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PSEUDODIFFERENTIAL MULTI-PRODUCT REPRESENTATION OF THE S OLUTION
OPERATOR OF A PARABOLIC EQUATION

HIROSHI ISOZAKI AND JEROME LE ROUSSEAU

AsstrACT. By using a time slicing procedure, we represent the saiubiperator of a second-order parabolic
pseudodierential equation oR" as an infinite product of zero-order pseudtafiential operators. A similar
representation formula is proven for paraboliffetiential equations on a compact Riemannian manifold. Each
operator in the multi-product is given by a simple explicitsatz. The proof is based on affieetive use of the
Weyl calculus and the Ferman-Phong inequality.

Keywords: Parabolic equation; Pseudéérential initial value problem; Weyl quantization; Infimiproduct
of operators; Compact manifold.

AMS 2000 subject classification: 35K15, 35510, 47G30, 58)38J40.

1. INTRODUCTION AND NOTATIONS

We begin with recalling standard notation for the calculfigpseudodiferential operatorsyDOS).
Throughout the article, we shall most often use spaces dfagjleymbols; a functiom € ¢*°(R" x RP)
is in SM(R" x RP) if for all multi-indicese, B there existE€,; > 0 such that

(L.1) 050¢a(x, )l < Cap )™ ¥, xR, £€RP, (&) 1= (1+ kD)2
We write S™ = S™(R" x R"). ¢DOs of ordem, in Weyl quantization, are formally given by (sde [H3r79]
or [Hor8%, Chapter 18.5])
OP'(@)u() = a"(x. DY) = (20)" [ € Wa(x+y)/2 Hu dyce. ue 7R,
We denote by?™(R"), or simply by¥™, the space of sughDOs of ordem.

We consider a second-ordgbO defined by the Weyl quantization gfx, £). Assuming uniform ellip-
ticity and positivity forq(x, £), we study the following parabolic Cauchy problem

1.2) du+g(t,x,Dy)u=0, O<t<T,

(1.3) U lt=0 = Uo,

for up in L?(R") or in some Sobolev space. The solution operator of this @apecoblem is denoted by
U,t),0<t<t <T. Here, we are interested in providing a representatiod @f t) in the form of a

multi-product ofyDOs.
Such a representation is motivated by the results of thenskmathor in the case of hyperbolic equations

[Ee 0d,[Le 07]. If the symbot is only a function o, the solution of [[T]2)4(1] 3) is simply given by means
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2 HIROSHI ISOZAKI AND JEROME LE ROUSSEAU

of Fourier transformations as

u(t, x) = (27)™" f f Vet y(y) dy de.
Following [Le 06], we then hope to have a good approximatiba(t x), for smallt, in the case wherg
depends also on bottandx:

U(t.x) = (20)" f f 0002 y(y) dy = Pl (%, DU(X),

wherepg vy(x, &) := e@U'x) 0 < ' <t” < T, which is inS°. The infinitesimal approximation we
introduce is thus of pseuddtirential nature (as opposed to Fourier integral operatotise hyperbolic
case [Le 06)).

With such an infinitesimal operator, by iterations, we amntled to introducing the following multi-
product ofyyDOs to approximate the solution operatft’, t) of the Cauchy problenm.ZEi.S):

p\(,;’,O)(X’ Dy) if 0<t<t®),
1

%% = .
¥ B 0y (% D] [Pl 0y 6 D) iF 109 < t < 1D,
i=k

wherep = (t© @), tN)} is a subdivision of [0T] with 0 = t©@ < t® < ... < t™N = T It should be
noted that in generqi‘(“t’,,,t,)(x, Dy), t' < t”, does not have semi-group properties.

In [], for the hyperbolic case, the standard quantirais used for the equation and for the ap-
proximation Ansatz. However, in the present parabolic ¢hiseapproach fails (see Remdrk]2.7 below).
Instead, the choice of Weyl quantization yields convergeasults of the Ansat#/y ; comparable to those
in [,]. The convergence @y ; to the solution operatadd (t, 0) is shown in operator norm with
an estimate of the convergence rate depending on the (Baktularity ofq(t, x, &) w.r.t. the evolution
parametet. See Theorerh 3.8 in Sectifh 3 below for a precise statement.

Such a convergence result thus yields a representatiorecfalution operator of the Cauchy problem
(B)—) by an infinite multi-product afDOs. The result relies (i) on the proof of the stability of
the multi-productWp; asN = [B| grows toco (Propositiol) and (i) on a consistency estimate that
measures the infinitesimal error made by replatirg, t) by p‘(“t’,’t)(x, Dy) (Propositio). The stability in
fact follows from a sharp Sobolev-norm estimate ;ﬁg[t)(x, Dy) (see Theorer@.Z): fa e R, there exists
C > 0 such that

(1.4) P (% Dllns sy < L+ C(E —1).

The Feferman-Phong inequality plays an important role here.

The representation of the solution operator by multi-prisiwfyDO follows from the exact conver-
gence of the AnsatdVy; in some operator norm. We emphasize that the convergencéta@ as not
up to a regularizing operator. A further interesting asgédhis result is that each constituting operator
of the multi-product is given explicitly. With such a produepresentation, we have in mind the devel-
opment of numerical schemes for practical applicationscedhe problem is discretized in space, the use
of fast Fourier transformations (FFT) can yield numericatihods with low computational complexity,
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with possibly microlocal approximations of the symbols imegtion as is sometimes done in the case of
hyperbolic equations (see for instange [dHLWPO, LdH(Q1a1Qdh,|LdHOB]). We also anticipate that our
representation procedure can be used in theoretical pespos

As described above, the first part of this article is devotetthé parabolic Cauchy problem & and
to the study of the properties of the approximation Ans#itz ;. In the second part, we shall consider
a parabolic problem on a compact Riemannian manifold withmwndaries. In this case, the operator
g"(x, Dy) is only considered of dlierential type, in particular for its full symbol to be knowraetly. In
each local chart we can define an infinitesimal approximaifdhe solution operator as is doneR? and
we combine these localDOs together with the help of a partition of unity. This yigld counterpart of
p‘(’tv,’t)(x, D,) for the manifold case (see Secti4.1) denotedPpyy. In fact, the sharp estimatﬂlA) still
holds inL? (s = 0) for this infinitesimal approximation (Theordm}4.4). Thegf of a consistency estimate
(Propositi06) requires the analysis of tlfi@et of changes of variables for Weyl symbols of the form of
e ~94. The choice we have made for the definitiorRyf y) is invariant through such changes of variables
up to a first-order precision w.r.t. the small paramétert’ —t, which is compatible with the kind of results
we are aiming at. With stability and consistency at handctimesergence result then follows as in the case
of R™.

In the manifold case, the constitutigdd Os of the multi-product are given explicitly in each lochhet.
We observe moreover that the computation of the action sithexal operators can be essentialy performed
as in the case d®", which is appealing for practical implementations.

Another approach to representation of the solution opet#, t) can be found in the work of C. lwasaki
(see [Tsu74[ lwal T, TwaB4]). Her work encompasses the dadegenerate parabolic operators, utilizes
multi-product ofyDOs and analyses the symbol of the resulting operator, ubimgvork of Kumano-go
[]. However, the symbol of the solution operatd(t’,t) is finally obtained by solving a \Volterra
equation. Such integral equations also appear in relatekisvom the solution operator of parabolic equa-
tions (see e.g[[Greff, S184]). The alternative method wesent here will be more suitable for applica-
tions because of the explicit aspect of the representatidhe step of the integral equation in the above

works makes the representation formula less explicit. Heweahe reader will note that the technique we
use in our approach here do not apply to the case of degempanatbolic equations like those treated in

[Tsu74,[lwa7[7]| lwag4]. The question of the extension of thavergence and representation results we

present here to the case of degenerate parabolic equagipeara to us an interesting question.
Let us further recall some standard notions. We denoter(ay) the symplectic 2-form on the vector
spaceT *(R"):

(1.5) o((%.6), (y,m) = & y) = 1, %),

and we denote byf, g} the Poisson bracket of two functions, i.e.

n
(1,0} = > 05 05,0 — 0y f 940
=1
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We shall use the notatioi*#o denote the composition of symbols in Weyl quantizatien,&”(x, Dy) o
b"(x, Dx) = (a#"b)"(x, Dx). The following result is classical.

Proposition 1.1. Letae S™, be S™. Then a#'b € S™™ and
(1.6)
K

i j
@#")(x.8) = " (57((Dx De). (O D)) a(x&)b(y. )

j=0

X

y=
n=¢

k+1

1
—r)K . i
N ﬂ—an (1 k'r) felx(z(,t,r,.f) ('_20(([))(, D,). (D, D,))) a(x+rz,Z)b(y + rt,7) dr dz o dt dr ’ ,
! y=x
0 ®

whereX(z £,t,7,&) = 2((t — £,2) — ({ — &.1)).

The result of Propositiof 4.1 is to be understood in the sehsscillatory integrals (see e.d. [H6}90,
Chapter 7.8],[[AGY1],[GS94] of [Kg$1]). For the sake of cisimn we have introduced

f:ff forn>3, neN.
@ H/—/

ntimes

For the exposition to be self contained, we prove Prop in Appendiﬂk.
We sometimes use the notion of multiple symbols. A funclfgé,y, ) € C°(R% x RPt x R% x RP?)
is in S™M(R% x RPt x R% x RP), if for all multi-indicesas, 1, @2, B2, there exist€2?2 > 0 such that

.7 0520l alx £ y.n)l < ChLtt @™ o™V,

xe R%,ye R%, £ e RP, ;e R™ (see for instancd [KgB1, Chapter 2]).

Forse R. We setE® := (D,)® = Op((¢)®), which realizes an isometry froi" (R") onto H'~S(R") for
anyr € R. We denote by.,.) and||.]| the inner product and the norm b#(R"), respectively ang - ||ys for
the norm orH3(R"), s € R. For two Hilbert spacek andL, we usd| - ||k 1) to denote the norm i (K, L),
the set of bounded operators frdérinto L.

Our basic strategy is to obtain a bound §dpOs involving a small parametér> 0. In the following,
we say that an inequality holds uniformlylnf it is the case whei varies in [Q hmay for somehpax > 0.

In the sequelC will denote a generic constant independert,offhose value may change from line to line.
The semi-norms
(1.8) Ps(@) = sup (&) ™P|a5da(x. &)

(x£)eRXRP :
endow a Fréchet space structuré&Ste(R" x RP). In the case of a symbal, that depends on the parameter
h we shall say thaay, is in ngé uniformly in h if for all @, 8 the semi-normps(an) is uniformly bounded
in h. Similarly, we shall say that an operatiis in ¥™ uniformly in h if its (Weyl) symbol is itself inS™
uniformly in h.

The outline of the article is as follows. Secti¢hs 2 find 3 ated to the multi-product representation of
solutions orR". In Sectiorﬂz we prove the sharp Sobolev norm esti (@high leads in Sectioﬂ 3tothe
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stability of the multi-product representation. We thenyeroonvergence of the multi-product representation
in SectiorﬂB. Some of the results of these two sections makefumposition-like formulae, whose proofs
are provided in Appendik]A. In Sectidh 4, we address the rputiduct representation of solutions of a
second-order dierential parabolic problem on a compact Riemannian mahi#s in the previous sections
we prove stability (in theL? case) through a sharp operator norm estimate and we provergamce of
the multi-product representation. The convergence pregfires an analysis of theéfect of a change of
variables on symbols of the fora1"®%, from one local chart to another, which we present in App)eEji

2. A sHArRP H® BOUND

We first make precise the assumption on the symyfglé) mentioned in the introduction.

Assumption 2.1. The symbol q is of the formg ¢, + ou, where g € S, j = 1,2, go(x, &) is real-valued
and for some C> 0 we have

Q@(x &) > ClE?, xeR"  £eR" |4 suyficiently large.

Consequently, for som@ > 0, we have
(2.1)  qu(x &) +Reqi(x.&) > ClE2, xeR", ¢eR", |¢ sufficiently large, say| > ¢ > 0.
As is stated in the introduction, our main aim is to deal wite bperatopy(x, Dx) where
pr(x.£) = "4,

It is well-known that theyDO py/(x, Dy) is uniformly H%-bounded inh, s € R. Actually we have the
following sharper estimate.

Theorem 2.2. Let se R. There exists a constant€ 0 such that
IPY (%, Dy)liHshs) < 1+ Ch,

holds for all h> 0.
To prove Theorem 2.1 we shall need some preliminary results.

Lemma 2.3. (i) Let | > 0and re S'. Then W?r py is in S° uniformly in h.
(i) Lete andB be multi-indices such thét + 8| > 1. Then, foran < m< 1, we have?f;a?ph = hmf)h"“ﬁ,

wherep™ is in S2™¥! uniformly in h.

Proof. We have
(h¢?)leRead) < C;, xeR", ¢€eR", h>0,
forall j € N by (2.1), hence

h2Ir(x, &)pn(x, &I <C, xeR" £eR", hx>0.
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For multi-indicese andg we observe thah'/za‘;ag(r(x, &) pn(x, &) is a linear combination of terms of the
form

(@5 )X )@ (% &) - (B A (% E)Pr(x. ).

fork>0,a0+a1+---+ax = a,Bo+PB1+- -+ Bk =B and the absolute value of this term can be estimated
by

hk+l/2<§)l+2k_w|ph(X, §)| < C(f)_l’gl, X € Rn, Ee Rn’ h>0,

by (2.1), which concludes the proof of (i). Flar+ 8| > 1, 8‘;a§ph(x, &) is a linear combination of terms of
the form

@RI (% €) - - (B5TFD(X ) Pr(%. £),
fork>1,a1+ - +ax=a,B1+ -+ Bk =B, which can be rewritten ag"1,(x, £), where
A8 = @PF &) - (3D AE™™ () pu(x. &).
Since Gilaglq) e (6§k6§kq) e S we see thatl, € S?™ ¥ uniformly in h by using (i). n

From Weyl Calculus and the previous lemma we have the foligwiomposition results for the symbol
Ph.
Proposition 2.4. Let r, be bounded in §1 € R, uniformly in h. We then have
(2.2) M #7Pn = Mpn + h2 A = rpn + hA® = rypn + %{fh, pn} +hA?,
(2.3) Pn 4% = raph + W2 = rpn + el = rapn + %{Dh, rh} + hi,

Where/lﬁ]o), pﬁo), ;lﬁo), and,&ﬁo) are in S uniformly in h and/lﬁl) andpﬁl) are in S* uniformly in h.

To ease the reading of the article, the proof of Propos@mas been placed in Appentﬂk A. We apply
the result of Propositioh 4.4 to prove the following lemma.

Lemma 2.5. We havep, # (£)25#Vpn, — (£)?%|pnl? = hk, with k, in S?S uniformly in h.

Proof. By Propositior] 2J4 we have

1 1
(@ #"pn = &% pr+ 5 {©7 pnf + hen = ©F pr+ 5 J_Z;(afj (€)%%) 0 pn + hay,

with A1, in S28 uniformly in h. We then obtain

1 n
P # (&) #py, = Py 4 (<§>25 Pt > jz;(afj &%) 0y ph) + hizn,
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with A2, in S?S uniformly in h. By Propositior] 2]4 we have
_ 1.
Br # ()% pn) = ©ZIpnl” + 2 (PR (6P} + sy

n

1 _ —
= @% Il + D (9, P& >0, o = (0, Pr) g, ()% pn)) + Mz,

=1

with A3y, in S28 uniformly in h. We also have
1% 1<
Ph#5 D (06,0%) 0 Ph = 5 > P (96,46)°)0 Pn + Nda,
j=1 j=1
with A4, in S2, uniformly in h, by Propositior] 2]4. We have thus obtained
(2.4) B Y (67 Py = (&% Ipal + 1 4 L Zn: 1) 1 ha
. ph ph = ph oi h i - h.j 5,hs
]:
with 155, in S28 uniformly in h, and with
n
I = (P, Pr}(&)?® = (9P O, Ph = 0, P 0y Pr)(©)™
=1

and
|f12,) = (Pn Oy, Ph — Pn 0x ) 0¢,(€)°.
We introducer := g, + Req; andg := Im ;. We have
(2.5) I = 2ih? ol (o, B}
and
IZ) = —2iN| pal?(9x,8) D, (&).

Sincea € S? andB € S! we then havea, 8} € S?. From Lemmd 2|3, we thus obtaiff) = hk", with
kf}) in S28 uniformly in h. We also have thdff]? = hI{fJ) with kffj) in S28 uniformly in h, which from )
concludes the proof. ]

We shall also need the following lemma.
Lemma 2.6. We haveé)S#V | pnl2 #V (£)S — (€)% pnl? = hk, with k, in S2 uniformly in h.
Proof. We setop = (£)S#" |pnl® # (£)S. From Weyl calculus we have

on(x, &) =2 f FELETNS(TYS | PP (X + 2+ 1, &) dz o dt dr
@
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whereX(z1,£,7,&) = 2((z 7 — &) — (t, £ — £)). Arguing as in the proof of Propositi¢n 1.1 in Appenfijx A we
write

pn(%, E)—(EZIpnlP(%,€) = 772" f LYY (IpnlP(X + 2+ 1, &) — |palP(x, &) dz & dt dr
@

. n 1
(2.6) ) f @XEET,, — 05)((O)XD)) (@ lpal)(x + 1(z+1).€) dr dz & dt dr,
j:l 0@

by a first-order Taylor formula and integrations by partstw,randr. Observing that we have
.n
[

0= 3 D (@ = 9O @x PP &) |y

j=1
. n
| .
=57 f SHEEr, = 0 J(OYD) (Dl Pnl) (%, €) dz o dt di,
j:]- @
we can proceed as in the proof of Proposifioh 1.1 (integndtjoparts w.r.tr in (2.§) and further integrations

by parts w.r.tZ andr) and conclude after noting thid,|? satisfies the properties listed in Lem@ 2.3 like

Pn. ]

Remark 2.7. Note that the use of the Weyl quantization is crucial in theofis of Lemmatf 2]5 arfd 2.6. The
use of the standard (left) quantization would only yieldsuteof the formipy, #(&£)25 # pn— (£)25|prl? = hzk,
with k, in S25 uniformly in h. Such a result would yield laz term in the statement of Theordm]2.2 and the
subsequent analysis would not carry through.

We now define the symbah(x, &) = %z(xf) for h > 0, and prove the following lemma.
Lemma 2.8. The symboty, is in S? uniformly in h.

Proof. We writevp(x, &) = 2 Req(x, &) fol g 2hRed(xé) dr, The integrand is i8° uniformly inr € [0, 1] and
hby Lemmg 23 and Rge S2. n

Lemma 2.9. The symbol pis such that
(Apr)™(x Dyu, u) < (L + ChIUIP,  ue LR,
for C > 0O, uniformly in h> 0.
Proof. Lety € °(R"), 0 < y <1, be such thag(¢) = 1if |£] < 9. Then we write

|ph|2(X, &) = ~2hReq(x&) _ o2 () Req(x.é) g=2h(1-x(¢)) Req(x¢) — (1 + hu(x, é:))e—Zh(l—)((f)) Req(x,f)’

whereu(x, &) = —2y(£) Req(x, &) fol g 2@ Redxddr. From [Hor8b, 18.1.10], the symbet? () Rea(xs) jg
in S° uniformly in r andh; hence the symbai(x, £) is in S° uniformly in h. From [Hor8b, Theorem 18.6.3]



PSEUDODIFFERENTIAL MULTI-PRODUCT 9

and Lemmd 2]3, it is thus ficient to prove the result witpn(x, £) replaced bypi(x, &) = e M-x@axé),
We set

Th(x, &) = % (1 — [Pnl?(x, 5)) ,

for h > 0. From (the proof of) Lemm@.s we find tha{(X, £) is in S? uniformly in h. Since 1- y(£) = 0
if 1] < ¢ and Rey(x, &) > 0 if |£] > ¢, we observe that,(x, &) > 0. Then the Fferman-Phong inequality
reads ([FP78][[H6r§5, Corollary 18.6.11])

(Vﬂ’(x, Dyu, u) > —ClullZ,, uel?R"),
for some non-negative constabithat can be chosen uniformly m This yields
IullZ> = (ABn1%)"(x, Dx)u,u) = ~ChilullZ,,  u e LR,
which concludes the proof. ]
We are now ready to prove Theor¢m]2.2.

Proof of Theorem @ We use the following commutative diagram,

Hs Py (x,.Dx) Hs

E® l lE(S)

12— 2

and prove that the operat®y, satisfieg| Ty 22y < 1+ Ch.
The Weyl symbol off; o Ty, is given by

oh = <§>—s #w m #W <§>25 #th #W <§>—s.

By Lemmatd 25 anfi 4.6, we hawg = |pn|? + hk, with ks in SO uniformly in h. We note thak(x, £) is
real valued. To estimate the operator norm of, we write

IThull? = (Ti © Tott u) = ((1p?)"(x Du, u) + h(K¥(x, D)u, u)
< ((Ipa?)"(x. Du, u) + Chiu,

for C > 0 [Hor83, Theorem 18.6.3]. The result of Theoren} 2.2 thilsvis from Lemmd 2]9. n
Let m(x) be a smooth function that satisfies

(2.7) 0 < Myin < M(X) < Mmax < 00,

along with all its derivatives. With such a functiom we define the following norm ob?(R")
1120 may = f £20) m(x)dx
Rn

which is equivalent to the classidat norm. We shall need the following result in Sect@m 4.
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Proposition 2.10. There exists a constant £ 0 such that
llph (X, D)Ull2remay < (1 + Ch) [lull 2gemdx» ue L%R"),
holds for all h> 0.

Proof. We follow the proof of Lemm9 and ugg(X, &) in place ofpp(x, £). We then set

~ m(X o
Pn(x.£) = % (1-1pnP(x.8)),
Thenvh(x, £) = 0 is in S? uniformly in h. The Féferman-Phong inequality yields
(70¢ DU u) = ~ClIUZ, > ~C U g0y U € LR,

This yields
U2 ey — (MBI (X, DU, U) = —ChlIU o gy U € L2(R),
By Lemma[2.1]L just below, we have
((mIBr2)™(x Du. u) = (Bn" (. Dy) o Mo (BE(x Dy)u, u) + h(2*(x, Dyu, u),

with A(x, £) in S° uniformly in h and wherem stands for the associated multiplication operator here. We
conclude sincd,” (x, Dy) = (B'(x, Dy))". -

Lemma 2.11. Let f € ¥~ (R") be bounded along with all its derivatives. We have
Pr#Vf #Vp, — f|ph|2 = hap,

with Ay, in S° uniformly in h.
Proof. From Propositiof 2]4 we have
f#'pn = fpn - % Zn;(@xi f) Og pn + DAy,
i
with A1, in SO uniformly in h. By Propositio4 we also have
PR (o) = fIpn + 5 (B, £ o) + iy
n
= oo + 25 (02 D0 + 05 )13 )~ B )0 ) + M

i

with 22 in S° uniformly in h, and

Pr# (9, 110, Pn) = Pl 1) pr+ hutjn, j=1,...1,

with g, in S° uniformly in h. It follows that
_ N _ 1,
pr#Yf #Vpn = flpnl® - 5 (9x; T)(Pn O, P — Pn Oz, Pn) + 5 f {Pn. Pn} + hagp,
=1

with A4, in S® uniformly in h. With the notation of the proof of Lemnja P.5 (see expreso)j we have
{Pr. Pn} = 2iW2Ipif? {8} = KD,



PSEUDODIFFERENTIAL MULTI-PRODUCT 11

with k& in SO uniformly in h by Lemmd 23, sincg is in S ande € S2. We also have

n
Z Oy, (P Og; Pn — Pnde Ph) = hkéz)’
=1

with k@ in S° uniformly in h by Lemma[2]3. n

3. MULTI-PRODUCT REPRESENTATION: STABILITY AND CONVERGENCE

We are interested in a representation of the solution opefi@tthe following parabolic Cauchy problem

(3.1) du+qg(t,x,Dy)u=0, O<t<T,
(32) Uli=o = Up € Hs(Rn).

Here the symbo(t, x, £) is assumed to satisfy Assumpti2.1 uniformly w.r.t. thieletion parametet
and to remain in a bounded domainSA ast varies. We then note that the result of the previous section
remains valid in this case, i.e., the const@nobtained in Theorerh 3.2 is uniform w.itt. We denote by
U(t', t) the solution operator to the evolution probl3.1).

Following [iLe 0§], we introduce the following approximatiof U(t, 0). With B = {t©@, D, N} a
subdivision of [QT]with 0 = t©@ <t < ... <t™N) = T, we define the following multi-product

Pw.0) if 0<t< '[(1),
1

P(t’t(k))l_[P(t(i)yt(i—l)) if (0 <<tk
i=k

(33) (Wq'ayt =

wherePy y is theyDO with Weyl symbolpy 1y given by py = e ¢ 990%4) for t/ > t:

PryV(¥) = Py (X D)V(X) = (21)™" f f OO AN 2y (y) dy ot
We shall prove the convergencefy  to U(t, 0) in some operator norms as well as its strong convergence.
3.1. Stability. As a consequence of the estimate provenin Them 2.2 wehmat@lowing proposition.

Proposition 3.1. Let se R. There exists K= 0 such that for every subdivisiop of [0, T], we have

Vte [0’ T]’ “(W(BJH(HS,HS) < eKT.

Proof. By Theoren{2]2, there exis®> 0 such that we haviiP(y 1l s 4 < 1+C(t' —t) forall t',t € [0, T],
t’ > t; we then obtain

N-1
W tllms sy < H(l + ot — t0y).
i=0

SettingUy, = In( Lor(L+C(tty - t(i)))), we then havéy < YN C(t0+Y - t0) = CT. We thus obtain

W tllrs sy < €°T. u
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3.2. Convergence. To obtain a convergence result we shall need the followisgmagtion on the regularity
of the symbo[(t, x, £) w.r.t. the evolution parameter

Assumption 3.2. The symbol (i, x, &) is in €%([0, T], S%(R" x RM), i.e., Holder continuous w.r.t. t with
values in $, in the sense that, for sonfe< o < 1,
qt’, x, &) —qt, x, &) = (' = )" §(t',t,x, &), 0<t<t <T,

with §(t’, t, x, £) in S? uniformly in t and t.
We now give some regularity properties for the approxinreiasatzWy ; we have introduced.

Lemma 3.3. Let se Rand t’,t € [0,T], with t < t”. The mapt— Py, for t' € [t,t”], is Lipschitz
continuous with values il (HS(R"), HS2(R")). More precisely there exists € 0 such that, for all ve
HS(R") and t9,t@ e [t,t"],

”(P(I(Z)Yt) - P(t(l)’t)) (V)HHH <C lt(z) - '[(1)| [IVI[Hs.

Proof. We simply write
t@

(Peovsy — Prerg) (V)9 = —(22)™" f f f OO AN t (x4 y)/2,£) W) dy dk dt.

t@®
We thus obtain DO whose Weyl symbol is i8? uniformly w.r.t.t? andt® and conclude with Theorem

18.6.3in [Hor8ph). m

Lemma 3.4. Let se R, t”,t € [0, T], with t < t”, and let ve H3(R"). Then the map't— P (V) is in
EO([t, 1], HY(RM) N F([t, ], HS2(R")).

Proof. Lett® ¢ [t,t”] and lete > 0. Chooses € HS*3(R") such thatlv — v4||ys < &. Then fort® e [t, t”]

”P(t(2>,t)(V) — P (V) Hs = ”P(t(2>,t) (V- Vl)l ns T ”P(t(1>,t)(V - Vi) bs T ”P(t(2>,t)(Vl) = Paw (V1)
(3.4) < 2(1+C(t” - 1) + C|t@ — tW] vz

Hs

The continuity of the map follows. HerentiatingP (V) w.r.t.t’, we can prove that the resulting miagp-
dv P (V) is Lipschitz continuous with values iB(HS2(R"), HS-2(R™)) following the proof of Lemm3:
there exist€ > 0 such that for allv € HS*2(R")

”(at' Py — v P(t(l),t))(W)”Hyz <C lt(z) - t(l)l [IWlls+2.

Here oy Pyo ry meansdy P(t’»t)|t/=t<i>' We also see that the map— 9y P (V) is continuous fromHS(R")
into HS2(R") with bounded continuity module: with € HS(R"), we make a similar choice as above for
v; € HS2(R™) and obtain an estimate for

||6t’ P (V) — 0Py (V)”Hw

of the same form as irf (3.4). n
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Gathering the results of the previous lemmata we obtaindhevwing regularity result for the Ansatz

Was.

Proposition 3.5. Let se R, let tp € H3(R™). Then the magVy ¢(Uo) is in €°([0, T], H(R™) and piecewise

€10, T], HS4RM).

The following energy estimate holds for a functié(t) that is in €°([0, T], HY(R")) and piecewise

#1([0, T], HS"4R") (by adapting the proof the energy estimate in Sectionr6[EP82]):

g
35 MR+ f ||f(t’)||25dfsc[uf(0)|| ot f 10 +6"(t'. x, D) F (V)| dt
0

forallt € [0, T]. Once applied tol(t, 0) — Wy )(Uo) with up € H3(R™) we obtain

.
I(U(t,0) = Wy )(Uo)lIFer + fII(U(L 0) — Wy (Uo)llf: dt’ < Cfll (0 + (", x, Dx)) W (U)IIF - At
0 0

t(+1)

=C f 1@y + G“(t’, X, Dx)) Pg sy W 100 (Uo)lIZs.» At
=0 )

t(i+1)

f 1@y +a"(t', %, Dx)) P 1y lifs s 2y At €T lIUoII:,
()

Z
,_\

I
o
—-

=z
,_\

(3.6)

gM

where we have used the stability result of Pr0p05|.1 3tlrerhains to estimate the Sobolev operator

norm of (8v + q"(t’, x, Dy)) Py y, for ' > t, which can be understood as estimating ¢basistencyf the

proposed approximation Ansatz. This is the object of thiefahg proposition.

Proposition 3.6. Let se R. There exists G- 0 such that|(dy + g"(t’, X, Dx))P )llHs ps2) < C(t" = )¢, for

O<t<t' <T.

Proof. We have
(3.7) O P yu(¥) = —(20)™" f f ¥, (x+y)/2, £)e INCN2E y(y) dy
and thus the operatofif + g"(t’, X, Dy)) P admits

owy =at,..) #'pry —at, ...)Pe.y

for its Weyl symbol. Since by Assumptign B.2 we have

qit’, x, &) —qt, x, &) = (' = )" §(t',t,x, &), 0<t<t <T,

with §(t', t, x, &) in S uniformly int” andt. We can thus conclude with the following lemma.

Lemma 3.7. We have ¢"'pn — qpn = hady with A, in S? uniformly in h.
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Proof. As in Sectior{]2, we ignore the evolution parameterthe notation. The result is however uniform
w.r.t.t. By Propositior] 2]4 we have

1
a#'ph = qpn + = (G pn) + hp,

with Ay, in S? uniformly in h. We note however thdty, pn} = 0. ]

The result of Propositioh 3.6 and estimdte](3.6) yield
T 1
(3.8)  II(U(t,0)— Wy )(Uo)llpsr + ( f (Ut 0) — Wy 1) (Uo)Fs df) < CTET A luollke,
0

whereAq = maxcj<n-1(t*1 — t). This error estimate implies the following convergencauits which
provides a representation 0{t, 0) by an infinite multi-product oy DOs: U(t, 0) = lim, .0 Wy . We now
state our main theorem.

Theorem 3.8. Assume that @, x, ¢) satisfies Assumptio.l a@B.Z. Then the approximatisatAn
‘W4« converges to the solution operatoftJ0) of the Cauchy problerf8.1)—[3.Rjn L(H(R"), H " (R"))
uniformly w.r.t. t asAy = max<j<n-1(t"** — t0)) goes to 0 with a convergence rate of oraét — r):

Wt = U O)llgas ey < CAZ, t€[0,T], O<r<i1,

The operatorWy; also converges to {#,0) in L2(0, T, £L(HS(R"), HS(R")) with a convergence rate of
ordera:

T 1
( f IWes = UL Ny < CAG.
0
Furthermore'Wy ; strongly converges to {, 0) in L(HS(R"), HS(R™)) uniformly w.r.t. te [0, T].

Proof. The first two results are consequences@ (3.8). The prodiefitst result for # O follows by
interpolation between Sobolev Spacks [LI68].

Letup € H(RM and lets > 0. For the strong convergencehtf(R") we choosel; € H*(R") such that
[lUo — Up]lns < €. We then write

Wy 1(Uo) — U (t, 0)(Uo)lIHs < [[Wet(Uo — Un)llms + W t(ug) — U (L, O)(ug)llns
+[JU(t, 0)(Uo — Un)llns < Ce + CAG[Uallps,

from the case = 0 of the first part of the theorem and from the stability1dfy ; (Propositior{ 3]J1). This
last estimate is uniform w.rt.€ [0, T] and yields the result. ]

4. MULTI-PRODUCT REPRESENTATION ON A COMPACT MANIFOLD

4.1. Notation and setting. We shall now consider the case of a parabolic equation am@mensional
compacts’-Riemannian manifoldAA, g), whereg is a smooth Riemannian metric. We kebe a second-
order elliptic diferential operator osm whose principal party,, is given by the Laplace-Beltrami operator
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on M, which reads

Ao = -g 29 (92d10;),
in local coordinates, wheme = det(;;). Other uniformly-elliptic operators can be considereachgnging
the metric. We choose here to focus on th@edéential case instead of the pseudtaiential case because
the full symbol of the operator can then be completely deforethe manifoldM.

We allow the operatoA to depend on an evolution paramete¥We shall thus assume that the metric is
itself time-dependent, yet continuous wi,tgy = g(t, X), and satisfies

(4.1) 0<c=<gtx)<C<oo, te[0,T], xeM.

For theL? norm onM, we shall use the metrig(0, X) as a reference metric. We sgi(x) = g(0, x). We

then denote bylv the volume form which is given bglv = gé/z(x)dxin local coordinates. The?-inner

product is then given bfu,w) = [, uwdv[Heb98].

Since we are going to consider an infinite producgg®Os, a little attention should be paid to a finite
atlas. We shall use an atlag = (6, ¥i)icr of M, |7] < oo, With ¢; : 6, — 6, wheref; is a smooth bounded
open subset dR". Fori € I, we set

Ji=liel; 6000, J%:=(leg; e,

which lists the neighboring charts and the “second”-neaghiy charts for the charty, ¢;). For technical
reasons, we shall assume that there exists a coarser flagezat: (O, Yi)kex of M, ¥ : O — O c R",
such that for each chari(y) € .7 there exists a char®(), Yi;)) € %, such that

U 0 € O,

Ieji(z)
i.e., Oy contains all the “second”-neighbors@&f This is always possible by choosing the attéssufi-
ciently fine. We shall denote by(t), i € Z, the Weyl symbol ofA(t) in each local chartX, ).

We set ()icr as a family of6> real-valued functions defined ovi such that the functiongof)id form
a partition of unity subordinated to the open coverify s, i.e.,

supp@i)cé, 0<¢i<1l ieZ, and Zcp? =1
iel

We denote

G =W e =gioy
and similarly, forl € ji(z), we shall set

o = (lyﬂ(il))*‘Pl,
with Wy as above, when there is no possible confusiok(On
We setQ(t) as the elliptic operator oM defined through
AD =D gioQ) o,

iel
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The construction of) can be done recursively: we wri@= Q. + Q1 + Qo, with Q; a differential operator
of orderl, | = 0, 1, 2 and obtain
Q=A Q= —Z[sﬂi,QZ] opi, Qo= _Z[‘Pi»Ql] ° @i
iel iel
The recursion stops after two iterations since we considegrdntial operators here.
In each local chartX, yi), 1 € 7, we denote byi(t, x, £) the Weyl symbol ofQ(t), i.e.,

Yuegs(@),  QMu =y (a(t x D)((W)W),

or equivalently

Vi e (@), a'(t % DT = () (QOW D).

The symbolqi(t, x, £) is uniquely defined sinc@(t) is a diferential operator. We also lgk(t, x, £) be the
Weyl symbol ofQ(t) in the chart @y, ¥y), k € K. From (4.1) we then have

Lemma 4.1. In each chart the symbol of(Q satisfies the properties of Assumpt[or] 2.1.

We set
Piy(X &) = et 0atxd " jer 0<t<t' <T, xeb, eR
With these symbols i8°(6; x R"), we define the following/DOs onM:

(42)  Puegui=giodi o pliey(6Dx) o i) o9 = v o (Fi o Bl y(x D) e &) o ()",
(4.3) Pey =) Piwo,

iel
whereg; andg; are understood here as multiplication operators. The tqela ) is the counterpart of
the operatmp‘(’tv,’t)(x, Dy) introduced in Sectionﬁ 2 alﬂj 3. We shall compose such apsriatthe form of
a multi-product as is done in Sectifjn 3 to obtain a represientaf the solution operator to the following
well-posed parabolic Cauchy problem s

(4.4) su+AU=0, 0<t<T,
(4.5) U =0 = Up € HS(M).

We denote byJ(t', t) the solution operator of (4.4)=(%.5) and we define the rpriduct operatomy ; as
in (B-3) for a subdivisio® = {t,t®, ...t} of [0, T]:

Pwo) if 0<t<t®,
1

P(t,t(k))l_lp(t(i),t(i—l)) if 10 <t < tkeD),
i=k

(46) (W\B,t =

We shall make the following regularity assumption on therafm A(t), which is equivalent to that made

in SectionB (Assumptiop 3.2).
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Assumption 4.2. The symbol of &) is Holder continuous of ordet, 0 < o < 1, w.r.t. t with values in &:
for each chart(@;, ¢;) we have ae ¥%*([0, T], S?(R" x R"), in the sense that,
alt,x &) —at,x&=>t-)"§{t,t,x &, 0<t<t' <T,
with (', t, x, &) in S uniformly in t and t. Note that the same property then holds for the symba{tpf
in any chart.

This property naturally translates to the symbp(), i € 7.

Remark 4.3. The form we have chosen for the operé®ary can be motivated at this point. First, a natural
requirement is thaP; = Id, which is achieved sincg;.; ¢?> = 1. Second, the consistency analysis of
Propositi06 gears towards havi(@jPy o — A(t') o P(I’J))|tr=t = 0, which is achieved here thanks to the
form we have chosen for theftirential operato®(t).

Asin Sectiorﬂs, we first need to address the stability of thétirptoduct. Here, we shall only consider
theL? case.

4.2. L? Stability. Asin Sectiorﬂz, we find a sharp estimate of tifenorm of the operatoPy ) over M.

Theorem 4.4. There exists a constant £ 0 such that

IPe pllzmy.zovy < 1+ C(H - 1),

holdsforall0<t<t <T.
Therefore, as in Sectidih 3, we obtain the following stapiiésult for Wy .

Corollary 4.5. There exists K> 0 such that for every subdivisiop of [0, T], we have

Vt € [07 T]» ”(W‘E,IH(LZ(M)’LZ(M)) S eKT
Proof of Theorem[#.4. We letu, w € L2(M). We have

Pe-guew) = Y, [ 60 (Bl DAY (@) dv= Y [[E) il (x DIEE) 0870 dx
iel M iel A

wherelj (resp.w;) is the pullback ofil, (resp.wly) by ;1. We now extend the symbgj(t,.) to R" x R"

to obtain a symbol satisfying Assumpti2.1 like its coupéet in SectiorﬂZ. We still denote fy(t, .) this

extended symbol. Then, by Proposit.lO, foii &7, there exist<; > 0 such that

”p\i,,v(t/,t)(X, DX)“(LZ(R”,gé/Z dx).L2(R".g2 dx) <1+G(t' -t),

whereg is also extended frorf} to R", yet still preserving Propert@.?). With = maxcr C; (recall that
I is finite) we thus obtain

| (P(I’*t)u’ W) | < (1 + C(t/ - t)) Z ”‘;Ziv'vi“LZ(éi,gé/zdx) “S’bl E]i|||_2(g)i’gé/2 dx-
iel
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Ficure 1. Change of variables bringing the analysis to the cl@gi () for the charts
(6, ¥i) and 0, ¢)), | € Ji, and their neighboring charts.

A Cauchy-Schwarz inequality then yields

1
’ ~ o~ 2 ~ o~
|(Pegu W] < (L4 CE = 0) (Y IBIZ, o) (D IR, e )
iel iel

Observing that

~ o~ ~2~2 1/2
Z||¢iui||ﬁ2@i,gyzdx) => f Fro? gy dx= >’ f QEUZ AV = [UIE s
iel iel H i
sinceYc; ¢? = 1, we find
| (Pe-nu,W)| < (1+C(t" — 1)) [IWlL2(ag llUll2(rr
which concludes the proof. ]
4.3. Consistency estimate As in Section[B, Propositiop 3.6, for the caseRS, we shall now analyze
the symbol of the operatobf + A(t"))Pw and prove the following proposition that corresponds to a
consistency estimate.
Proposition 4.6. Let0O <t <t' < T. We have
(Ov + Alt")) o Py = (' =) "L, with Ly € P5(M),
and for all se R, there exists C- 0 such that
(47) ”L(V»t)”(HS(M),HS‘Z(M)) < C,

uniformly int and t.

Proof. Foru e ¢*(M) we haveu = ;.; ¢?u. It thus siffices to takey; € €' (M), with supp(i) c 6;, for
somei € 7, and to prove that we have

(Ov + At))Pry(ui) = (t' — t)Li (i), Liwy, € PAM),
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and that_; . v satisfies[(4]7) uniformly it andt.

For concision we writeg Tor Gy here. Let us recall thagis the Weyl symbol ofQ(t) in the chart
(O, Pi), k € K. We setpy y(x &) = e 04X Making use of the assumption made on the chart
(O, Piiy), we consider the action of the change of variables Wy o l//j‘l on the operatorg; o
P Dx) o @€ ¥O@;) for j € Ji (see Figur§]1). By Lemn{aB.2, we obtain

- ~ A ~ —1 \* ’ 0
Peyt = Yig) °( D810 By Dao ‘Pi) o (Figh) Ui + ('~ DR Ui,
i

with RY, in WO(M) uniformly int’ andt. We then have
(48)  AW)oPeat= ) 3 Wi @e @t x Do higyo Bl y(x D)o@y ) o (Fih)w
j€Ji IE:Ti(Z)
+ (' = ORP, U,
where (tl,)t) is in Y2(M) uniformly int’ andt.
From (4.R) we have

OPioli = ¥ o (@) o (it IPyen)"(x Dx) 0 &) o (i)', jeTi,
which we may write
A PjwnU =¥ o (@j o dj'(t, X, Dx) o Pl (X, Dx) 0 &) o (‘/’}l)*ui
(-0 @ o R yed) oW U, e
Wherelif()t,yt) is in W2(8;) uniformly in " andt by Lemma[3}7. We choosg € 4.:°(6;) such tha; is equal
to one on suppj). We then have
BuPjolti =¥/} o (&) o '(t, %, Dx) o xj © Py 5 (X Dx) 0 xj © &) o (¥
(- W@ o RY o BN oYU,  jed,
recalling thatq‘]f"(t, X, Dy) is a diferential operator, hence a local operator. Applying Ler@tBXi o
p‘f(t,’t)(x, Dy) o xj we obtain
Pyl =P © (Bj 0 G"(t. X, Dy) 0 ¢ © Py (X D) 0 ¥ 0 &) o (i) ui + (' R, _yui,  je T,

(3)
WhereRj,(t,’t)

differential operator, we finally obtain

is in W?(M) uniformly in t” andt andyj = ((//,- o ‘P;(il))*)(,-. Using again that)"(t, x, Dy) is a

(4.9)  OvPryli = Z Wi © (@ © G"(t. X Dx) © Bip (% Dx) &) o (Fi) i + (' ~ HRE yui,
jedi
where (f,)t) is in Y2(M) uniformly int’ andt.
The operatorﬁegtl,?t) in (£.3) andRE?t) in (B-9) will contribute to the operatar v 1y and we discard them
from the subsequent analysis. Observe that we may changeithe overj € J; to sums ovelj € ji(z)

(£.8) and in [4]9) since we only consider the action of the dperators o
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Now that we have brought the analysis to the oper@s@t we shall consider and analyze the following
symbol,o 1, which corresponds to the operatﬁfgg))* o (Ot +At")oPryo Y ignoring the operators

RY andr®

(t'1) .p) as explained above:

Ten(E) == > G ) Pey # G+ > GV, ) H Gy # Py #E),
jE:Ti(Z) j,|€$(2)

—- @
=00y

keeping in mind that we only consider the action of the asdedioperator on‘I(;(}))*ui whose support is
compact and contained I (6)). We extend the symba|(f;.) to R" x R" to obtain a symbol satisfying
Assumptiol like its counterpart in Sectﬂn 2. We stilhdee by((t, .) this extended symbol. We may
then use global symbols iR". As in the proof of Propositio@.& we may replag, ) by §(t’,.) by
Assumptior[4]2. For the symboyy (x,£), this yields an error term of the forn’ (- )%, (x,£), with
/lg%(x, &) in S? uniformly in t” andt, that will contribute to the operatds ;). We thus discard this term
in the subsequent analysis and we still denote-py(x, £) the modified symbol.

We now sejfy = 1 - Zjej_(z) g”oJ? and we write

IR L (OB L R R S (N I R e

j€$(2) il E«yi(Z)
I# ]
= ) EHG, ) H A ) Do B G+ DL G, ) HG & # Py #P)
J'E.Yi(z) lje :Ti(z)
l#]

DU G, ) HGE # Py P,

lje $(2)
I# ]

which yields
(4.10) Ten(8) == > Gi# AL ) Y HDe o #'G)

j€$(2)
(4.10) £ B @0 B 0 — B B ' )

Ljeg? @)
£ =0 (%4)

From Weyl calculusS], since supp N supp((l’;(}))*ui) = 0, we find that the first term in the r.h.s. of
(F-10) can be written in the fornt’ (- t)A®(x, £), with A in S? uniformly in t’ andt, making use of the
composition formula[(Z]}6) and Lemrha2.3.

Applying Propositiol (withk = 1), we find

n

i ~ N\ -~ oS A ’
(68 = ) 5 (205808 ~ 195,(#) s Bren + (' = DAD(x.2).

m=1
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with 2@ in S° uniformly in t’ andt arguing as in the proof of Propositi.4 in Appen@x A (gsin
Lemma[2.B and Theorem 2.2.5 [n[Kd81]). Therefore, we are leftwiith computing

. n
[ e U R R
Ty =50 > B, ) # (20808 ~ 10x,#D) 0e o]
m=1 I j E:fi(Z)
I#]

= %Z D (O @NF; = G5 (ED) A %, ), ey + (€ = DAD(x, &),
m=1 lje ~7i(2)
I #j

with 1@ in S? uniformly in t’ andt by the composition formulm.G) and Lemr@Z.B. Observirgg th
the first term just obtained in fact vanishes, we finally hayey(x, &) = (t' — t)A(x, &) with A(x, &) in S2
uniformly int” andt. This concludes the proof. [

4.4. Convergence and representation theoremWe observe that the energy estim(3.5) also holds for
the diferential operatoA(t) on M (since the proof relies on the Garding inequality which lsdtat positive
elliptic operators onM). Combined with the l(?) stability result of Corollar5 and the consistency
estimate of Propositi.6, the energy estimate yieldis, ﬁectiorﬂB, the following representation theorem
through the convergence ¥y to U(t, 0), the solution operator of the parabolic Cauchy probl@)@
(@): U(t, 0) = limy, o W in the following sense.

Theorem 4.7. Assume that @) satisfies Assumpti.Z. Then the approximation Ar#a§z converges
to the solution operator (¢, 0) of the Cauchy problerfft.4)-{@.F)n L(L2(M), H=2"(M)) uniformly w.r..
tasAg = maxej<n-1(t*? — 1) goes to 0 with a convergence rate of ordéf — r):

Wt = Ut O)llz oy < CA", te[0,T], O<r<1

The operatorWy ; also converges to {1, 0)in L2(0, T, £(L?(M), L>(M))) with a convergence rate of order

.
T %
( f W~ U O) 2 ydt)” < CAG.
0

Furthermore Wy, strongly converges to (#, 0) in £(L?(M), L(M)) uniformly w.r.t. te [0, T].
APPENDIX A. PROOFS OF COMPOSITION-LIKE FORMULAE
We prove Propositiop 1].1 and derive composition resultsHersymbolpy(x, &) = e x4,

A.1. Proof of Proposition[L.}. From Weyl Calculus we have

(@#'b)(x,&) = =" f @ g(x + Z O)b(x + 1, 7) dz d dit dr,
@
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whereX(z, 4,1, 7,&) = 2((t — £,2) — (£ - £, 1)) (see [Hor8p], p. 152). This yields
(@a#'b)(x, &) — (ab)(x, &) = 2" f 0 (a(x + 2 Q)b(x+ t,7) — a(x, )b(x, 7)) dz d dt dr
@

=1

1
n
= Z a2 ffeii(“*‘*f’f) (zjaxj a(x + rz, )b(x + rt, 7) + tja(x + rz, {)dx b(x + rt, T)) drdz d’ dtdr
0 @

by a first-order Taylor formula. In the first (resp. secondit¢hat we have obtained, we write
. i . ‘ i .
zje'E(“’t’T’f) - _éarjeli(zé,t,nf) (resp. tje'z(“'“'f) - 55 (jeli(zé,tmf))'

Integration by parts w.r.t: and{ in the oscillatory integral yields

(@#"b)(x.é) - (ab)(x.¢) =

1
n__-2n )

7r2i f f dE@stTe) (afj a(x+ 1z, {)dx, b(x + 1t 7)
j:l 0 @

— dxa(X+ 12, )0 b(x + 1t, 7)) dr dz & dt df,

b}

y=X

1

i-—2n

- f f &HE61597(Dy, Dy), (Dy, Dy)) (alx + 1. O)bly + 1t, 7)) dr dz ¢ dt dr
0 @

which gives the result of Propositi.l for= 0.To proceed further we integrate by parts wrr.and
obtain

i —2Nn .
@#'B)(x &) - (ab)(x.§) = T5— f (D, D), (Dy, D)) (alx, Ob(y, 7)) dz  dtelr |
@

1
n : _-2n )
N Z |7r2 f(l_ N felz(z(,t,r,f)o-((Dx, D), (Dy, D;)) (z,—&xja(x+ rz, O)b(y + rt, 1)
=1 0 )

+tja(x + 1z, £)dx bly + 1t, 7)) dr dz d; dt dr

y=X
= 5((Dx. D). (Dy, D) (alx £)bly. )

y=Xx
n=¢

1
gl (|_2)2 f(l 9 feiz(zl,t,r,f) (0—((DX, D;). (Dy, DT)))2 (a(x +rz,0)b(y +rt, T)) drdz d’ dt dr 'y:x’
0 @

which gives the result fok = 1. Formul6 then follows from induction by integratiorr parts w.r.t.r
each time. ]

A.2. From amplitudes to symbols. Here we give a formula of the form om.G) to compute the Weyl
symbol of a/DO starting from an arbitrary amplitude.

Proposition A.1. Let ax,y, &) € ST(R" x R" x R") be the amplitude of @DO A, i.e.,

AU(Y) = (27)" f f YD a(x,y,€) u(y) dy ck.
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The Weyl symbol b of A, i.e./Ab%(x, Dy), is then given by

b(x, &) = elz(<Dy»Df>*<Dx,D£>)a(X, Y, §)| = n—nf e2i<L§f§>a(X +zx-z0)dzd

zk](kax 0.00) alx v,

j=0

_r)k _ i k+1
’”f ( k!r) f P2 (%(6)( — dy, 6;)) a(x+rzy—-rz,)drdzd o
0

The proof is analogous to that of Proposit@ 1.1 given above

A.3. Proof of Proposition . We prove the results faw, #¥p,. The results fopy, #*r, follow similarly.

We first use Propositiop 1.1 fér= 0:
(A1)

=}

-2n

M #Pr(x.€) = (X E)P(x &) +

1
foe'm‘”f) g, Th(X + 12, ) By, Pr(X + 11, 7)
j:l 0

= Ox,Th(X +1Z,0) O, pr(X + 1t 7) ) drdz & dt dr.

By Lemma[2.B, we have

Oy, P = vy, O pn = o),

with vy in S2 andv? in S uniformly in h. We thus observe that the last term([in {A.1) can be written as a
linear combination of terms of the form

(A.2) h f f eXEOLTy (X + 17, )van(X + 1t, 7) dr dz d7 dit dr,

wherevy , andv,, are respectively ils™ andS™ uniformly in h with my + mp = | + 1. Setting
1

0
we see that it is a multiple symbol B™™(R? x R" x R?" x R") and the term in[(A]2) can be written as

hfe'z(“”f)vh(x+z,x y+1,9,¢,7) dz & dtdr |
@
Applying Theorem 2.2.5 inl] twice (once for the integoas w.r.t.z andr, a second time for the

integrations w.r.tt and/, recalling that(z £, t, 7, &) = 2((t — &, 2) — (£ — &,t))) we obtain that the last term
in (B.3) is of the formhA™(x, &), whereal"(x, £) is in S'** uniformly in h.
Similarly, by Lemmd 2]3, we write

=y=y=x

dy,Pn = h¥¥nG), O pn = h7),

with ¥j) in St andvﬁ” in S° uniformly in h. The same reasoning as above yields the last terfn i (A.1) is
of the formh%/lf?)(x, ), whereﬂﬁo)(x, &) is in S" uniformly in h.
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To now treat the last equality iff (3.2) we use Propositioffdrk = 1:

(A3) 1 P10 8) = (MPR)(%.E) + o (1, PRI,

-2n
S [ S [ s .00
0

1<j, k<n

- 26§j§krh(x+ rz, 5)6 Xkph(x +rt,7) + 6X Xkrh(x+ rz, §)6f & pr(X + rt,r)) drdz d dt dr.
Here, by Lemmé§ 2.3, we write

2 _ ) 2 (1) 2 — 0
6X_kah = hvh(J,k), 8fjxkph hvh(k)’ (9.5]& Pn = hvh ,

wherevy i, vf](k), andy, () are respectively i52, St, andSP uniformly in h. We can then conclude as above

with Theorem 2.2.5 in[[Kg81] and find the last term [n (A.3) bétformhi® with A% in S' uniformly in
h. |

APPENDIX B. EFFECT OF A CHANGE OF VARIABLES

B.1. Pseudodfferential calculus results. We shall be interested in transformation formulae for Wgyhs
bols under a change of variables and apply them to the pkatisymbols we consider in Sectiﬂn 4. We let
X andX be two open subsets 8" and letk : X — X be a difeomorphism. We shall study th&ect of the
change of variables — «(X) on the symbo) #"p, #"y in the Weyl quantization, wheng, = e, with q
satisfying the assumptions made in Secﬁbn 4 aboveran@;° (X).

We first consider general amplitudes before specializingegl symbols. Let(x, y, £) be the amplitude
in ST(X x X x R") of A € ¥™(X) whose kernel is compactly supported. In particular, belye shall
considera(x, y, £) to be of the formy(x) x(y) &(x, y, £), with & € ST(X x X x R"). With ¢ € €:°(R") equal
to 1 in a neighborhood of 0 we set

aO(X» Y, f) = g(X - y) a(X, Y, é‘:)» and aOO(X’ Y, é:) = (1 - g(X - y)) a(X, Y, f)
If we setA, = (k1)* o Aok*, thenA, € ¥™(X). In fact, for supp() sufficiently small,A, = Ag, + Aw, With
A, € ¥~=(X), and an amplitude oA, is given by [GSIH]
(8.1) 80,(% ¥,€) = ao(k” (9, k7). (2 1)) %) | dete Y ()| det 2(x y)I 2,

where/;—vl(x, y) = (/;al(x, Y))1<kI<n iS defined through

n

K00 — K 10) = D K ) — ).

=1

Note that/;:'l(x, X) = (¥ 1)’(X) which implies that:;'l(x, y) is indeed invertible in the support @ when
supp() is suticiently small. Note also that

— — 1 1\, .
(B.2) axinl(X’ Y)|y:x = ayj”(il(X, Y)|y:x = Eaxi (x l) (), i=1,....,n
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Note that, for the operatdk,,, we can regularize its kernel by integration by parts andhisemplitude
. n
. [
®3) a0y = Ly, wih L= 506 -y)de, keN,
i=1

in place ofa. (X, Y, &).
By Propositiof AJL (withk = 1), the Weyl symbol of\, is given by

(B.4) aK(X, f) — elz((Dy,Df)’(DX,D{))aO’K(X’ Y, 5)‘ —— ff ezKL’(*E)ao,K(X +72X-2 é,) dz (2/
y=X

[
= 0. %) + 5 (0x = By, 0) B0.(x.¥. 8|,
e e
=, 0(XE) = 1(X€)

1
Do _
+a " (IE) fff EO (L - 1)((0x — Oy, 0.)%a0) (X + 12,y —1Z,0)drdz 7| .
. yox
0
We now specialize to an amplitudéx’y, £) given by the Weyl quantization, i.e.,
a(x,y, &) = x(X) x(y) b((x+y)/2,£).
To simplify some notation we sét= «~. The symboky, o(x, £) is then given by
(B.5) 0% €) = ¥(LOY)? (L), W (L)),

Lemma B.1. The symbolk, 1(x, ¢) is given by

aca(x.€) = %X(L(X))z D809 @)L, W (LEE),
k=1
where

() = > A (L) = > (35, s km)(L()) (D, LX),
1=1

1<ml<n

Proof. From the definition oy, 1 in (B-4), and [B.]L) we have

0a(%.6) = 50 . ) (KL (L) LK) + L2, (e ) )
x dett) W)l dew (x| .

where we have used thétis equal to one in a neighborhood of the origin. Fr(B.Z),sse that we
need not take into account the spatidfetientiations acting on the terr{(s:i(x, y))~L. Similarly the spatial
differentiations acting on the cuffdunctionsy(L(x)) andx(L(y)) cancel each other, and so do the spatial

differentiations acting on the first variable of the symboNote also that the absolute values for the last
two terms can be removed beforéfdrentiation since their product yields 1 in the cgse x. To simplify
the notation we se¥l = I;:L(X, X). We thus obtain

a6 ) = —5 3 ALY 36D)(LOO, W (LOE) (M) (3, et () (Getht)

1<j.ksn
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From the multi-linearity of the determinant we find that

(0, detlU'(¥)) (detM) ™ = 3" a, Ly () (L9,

1<pl<n
which yields
W) == DKL) (9 Lp(®) KoL) == D k(L)) (95 Lpi(x) Kfe(L(¥)
1<j,pl<n 1<j,pl<n
= Z 9 (ki (L(X))),
=1
sincex’(L(X)) L’(X) = 1dx. ]

B.2. Application to the operator y o p‘p]’(x, Dy) o y. We use the notation introduced above. In the case
b = e = py thena(x,y, &) = x(x) x(y) e "4x/24) is an amplitude for the operatér= y o p'(x, Dy) o x
with Weyl symbola = y #'p,#"y. Making use of the form of the amplituﬂ) in (E), we see that
A = hA, , with A, in ¥°(X) uniformly in h, using Lemm4 2]3.

We now focus on the operatofg andAg,. From ) and Lemm@.l, the expression of the remainder
term in (B.4) and using Lemnja 2.3 we obtain

B a(ed) = (L. WL (L~ > 1) (a0, W (L)) + i,
k=1

with @, in S° uniformly in h. Similarly, if we denote by, the Weyl symbol of £71)* o g"(x, D) o «*, we
have

(B.7) Q0e8) = AL WL + 5 " ) oL, W (LOE) +
k=1

whered; € S°. We now prove that after the change of variables «(x), for the operatoy o P (X, Dy)oy =
a"(x, Dy), we may use the symbg(L(x)) #¥e"%x£) #% (L(x)) in place ofa,(x, &), the pullback of in the
Weyl quantization, yet remaining within a first-order pségn w.r.t. to the small parametier

Lemma B.2. We sefpn(x, &) = e "%*¢)_ We have

() BB #()0)) (%.€) — (% €) = hn(x, &),

wherely, is in S° uniformly in h.

Proof. We setv(x,£) = 12 Yot fk(X)(afkq)(L(X),tK/(L(X))f). Making use of7), we write

P(X, &) = pn(L(x), W (L(X))&)e M x g (xe)
1

= Pr(L09. W (LO0NE) (1- () + (w(x &7 [ €™ 09(L—1) o) 1+ sl ),

0
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by two Taylor formulae, wherg; is in S° uniformly in h. From Lemmat4 4}1 ar[d 2.3 we obtain that

1
Pr(L(0), W (LONEN (v, ) f e ML —1) dr = hup(x, &),
0

with w5 in S° uniformly in h. From {B-p) we hence obtain

(% &) = X(L(9)*Pn(x. &) = hus,
with uz in S° uniformly in h. We conclude the proof with the following lemma singeahd py, are of the

same nature. |

Lemma B.3. Letg € 4:°(X). We then have
¢ #"'Pn#"¢ — ¢%pn = han,

wherely, is in S° uniformly in h.

Proof. Sinceg(X)é(y)pn((X + y)/2,£) is an amplitude for the operator with Weyl symho#" p, #V¢, by
(E) we obtain

(o # ) (&) = 7" f f 0 p(x — 2) ¢(x + 2) pu(x. ) dz &

1
- F@med - 31y, [ [[@-neeo (oe el ox-r2)
0

1<j,k<n
— 20y, ¢(X + 1Z) Oy d(X — 12) + 6§i,xk¢(x +12) p(x — rz)) ag’fk Pr(x, &) drdz o

We then conclude as in the proof of Proposifior} 2.4 in Appe[éiy using Lemmd 2|3 and Theorem 2.2.5
in [Kg81). =
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