bot h second-order MD and RB preserve rather well the solution 
accuracy on the medium grid but fail to do so on the coarse grid : t he skin-friction distri bution 
strongly deviates from the fine and medium grid solution with a separation point located at about 
Xs = 0 .7c. Using M D(3) does not improve the prediction (see F ig.4) whereas using RB(3) allows 
to obtain an accurate solution even on the coarse grid, with no shift in the separation location. 
The especially low sensitivity of this latter method is also made visible on the pressure coefficient 
distribution in Fig.5. 

SD MD(3) RB(3) 
CD1 CDp Xs CD1 CDp Xs CD1 CDp Xs 

Fine grid 0.0328 0.0226 0.808 0.0327 0.0228 0.810 0.0326 0.0230 0.800 
Mediu m grid 0.0325 0.0301 0.59 0.0303 0.0245 0.810 0.0320 0.0223 0.800 
Coarse grid 0.0481 0.0171 X 0.0241 0.0305 0.67 0.0312 0.0208 0.800 

Table 1: Laminar flow over an airfoil. Viscous and inviscid drag coefficients and separation 
location (chord %) . 
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Figure 1: Laminar boundary layer over a ·fiat plate. Effect of grid coarsening on the u-velocity 
profile at station x = 3 for the different schemes used. Left: SD; cent€r : MD; right: RB. 
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distribution. Left : S D; center : MD; right : R B . Only 1 out of 5 points is shown along the 
ai1joil fo1' the sake of cla1·ity. 
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