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Abstract

We consider two exit problems for the Korteweg-de Vries equation

perturbed by an additive white in time and colored in space noise of

amplitude ǫ. The initial datum gives rise to a soliton when ǫ = 0. It

has been proved recently that the solution remains in a neighborhood of

a randomly modulated soliton for times at least of the order of ǫ
−2. We

prove exponential upper and lower bounds for the small noise limit of

the probability that the exit time from a neighborhood of this randomly

modulated soliton is less than T , of the same order in ǫ and T . We obtain

that the time scale is exactly the right one. We also study the similar

probability for the exit from a neighborhood of the deterministic soliton

solution. We are able to quantify the gain of eliminating the secular modes

to better describe the persistence of the soliton.

Key Words: Stochastic partial differential equations, Korteweg-de Vries equa-
tion, soliton, large deviations.
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1 Introduction

The Korteweg-de Vries (KdV) equation is a model for the evolution of weakly
nonlinear, shallow water, unidirectional long waves. It is of the form

∂tu + ∂3
xu + ∂x(u2) = 0 (1.1)
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where the space variable x is in R. The results of this paper could easily be
extended to generalized subcritical KdV equations for which the nonlinearity
is ∂x(up) for p < 5, but we consider throughout this article the p = 2 case for
simplicity. The KdV equation is famous for its soliton solutions confirming the
observation of the solitary wave propagating on a channel by Russell in 1844.
These solitons are traveling waves of the form uc,x0

(t, x) = ϕc(x−ct+x0) where
c is the constant velocity, x0 ∈ R is the initial phase and

ϕc(x) =
3c

2 cosh2 (
√

cx/2)
(1.2)

These waves are localized, i.e. they decay exponentially to zero as x goes to
infinity. Their shape is stable against perturbations of the initial state. A first
notion of stability, for initial data close to ϕc, which takes into account the
symmetries of the evolution equation, is that of orbital stability. This notion
of stability was first considered, for the solution ϕc(x − ct + x0) of the KdV
equation, by Benjamin [1]. The set {ϕc(· − s), s ∈ R} is the orbit of ϕc. The
functional Qc(u) = H(u)+cM(u) is used as a Lyapunov functional in the proof.
It involves two important invariant quantities of the evolution equation (1.1):
the Hamiltonian, defined for u in H1(R), the space of square integrable functions
with square integrable first order derivatives, by

H (u) =
1

2

∫

R

(∂xu(x))
2
dx − 1

3

∫

R

u3(x)dx (1.3)

and the mass defined by

M (u) =
1

2

∫

R

u2(x)dx. (1.4)

The space H1(R) is the energy space, and it is a natural space for the so-
lutions of (1.1) : indeed, if u ∈ C([0, T ]; H1(R)) is a solution of (1.1), then
H(u(t)) = H(u0) and M(u(t)) = M(u0) for any t ∈ [0, T ], where u0 is the
initial datum in H1. The shape of the soliton ϕc is a solution of the constrained
variational problem which consists in minimizing the Hamiltonian for a constant
mass. Orbital stability means that when the initial datum is close to ϕc in H1

then the solution remains close to the orbit of ϕc. The second stronger notion
of stability is that of asymptotic stability. It states that, for initial datum close
in H1 to ϕc, the solution converges in some sense as time goes to infinity to
a soliton where the velocity and phase have been shifted. Convergence may
correspond to weak convergence in H1, see [15] or [16], or strong convergence
in some weighted Sobolev space, see [17], for less general perturbations of the
initial datum, when the solution is written in the soliton reference frame. Note
that strong convergence in H1 is not expected due to the possibility of a disper-
sive tail moving away from the soliton as time goes to infinity.

It is often physically relevant to consider random perturbations of equation
(1.1), see [19]. It is also interesting from a theoretical perspective to study the
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stability of the soliton shape under these random perturbations. We consider as
in [19] the case of an additive noise which could model a random pressure at the
surface of the water. The corresponding stochastic partial differential equation
(SPDE for short) written in Itô form is the following

du +
(

∂3
xu + ∂x(u2)

)

dt = ǫdW (1.5)

where (W (t))t≥0 is a Wiener process and ǫ is the small noise amplitude. As we
work in infinite dimensions, and in the absence of global smoothing property of
the group S(t) on H1 associated to the unbounded operator −∂3

x, W needs to
be a proper Wiener process on H1. Thus, the components of W (1) need to be
correlated for the law of W (1) to be a bona-fide Gaussian measure. It can then
always be seen as the direct image via a Hilbert-Schmidt self-adjoint mapping
Φ of a cylindrical measure and we assume that Φ is a mapping from L2 into
H1. Recall that Φ is Hilbert-Schmidt from L2 into H1 if it is a bounded linear
operator and for a complete orthonormal system (ei)i∈N

of L2,
∑

i∈N
‖Φei‖2

H1

is finite. The sum does not depend on the complete orthonormal system and,
endowed with its square root as a norm, the space of Hilbert-Schmidt operators
L2(L

2, H1) = L0,1
2 is a Hilbert space. As a consequence, the Wiener process

could be written as

W (t, x) =
∑

i∈N

βi(t)Φei(x), t ≥ 0, x ∈ R (1.6)

where (βi)i∈N
is a collection of independent standard real valued Brownian mo-

tions and (ei)i∈N
a complete orthonormal system of L2. Existence of path-wise

mild solutions, almost surely continuous in time for all t positive with values
in H1, of the SPDE supplemented with the initial datum u(0) = u0 ∈ H1

and uniqueness among those having almost surely paths in some subspace
XT ⊂ C

(

[0, T ]; H1
)

has been obtained in [3]. In [6, 7] global well posedness
is obtained for rougher noises and less regular solutions. It should be noticed
that in the physics literature the space-time white noise, corresponding to Φ = I
is often considered, which we are not able to treat mathematically. For simplic-
ity, we consider the sequence of operators

Φn =

(

I − ∆ +
1

n
(x2I − ∆)k

)−1/2

, (1.7)

which are Hilbert-Schmidt from L2 into H1 for k large enough, in order to prove
lower bounds on exit times. As n goes to infinity the Hilbert-Schmidt assump-
tion tends to be relaxed and the noise mimics a spatially homogeneous noise
with covariance (I − ∆)−1, which is a white noise in the Hilbert space H1. It
should also be noted that these operators are uniformly bounded in the space
L0,1 of bounded operators from L2 into H1; indeed we have for every integer
n, ‖Φn‖L0,1 ≤ 1. It is possible to work with a more general approximating
sequence, see for example the kind of assumptions made in [8].
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The linearized operator around the soliton is particularly interesting to study
the stability. It has a general null-space spanned by the two secular modes ∂xϕc

and ∂cϕc. These modes are associated with infinitesimal changes in the velocity
and location of the solitary wave. In Remark 2.3 in [5], the following heuristic
argument then implies that the random solution should at most remain close
to the deterministic solution up to times of the order ǫ−2/3. It is based on an
analogy with the behavior of a linear system of SDEs such that 0 is a degenerate
simple eigenvalue corresponding to a Jordan block

{

dX1 = X2dt + ǫdW1(t)
dX2 = ǫdW2(t)

with Brownian motions W1 and W2. In such a case,

X1(T ) = ǫ

∫ T

0

W2(s)ds + ǫW1(T )

has variance of the order of ǫ2T 3 for large T . Thus, for a first approximation of
the solution uǫ,ϕc0 of (1.5) with initial datum ϕc0

, of the form

uǫ,ϕc0 (t, x) = ϕc0
(x − c0t) + ǫη̃ǫ(t, x − c0t), (1.8)

and with an exit time defined for a neighborhood of the soliton in H1

B (ϕc0
, α) =

{

f ∈ H1 : ‖f − ϕc0
‖H1 < α

}

by
τ̃ ǫ
α = inf {t ∈ [0,∞) : uǫ,ϕc0 (t, · + c0t) ∈ B (ϕc0

, α)
c} ,

exit is expected to occur on a time scale of the order of ǫ−2/3. However, it is
believed that the soliton shape is preserved over a longer time scale. A general
approach which works for the deterministic equation, see [15, 17], is to introduce
a description by a soliton ansatz where the parameters of the soliton fluctuate
with time. In the case of an additive noise physicists use an approximation of the
solution by a soliton ansatz of the form ϕcǫ(t) (x − xǫ(t)) where cǫ(t) and xǫ(t)
are random scalar processes evolving according to a system of coupled SDEs.
In the case where the noise is the time derivative of a one dimensional standard
Brownian motion, it is easily seen (see [20]) that the solution can be written as
a modulated soliton plus a Brownian motion. However, proving such a result
is more involved when the noise is a function of space as well. A mathematical
justification is given in [5] where the following result is proved.

Theorem 1.1 For ǫ > 0 and c0 > 0, there exists α0 > 0 such that for every

α ∈ (0, α0] there exists a stopping time τ ǫ
α > 0 a.s. and semi-martingales cǫ(t)

and xǫ(t) defined a.s. for t ≤ τ ǫ
α with values in (0,∞) and R respectively such

that if we set

ǫηǫ(t) = uǫ,ϕc0 (t, · + xǫ(t)) − ϕcǫ(t)

then
∫

R

ηǫ(t, x)ϕc0
(x)dx = (ηǫ, ϕc0

) = 0, ∀t ≤ τ ǫ
α a.s., (1.9)
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∫

R

ηǫ(t, x)∂xϕc0
(x)dx = (ηǫ, ∂xϕc0

) = 0, ∀t ≤ τ ǫ
α a.s. (1.10)

and for all t ≤ τ ǫ
α,

‖ǫηǫ(t)‖H1 ≤ α (1.11)

and

|cǫ(t) − c0| ≤ α. (1.12)

Moreover, there exists C > 0 such that for all T > 0 and α ≤ α0 there exists

ǫ0 > 0 such that for all ǫ < ǫ0,

P (τ ǫ
α ≤ T ) ≤

Cǫ2T ‖Φ‖
L

0,1
2

α4
. (1.13)

The proof uses the Lyapunov functional Qc as a central tool. The equations (1.9)
and (1.10) are such that restricted to this subspace, the Lyapunov functional
is coercive, i.e. the operator Q′′

c0
is positive. It allows to keep |cǫ(t) − c0| and

‖ǫηǫ(t)‖H1 small on a longer time interval. Also, these two conditions together
with the implicit function theorem allow to obtain cǫ and xǫ. Other results in
[5] give the asymptotic distribution of ηǫ as ǫ goes to zero as well as coupled
equations for the evolution of the random scalar parameters. The parameters
and remainder do not depend on α ≤ α0. In the upper bound (1.13) the prod-
uct ǫ2T appears. The theorem says that the solution stays in a neighborhood
of the randomly modulated soliton ϕcǫ(t)(x − xǫ(t)) with high probability at
least for times small compared to ǫ−2. The time spent in a neighborhood of
a soliton-like wave, when the initial datum gives rise to a soliton for ǫ = 0, is
called the persistence time, see [9] for numerical confirmations that the above
order is the right order.

In this paper we first study the exit time τ̃ ǫ
α and obtain that the time scale

on which the solution stays close to the deterministic soliton is indeed at most
of the order of ǫ−2/3. We then revisit the upper bound (1.13) and prove a
sharper exponential bound. This bound is supplemented with an exponential
lower bound of the same order in the parameters T and ǫ. We thus obtain the
right order of the cumulative distribution function (CDF) of the exit time off
neighborhoods of the randomly modulated soliton. This gives a confirmation
that the time scale on which the approximation of the solution by a randomly
modulated soliton is valid is of the order ǫ−2. Our main tools are large de-
viations along with a study of the associated variational problems. Similarly,
factors T and T 3 have also been obtained in the study of the tails of the mass
and arrival time for stochastic nonlinear Schrödinger equations (NLS) in [8, 13]
with the same techniques. These quantities are the main processes impairing
soliton transmission in optical fibers. In that setting, physicists again use the
approximation by a randomly modulated soliton. An analogue of Theorem 1.1
for stochastic NLS equations would allow to tell up to what length of the fiber
line the approximation is licit. Large deviations are also known to be a useful
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tool to study the exit problem from an asymptotic equilibrium point or noised
induced transition between several equilibrium points in the small noise limit
(see [12], and [14] for an exit problem for stochastic weakly damped nonlin-
ear Schrödinger equation). Here we however study a simpler problem than the
escape from the asymptotically stable central manifold for the KdV equation
which we hope to study in future works.

2 Large deviations and escape from a neighbor-

hood of the soliton

We use sample path large deviations in this article in order to obtain lower
bounds of the asymptotic as n goes to infinity and ǫ goes to zero of probabil-
ities P (τn,ǫ ≤ T ) where τn,ǫ is the exit time of a neighborhood of either the
deterministic soliton or the randomly modulated soliton. The n recalls that we
consider a sequence of operators Φn, see (1.7). Large deviation techniques, see
for example [10, 11], allow to quantify convergence to zero of rare events. For
example, it is easy to check that on a finite time interval [0, T ], the paths of
the solution of 1.5 starting form ϕc0

converge in probability to the paths of the
deterministic soliton solution. The probability that exit from a neighborhood
of the soliton occurs before T goes to zero as ǫ goes to zero. Large deviations
quantify the convergence to zero of such probabilities. Following Varadhan’s
formalism, large deviations could be stated as a sequence of inequalities called a
large deviation principle (LDP for short). The convergence to zero of the loga-
rithm of the probabilities of rare events is characterized by a speed, here ǫ2, and
a deterministic functional In depending on the operator Φn considered, called
rate function, to be minimized on the closure and interior of the set defining
the rare event in the state space. In the small noise asymptotics and for sample
path large deviations, the rate function could be expressed in terms of the mild
solution of the control problem

{

∂tu + ∂3
xu + ∂x(u2) = Φnh,

u(0) = ϕc0
and h ∈ L2

(

0, T ; L2
)

.
(2.1)

We denote the solution by Sn,ϕc0 (h). The mapping h → Sn,ϕc0 (h) is called the
control map and (2.1) the control equation. We recall that a rate function I on
the sample space (here the paths space C([0, T ]; H1)) is lower semicontinuous
and that a good rate function is such that I−1([0, R]) is compact for every R
positive.

Theorem 2.1 The laws
(

µun,ǫ,ϕc0
)

ǫ>0
of the paths of the solutions of (1.5) for

the operator Φ = Φn on C([0, T ]; H1) with initial datum ϕc0
satisfy a LDP of

speed ǫ2 and good rate function

In(w) =
1

2
inf

h∈L2(0,T ;L2): w=S
n,ϕc0 (h)

‖h‖2
L2(0,T ;L2).
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It means that for every Borel set B of C
(

[0, T ]; H1
)

, we have the lower bound

− inf
◦

w ∈ B

In(w) ≤ limǫ→0ǫ
2 log P (un,ǫ,ϕc0 ∈ B)

and the upper bound

limǫ→0ǫ
2 log P (un,ǫ,ϕc0 ∈ B) ≤ − inf

w∈B
In(w).

The proof uses the LDP for the laws of the stochastic convolution ǫZ where
Z(t) =

∫ t

0 S(t − s)dW (s) on the Banach path space XT ; it is a subspace of

C
(

[0, T ]; H1
)

where the fixed point argument proving the local well-posedness
is used, see [3]. The stochastic convolution appears when we write the equation
satisfied by the mild solution of (1.5). These laws are Gaussian measures and
the LDP is a consequence of the general result on LDP for centered Gaussian
measures on real Banach spaces, see [11]. The second step is to prove the con-
tinuity of the mapping which, to the perturbation Z in XT assigns the solution
un,1,ϕc0 := G(Z) in C

(

[0, T ]; H1
)

. It is obtained noting that G(Z) = v(Z) + Z
where v(x) denotes the solution of

{

∂tv + ∂3
xv + ∂x

(

(v + Z)2
)

= 0
v(0) = ϕc0

.

Then the continuity of G is a consequence of the continuity of v with respect
to the perturbation Z. It could be proved as in [4] where the stochastic NLS
equation is considered. LDP for the paths of the mild solution of the SPDE is
then obtained by a direct application of the contraction principle which states
that we can push forward LDP for measures on a Hausdorff topological space to
a LDP for direct image measures on another Hausdorff topological space when
the mapping is continuous. More details on the proof of such LDP are given in
[13] where the stochastic NLS equation with additive noise is considered. The
control map SH,ϕc0 (h) for the theoretical stochastic equation with spatially
homogeneous noise is defined as the mild solution of

{

∂tu + ∂3
xu + ∂x(u2) = ΦHh,

u(0) = ϕc0
and h ∈ L2

(

0, T ; L2
)

,
(2.2)

where ΦH = (I − ∆)−1/2. Note that though we cannot give a mathematical
meaning to the stochastic equation with such homogeneous noise, the corre-
sponding control map is well defined.

Let us now consider the exit times τ̃n,ǫ
α . Note that we only consider here

a lower bound of the probability since it is enough to prove the heuristic of
Remark 2.3 in [5]. Recall that we want to check that the time scale on which
the approximation by the deterministic soliton is licit is at most of the order
of ǫ−2/3. When studying the exit times τn,ǫ

α , however, we give both upper and
lower bounds of the tail probabilities of the same order in the parameters ǫ and
T .
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Proposition 2.2 Take T , c0 positive; then for α0 small enough, for every α <
α0, there exists a constant C(α, c0) which depends on α and c0 but not on T
such that

limn→∞limǫ→0ǫ
2 log P (τ̃n,ǫ

α ≤ T ) ≥ −C(α, c0)

T 3
.

Proof. For fixed n, using Theorem 2.1, limǫ→0ǫ log P (τ̃n,ǫ
α ≤ T ) is larger than

−1

2
inf
{

‖h‖2
L2(0,T ;L2), h : ‖Sn,ϕc0 (h)(T ) − ϕc0

(· − c0T )‖H1 > α
}

.

In a first step, we consider the preceding variational problem in which the oper-
ator Φn is replaced by the operator ΦH = (I −∆)−1/2 and α is replaced by 2α.
We give upper bounds on the infimum by minimizing on smaller and smaller
sets of controls, until we are able to handle the variational problem. Note that
up to now, the problem is a control problem for the KdV equation that we
cannot handle. We will show that we can work on more restrictive classes of
controls and still obtain a nice qualitative order. Using the Sobolev embedding
of H1 into L∞, with norm C∞, the infimum is found to be less than

inf
{

‖h‖2
L2(0,T ;L2), h :

∥

∥SH,ϕc0 (h)(T ) − ϕc0
(· − c0T )

∥

∥

L∞
> 2C∞α

}

since we then minimize on a smaller set. We consider controls h giving rise to
modulated solitons of the form

ϕc(t)

(

x −
∫ t

0

c(s)

)

in the homogeneous case. They are such that c(0) = c0 and

ΦHh(t, x) = c′(t) ∂cϕc|c=c(t)

(

x −
∫ t

0

c(s)ds

)

,

since the soliton profile ϕc satisfies the equation

−c∂xϕc + ∂3
xϕc + ∂x(ϕc)

2 = 0.

Again, taking the infimum on a smaller set of controls, we obtain the lower
bound

−1

2
inf

{

∫ T

0

∥

∥

∥

∥

c′(t)Φ−1
H

[

∂cϕc|c=c(t)

(

x −
∫ t

0

c(s)ds

)]∥

∥

∥

∥

2

L2

dt,

c ∈ C1([0, T ]; (0, +∞)) : c(0) = c0,

∣

∣

∣

∣

∣

ϕc(T )

(

∫ T

0

(c0 − c(s))ds

)

− 3c0

2

∣

∣

∣

∣

∣

> 2C∞α

}

,

where we have bounded from below the L∞ norm of the function by its value
at c0T . This is in turn bigger than

− 1

2
inf

{

∫ T

0

(c′(t))2
∥

∥

∥
Φ−1

H

(

∂cϕc|c=c(t)

)∥

∥

∥

2

L2

dt,

c ∈ C1([0, T ]; (0, +∞)) : c(0) = c0,
3c0

2
− ϕc(T )

(

∫ T

0

(c0 − c(s))ds

)

> 2C∞α

}

,
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due to the fact that ΦH commutes with spatial translations. Let us fix α0 < 3c0

4C∞

so that c0 − 4C∞α
3 > 0 for 0 < α < α0. A sufficient condition for the constraint

on the terminal value to hold is

c0 −
4C∞α

3
>

4c(T )

exp
(

√

c(T )
∫ T

0 (c0 − c(s))ds
) .

Noticing that the function λ defined by λ(x) = 4x2 exp
(

−x
∫ T

0 (c0 − c(s))ds
)

attains its maximum at x = 2/
∫ T

0 (c0−c(s))ds for x ≥ 0, if
∫ T

0 (c0−c(s))ds ≥ 0,
we obtain that it is enough to have

∫ T

0

(c0 − c(s))ds >
4

e
√

c0 − 4C∞α/3
:= δ(c0, α).

As in [8] for the tails of the arrival time of a pulse driven by a stochastic nonlin-
ear Schrödinger equation where we obtained the order −CT−3, the boundary
condition is in integrated form. The integral to be minimized is of the form

∫ T

0

(c′(t))
2
g (c(t)) dt

where g(c) = ‖(I−∆)1/2∂cϕc‖2
L2 . Instead of solving the problem of the calculus

of variations with a nonstandard boundary condition, we make a guess and
look for solutions of the form c(t) = c0 − 2γt/T 2 for some positive γ with
c0−2γ/T > 0. Note that if γ = inf{ 3

2δ(c0, α), c0

4 }, then the boundary condition
is satisfied for T ≥ 1. Also the term g(c(t)) in the integral is then such that
there exists a constant C(c0) with

∫ T

0

(c′(t))
2
g (c(t)) dt ≤ C(c0)

∫ T

0

(c′(t))
2
dt, for T ≥ 1,

since c0/2 ≤ c(t) ≤ c0 for any T ∈ [0, T ]. Thus, for a new constant C(α, c0), we
obtain

∫ T

0

(c′(t))
2
g (c(t)) dt ≤ C(α, c0)

T 3
, for T ≥ 1.

Let us now consider the case where the square root of the covariance operator of
the noise is Φn, and let us start from the path c(t) exhibited in the homogeneous
noise case; we denote the corresponding control by

hc(t, x) = c′(t) (I − ∆)1/2

(

∂cϕc|c=c(t)

(

· −
∫ t

0

c(s)ds

))

.

Then, since for such hc

∥

∥SH,ϕc0 (hc)(T ) − ϕc0
(· − c0T )

∥

∥

H1
> 2α,
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we deduce from the continuity of the mild-solution of the control map with
respect to the convolution of the semi-group with the control, used to prove the
LDP, and the continuity of this last quantity with respect to the control, that
for sufficiently large n

‖Sn,ϕc0 (hc)(T ) − ϕc0
(· − c0T )‖H1

=

∥

∥

∥

∥

SH,ϕc0

(

(I − ∆)1/2(I − ∆ +
1

n
(x2I − ∆)k)−1/2hc

)

(T ) − ϕc0
(· − c0T )

∥

∥

∥

∥

H1

> α.

This ends the proof. �

As a consequence, the time scale on which an exit from a neighborhood of
the soliton occurs is at most ǫ−2/3. In the next section we prove that the time
scale on which the solution remains close to the randomly modulated soliton is
exactly of the much longer order ǫ−2. We provide upper and lower bounds for
this result.

3 Escape from a neighborhood of the randomly

modulated soliton

In the proof of Theorem 2.1 in [5] a local parametrization u 7→ (C(u),X (u))
is used, in order to obtain parameters of the soliton wave form such that u =
ϕC(u)(·−X (u))+R(u) with R satisfying some adequate orthogonality conditions.
This parametrization is obtained using the implicit function theorem, imposing
that the constraints (1.9) and (1.10) hold. Such a parametrization holds as long
as u remains in a proper neighborhood of the spatial translates of ϕc0

; thus,
setting cǫ(t) = C(uǫ,ϕc0 (t)) and xǫ(t) = X (uǫ,ϕc0 (t)), with uǫ,ϕc0 a solution of
(1.5) with paths a.s. in C1(R+; H1) and initial datum ϕc0

, the processes cǫ(t)
and xǫ(t) are well defined adapted processes, up to a stopping time of the form

τ ǫ
α = inf {t ≥ 0, |cǫ(t) − c0| ≥ α or ‖uǫ,ϕc0 (t, · + xǫ(t)) − ϕc0

‖H1 ≥ α} .

We can indeed always replace a function u by the function u(·+X (u)) and come
back to the case where xǫ(t) is close to 0, and it is not necessary to include a
condition of the form |xǫ(t)| ≥ α. It is also shown that this stopping time could
be bounded above and below by

τ ǫ
Cα = inf

{

t ≥ 0, |cǫ(t) − c0| ≥ α or ‖uǫ,ϕc0 (t, · + xǫ(t)) − ϕcǫ(t)‖H1 ≥ α
}

for some constants C depending solely on c0 and α0, with 0 < α ≤ α0. Hence,
the two stopping times are equivalent and the qualitative behavior of P(τ ǫ

α ≤ T )
with respect to ǫ and T should be the same as the original P(τ ǫ

α ≤ T ). These
new stopping times τ ǫ

α prove to be more convenient to work with. Note that
the implicit function theorem says that each function in H1 sufficiently close to
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a translate of the soliton could be written as a translated soliton with slightly
different parameters plus a remainder in the subspace of H1 orthogonal in L2

to ϕc0
and ∂xϕc0

. Therefore the exit in terms of the H1 norm is the exit of a
proper open subset.

Let us first revisit the upper bound given in [5] and prove that the upper
bound is indeed exponential. The proof relies on exponential tail estimates.
We denote by L−1,0 and L0,1 the spaces of bounded operators from H−1 to L2

(respectively from L2 to H1).

Proposition 3.1 For T > 0 and 0 < α ≤ α0 fixed, there exists a constant

C(α, c0), depending on α and c0 but not on T , and ǫ0 > 0 with ǫ20T sufficiently

small depending on ‖Φ‖
L

0,1
2

and α, such that for every positive ǫ < ǫ0,

P (τ ǫ
α ≤ T ) ≤ exp

(

− C(α, c0)

ǫ2T ‖Φ‖2
L0,1

)

. (3.1)

Proof. Fix T positive. The estimate (1.13) relies on the two following inequali-
ties. Let τ = τ ǫ

α∧T ; then for α0 sufficiently small there exists a positive constant
C independent of T such that

|cǫ(τ) − c0|2 ≤ C

[

‖ǫηǫ(τ)‖4
L2 + 4ǫ2

∣

∣

∣

∣

∫ τ

0

(uǫ,ϕc0 (s), dW (s))L2

∣

∣

∣

∣

2

+ ǫ4τ2‖Φ‖4
L

0,1
2

]

and

‖ǫηǫ(τ)‖2
H1 ≤C

[

‖ǫηǫ(τ)‖4
L2 + 4ǫ2

∣

∣

∣

∣

∫ τ

0

(uǫ,ϕc0 (s), dW (s))L2

∣

∣

∣

∣

2

+ ǫ4τ2‖Φ‖4
L

0,1
2

+ ǫ

∫ τ

0

(∂xuǫ,ϕc0 (s), ∂xdW (s))L2 − ǫ

∫ τ

0

(

(uǫ,ϕc0 (s))
2
, dW (s)

)

L2

+ c0ǫ

∫ τ

0

(uǫ,ϕc0 (s), dW (s))L2 +
ǫ2

2
τ‖Φ‖2

L
0,1
2

+ǫ2‖Φ‖2
L

0,1
2

∫ τ

0

‖uǫ,ϕc0 (s)‖L2ds + c0
ǫ2

2
τ‖Φ‖2

L
0,1
2

]

.

These are obtained from several manipulations of the Lyapunov functional and
evolution equations for the mass and Hamiltonian evaluated on the solution
of the stochastic KdV equation (see [5]). The evolution of these quantities is
obtained using the Itô formula and a smoothing procedure. We do not reproduce
the proof here. We may also write

P (τ ǫ
α ≤ T ) ≤ P

(

|cǫ (τ) − c0|2 ≥ α2 or ‖ǫηǫ (τ) ‖2
H1 ≥ α2

)

≤ P
(

|cǫ (τ) − c0|2 ≥ α2
)

+ P
(

‖ǫηǫ (τ) ‖2
H1 ≥ α2

)

.

Note that when |cǫ (τ)− c0|2 ≥ α2 we have |cǫ (τ)− c0|2 = α2 and ‖ǫηǫ (τ) ‖L2 ≤
α. Thus for ǫ0 sufficiently small, depending on ‖Φ‖

L
0,1
2

, T (so that ǫ20T is small)

11



and α, and for ǫ < ǫ0,

P
(

|cǫ (τ) − c0|2 ≥ α2
)

≤ P

(

ǫ

∣

∣

∣

∣

∫ τ

0

(uǫ,ϕc0 (s), dW (s))L2

∣

∣

∣

∣

≥ α

4

)

≤ P

(

ǫ sup
t∈[0,T ]

∣

∣

∣

∣

∫ t

0

(

uǫ,ϕc0
,τǫ

α(s), dW (s)
)

L2

∣

∣

∣

∣

≥ α

4

)

.

(3.2)

where uǫ,ϕc0
,τǫ

α is the process stopped at time τ ǫ
α. Similarly, using as well the

following property

(P ) When |cǫ (τ) − c0| ≤ α ≤ α0, then for some C depending only on c0 and
α0, ‖ϕcǫ(t) − ϕc0

‖H1 ≤ Cα, for all t ≤ τ ,

we obtain that there exists ǫ0 sufficiently small, depending on ‖Φ‖
L

0,1
2

, T (with

ǫ20T small) and α, such that for all ǫ < ǫ0,

P
(

‖ǫηǫ (τ) ‖2
H1 ≥ α2

)

≤P

(

ǫ sup
t∈[0,T ]

∣

∣

∣

∣

∫ t

0

(

uǫ,ϕc0
,τǫ

α(s), dW (s)
)

L2

∣

∣

∣

∣

≥ 1

2

√

α2

10

)

+P

(

ǫ sup
t∈[0,T ]

∣

∣

∣

∣

∫ t

0

(

∂xuǫ,ϕc0
τǫ

α(s), ∂xdW (s)
)

L2

∣

∣

∣

∣

≥ α2

10

)

+P

(

ǫ sup
t∈[0,T ]

∣

∣

∣

∣

∫ t

0

(

(

uǫ,ϕc0
τǫ

α(s)
)2

, dW (s)

)

L2

∣

∣

∣

∣

≥ α2

10

)

+P

(

ǫ sup
t∈[0,T ]

∣

∣

∣

∣

∫ t

0

(

uǫ,ϕc0
,τǫ

α(s), dW (s)
)

L2

∣

∣

∣

∣

≥ α2

10c0

)

. (3.3)

Let us denote by Zi(t) for i = {1, 2, 3} the stochastic integrals arising in the
right hand sides of (3.2) and (3.3). We obtain exponential tail estimates for each
of the above probabilities in the usual way, see for example [18], Theorem 2.1.
We introduce the function fl(x) =

√
1 + lx2, where l is a positive parameter.

We then apply the Itô formula to fl (Zi(t)) and each process decomposes into
1 + El,i(t) + Rl,i(t) where

El,i(t) =

∫ t

0

lZi(t)
√

1 + lZi(t)2
dZi(t) −

1

2

∫ t

0

(

lZi(t)
√

1 + lZi(t)2

)2

d < Zi >t,

and

Rl,i(t) =
1

2

∫ t

0

(

lZi(t)
√

1 + lZi(t)2

)2

d < Zi >t +
1

2

∫ t

0

d < Zi >t

(1 + lZi(t)2)
3/2

.

12



Let us for example consider Z2. Given (ej)j∈N
a complete orthonormal system

of L2,

< Z2 >t=

∫ t

0

∑

j∈N

(

∂xuǫ,ϕc0
τǫ

α , ∂xΦej

)2

L2

(s)ds;

thus, using the Hölder inequality and the property (P ) we have, for some con-
stant C(α, c0) = Cα2 + ‖∂xϕc0

‖H1 , and any t,

< Z2 >t≤ C(α, c0)‖Φ∗‖2
L−1,0t.

Then
|Rl,2(t)| ≤ lC(α, c0)‖Φ‖2

L0,1T.

The same bound also holds for Z1 and Z3. We may thus write for any i and
constants δi > 0,

P

(

sup
t∈[0,T ]

|Zi(t)| ≥
δi

ǫ

)

= P

(

sup
t∈[0,T ]

exp (fl(Zi(t))) ≥ exp

(

fl

(

δi

ǫ

))

)

≤ P

(

sup
t∈[0,T ]

exp (El,i(t)) ≥ exp

(

fl

(

δi

ǫ

)

− 1 − lC(α, c0)‖Φ‖2
L0,1T

)

)

.

The Novikov condition is also satisfied and El,i(t) is such that (exp (El,i(t)))t≥0
is a uniformly integrable martingale. The Doob inequality then gives

P

(

sup
t∈[0,T ]

exp (El,i(t)) ≥ exp

(

fl

(

δi

ǫ

)

− 1 − lC(α, c0)‖Φ‖2
L0,1T

)

)

≤ exp

(

−fl

(

δi

ǫ

)

+ 1 + lC(α, c0)‖Φ‖2
L0,1T

)

E [exp (El,i(T ))] .

Since exp (El,i(T )) is an exponential martingale E [exp (El,i(T ))] = E [exp (El,i(0))] =
1. For ǫ0 small enough we have for ǫ < ǫ0

C(α, c0)‖Φ‖2
L0,1T <

δ2
i

2ǫ2

which implies that the l-derivative at 0 of the function in the exponential bound
is negative. Then, optimizing on the parameter l, we obtain the minimum in l
of the upper bound, which has the form

exp

(

1 − C(α, c0)

ǫ2T ‖Φ‖2
L0,1

)

,

with possibly another constant C(α, c0). Using the largest of all constants in
the exponentials for each tail probabilities, and taking a constant slightly bigger
and ǫ0 smaller if necessary, the multiplicative constant in front of the exponen-
tial decay disappears and the result follows. �
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Remark 3.2 As will appear elsewhere, Theorem 1.1 also holds for a noise of

multiplicative type, and an exponential upper bound holds as well.

If we now consider the sequence of operators Φn mimicking the spatially
homogeneous noise with covariance operator (I −∆)−1, denoting the exit times
τn,ǫ
α , we obtain the following statement:

Corollary 3.3 For T > 0, 0 < α < α0 and n fixed, there exists a constant

C(α, c0), depending on α and c0, and there exists ǫ0 > 0 with ǫ20T sufficiently

small with respect to ‖Φn‖L0,1
2

and α, such that for every ǫ < ǫ0,

P (τn,ǫ
α ≤ T ) ≤ exp

(

−C(α, c0)

ǫ2T

)

. (3.4)

In particular, we have the following double asymptotic result

limn→∞limǫ→0ǫ
2 log P (τn,ǫ

α ≤ T ) ≤ −C(α, c0)

T
.

Let us now prove that when considering the sequence of operators Φn as
above, one can obtain a lower bound of the same order in the parameters T and
ǫ as the upper bound in Corollary 3.3. We make use of the approximation via a
modulated soliton together with the LDP obtained in Theorem 2.1, and again
minimize the rate function on a smaller set of controls giving rise to a set of
parameterized exit paths.

Proposition 3.4 For every T and α positive, there exists a constant C(α, c0)
which depends on c0 and α but not on T , such that

limn→∞limǫ→0ǫ
2 log P (τn,ǫ

α ≤ T ) ≥ −C(α, c0)

T
.

Proof. Let us denote by Uα0
the open set

Uα0
=
{

ϕc(· − y) + g, g ∈ H1 : ‖g‖H1 < α0, y ∈ R, |c − c0| < α0

}

.

We know from [5] that the velocity is obtained via a continuous mapping C from
Uα0

to R such that
cǫ(t) = C (un,ǫ,ϕc0 (t)) .

Also for fixed n, we write that for 0 < 2α < α0,

P (τn,ǫ
α ≤ T ) ≥ P (un,ǫ,ϕc0 ∈ B)

where

B =
{

u ∈ C([0, T ]; H1) : ∀t ∈ [0, T ], u(t) ∈ Uα0
, |C (u(T )) − c0| > α

}

.

Theorem 2.1 then leads to the following lower bound for limǫ→0ǫ log P (τn,ǫ
α ≤ T ):

−1

2
inf
{

‖h‖2
L2(0,T ;L2), h : ∀t ∈ [0, T ], Sn,ϕc0 (h)(t) ∈ Uα0

, |C (Sn,ϕc0 (h)(T )) − c0| > α
}

.

(3.5)

14



Let us, as in the proof of Proposition 2.2, replace in a first step the above
variational problem by a variational problem for Φ = ΦH = (I − ∆)−1/2 and α
by 2α. Minimizing on a smaller set, we obtain

−1

2
inf
{

‖h‖2
L2(0,T ;L2), h : ∀t ∈ [0, T ], SH,ϕc0 (h)(t) ∈ Uα0

, C
(

SH,ϕc0 (h)(T )
)

− c0 = 3α
}

.

We minimize on an even smaller set, considering solutions of the controlled
equation which are modulated solitons of the form

ϕc(t)

(

x −
∫ t

0

c(s)

)

where the one dimensional paths c are assumed to belong to C1([0, T ]; (0, +∞)).
The boundary conditions are thus that c(0) = c0 and c(T ) = c0 +2α. A control
hc associated to such a solution is given by

hc(t, x) = Φ−1
H

(

∂tS
H,ϕc0 (hc) + ∂3

xS
H,ϕc0 (hc) + ∂x

(

SH,ϕc0 (hc)
2
))

(t, x)

= c′(t) Φ−1
H ∂cϕc

∣

∣

c=c(t)

(

x −
∫ t

0

c(s)ds

)

.

Note that this control is the same as in Proposition 2.2, only the terminal
boundary condition changes. We thus obtain the lower bound

−1

2
inf

{

∫ T

0

∥

∥

∥

∥

c′(t)(I − ∆)1/2 ∂cϕc|c=c(t)

(

x −
∫ t

0

c(s)ds

)∥

∥

∥

∥

2

L2

dt,

c ∈ C1([0, T ]; (0, +∞)) : c(0) = c0, c(T ) = c0 + 2α
}

. (3.6)

We now have to solve a problem of the calculus of variations. Our aim is to
find the optimal paths c among the set of constrained paths minimizing the
path integral. The integral may be written, with the same function g as in
Proposition 2.2, as

∫ T

0

(c′(t))
2
g (c(t)) dt.

Using successively the change of variables t = Tu and the change of unknown
function v(u) = c(Tu), we obtain an upper bound of the form

1

T

∫ 1

0

(v′(u))
2
g(v(u))du

for functions v which are C1([0, T ]; (0, +∞)) and satisfy the two boundary con-
ditions v(0) = c0 and v(1) = c0 + 2α independent of T . We recall that
g(c) = ‖(I − ∆)1/2∂cϕc‖2

L2 so that s 7→ g(v(s)) is bounded on [0, 1] for any
v ∈ C1([0, T ]; (0, +∞)). Hence we deduce that the infimum in (3.6) is bounded

above by C(α,c0)
T . Now, coming back to the case where Φn is the square root

of the covariance operator of the noise, we start from a path c obtained from v
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which say minimizes the objective function in the above problem of the calculus
of variations, though following the above argument it does not really matter.
Then, the control hc is such that

C
(

SH,ϕc0 (hc)(T )
)

= c0 + 2α.

From the continuity of the mild-solution of the control map with respect to the
convolution of the semi-group with the control, used to prove the LDP, and the
continuity of this last quantity with respect to the control, and using also the
continuity of C with respect to u ∈ Uα0

, we know that for sufficiently large n

C (Sn,ϕc0 (hc)(T ))

= C
(

SH,ϕc0

(

(I − ∆)1/2(I − ∆ +
1

n
(x2I − ∆)k)−1/2hc

)

(T )

)

> α.

We deduce that the inf-limit as n goes to infinity of the infimum in (3.5) is again

bounded above by C(α,c0)
T and this ends the proof of Proposition 3.4. �

As a consequence of our two bounds, the typical time scale on which the
solution remains in the neighborhood of the modulated soliton is indeed 1/ǫ2.
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