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Abstract — In many engineering applications, data samples are expensive
to get and limited in number. In such a difficult context, this paper shows
how classification based on Reproducing Kernel Hilbert Space (RKHS) can be
used in conjunction with Extreme Value Theory (EVT) to estimate extreme

multivariate quantiles and small probabilities of failure. For estimating extreme
multivariate quantiles, RKHS one-class classification makes it possible to map
vector-valued data onto R, so as to estimate a high quantile of a univariate
distribution by means of EVT. In order to estimate small probabilities of failure
we basically apply multivariate EVT, however EVT is hampered by the fact that
many samples may be needed before observing a single tail event. By means of
a new method again based on RKHS classification, we can partially solve this
problem and increase the proportion of tail events in the samples collected.

keywords Extreme value theory; RKHS classification; Multivariate quantiles;
Failure probability

1 Introduction

This paper advocates the combination of Reproducing Kernel Hilbert Space
(RKHS)-based classification with extreme value theory (EVT) to estimate two
quantities of fundamental importance in engineering, namely extreme multivari-

ate quantiles and small probabilities of failure.
A standard approach to build multivariate quantiles of a probability distri-

bution is to estimate the level sets of its density (Molchanov, 1990). It is well
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known that RKHS classification can be applied for the estimation of the level
sets of a density (Vert and Vert, 2006). However, an accurate estimation of tail
probabilities, which corresponds to the estimation of large level sets, should in
general be based on large data sets. Extreme value theory (EVT), by proposing
a generic parametric form for univariate tail distributions, makes it possible to
obtain estimates with smaller variance than RKHS classification. To extend
its applicability to a multivariate setting, a possible approach, explored in this
paper, is to map the vector-valued data onto R, so as to consider univariate
distributions again. The first contribution of this paper is to explain how such
a mapping can be carried out in the framework of RKHS classification.

Next, we shall show that classification methods can also be used to improve
extreme value analysis in the case of failure probability estimation. Assume that
h : X ⊆ R

d → Y ⊆ R
q is a multivariate vector-valued continuous function, and

let X be a random vector on X, with probability measure PX. Our objective is
to estimate the probability of failure

Pf = PX{x ; h(x) ∈ Υ} , (1)

where Υ is some predefined failure domain, such that Pf is small. Drawing
samples in X according to PX, turns out to be a very inefficient approach to
the evaluation of Pf , so many estimation methods use some type of importance
sampling (e.g., Au and Beck, 2001 ; Homem-de Mello and Rubinstein, 2002 ;
Nie and Ellingwood, 2004). A direct analysis of the tail of h(X) using EVT
compares poorly against such methods based on importance sampling. Indeed,
EVT can be used to extrapolate the far-tail behaviour of a distribution from
samples in the near-tail, but the method is hampered by the fact that many
samples may be needed before a single tail event is observed. We propose to
bypass this limitation by using a two-step method; in the first step, samples are
drawn according to PX and a classification method is applied to build a subset
Γ ⊂ X that contains the failure set {x; h(x) ∈ Υ}; in the second step, samples
are drawn in Γ by rejection sampling and EVT estimation is conducted from
these samples.

Although EVT and RKHS classification have both been extensively stud-
ied, surprisingly enough, they do not seem to have been combined for treating
multivariate extreme-value analysis problems, as suggested in this paper. Sec-
tions 2 and 3 briefly recall these two basic frameworks, Section 4 shows how
EVT and one-class classification can be used to estimate extreme multidimen-
sional quantiles, and Section 5 presents the estimation of failure probabilities
via EVT and two-class classification. Simple illustrative examples, inspired by
actual problems of robust system design in engineering, are also presented.

2 RKHS-based classification

Let {Xj}j∈J be a finite partition of X and T = {tj}j∈J be a corresponding set
of labels. Assume that there exists a function Φ∗ : X → T such that ∀j ∈ J ,
x ∈ Xj =⇒ Φ∗(x) = tj . From a set of training data {(xi, Φ

∗(xi)), i = 1, . . . , n},
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a classification algorithm attempts to build a decision function Φ : X → T, which
is an estimate of Φ∗, such that ∀j ∈ J , x ∈ Xj =⇒ Φ(x) = tj .

One- and two-class classifications both correspond to partitions with two
subsets and we shall use the standard notations, X = X−1 ∪ X1, with t−1 = −1
and t1 = 1. The most standard type of classification has two classes. One-class
classification is employed when data points are not labeled, but are instead
supposed to belong with high frequency to one particular subset, X1 say.

With obvious notations, an important family of decision functions can be
written as

Φ(x) = 1f(x)≥u − 1f(x)<u,

where f : X → R is a smooth function such that, for some given u, and for all
i = 1, . . . , n, f(xi) < u if xi ∈ X−1 and f(xi) ≥ u if xi ∈ X1. Functions of this
family receive different names depending on how f is built. In this paper, we
focus on RKHS-based methods (see, e.g., Wendland, 2005).

Let F be a Hilbert space of real-valued functions defined on X, with scalar
product denoted by (·, ·)F . If there exists a function k : X × X → R, called a
reproducing kernel, such that

∀f ∈ F , ∀x ∈ X f(x) = (f, k(x, ·))F ,

then F is an RKHS (Aronszajn, 1950).
A one-class RKHS classifier is obtained by solving the program

min
f∈F

1

2
‖f‖2

F +
1

C

n∑

i=1

l(f(xi)) , (2)

where C is a tuning parameter, ‖f‖2
F is a regularization term and l is a loss

term that penalizes functions f such that f(xi) < u. For instance, a one-
class support vector machine (SVM) is obtained with the hinge loss function
l(v) = max(0, u − v) (see, e.g., Schölkopf et al., 2001).

A two-class RKHS classifier is obtained by taking u = 0 and solving the
program

min
f∈F

1

2
‖f‖2

F +
1

C

n∑

i=1

l(f(xi), Φ
∗(xi)) , (3)

where l is a loss function that penalizes functions f such that f(xi) ≥ 0
when Φ∗(xi) = −1, and f(xi) < 0 when Φ∗(xi) = 1. A standard choice is
l(f(xi), Φ

∗(xi)) = (f(xi)−Φ∗(xi))
2. Another example is the hinge loss function

l(f(xi), Φ
∗(xi)) = max(0, α − f(xi)Φ

∗(xi)), which leads to standard two-class
SVM with α-margins (see, e.g., Schölkopf and Smola, 2002).

Each of the programs (2) and (3) admits a unique solution f∗, which can be
written as

f∗ =

n∑

i=1

aik(xi, ·) . (4)

As a consequence, building one-class and two-class SVM boils down to solv-
ing quadratic finite-dimensional optimization problems (Schölkopf and Smola,
2002).

3



3 Extreme value theory

Assume, for the time being, that X is scalar. Under some technical conditions,
the Pickands-Balkema-de Haan Theorem (Embrechts et al., 1997, page 354)
suggests the following semi-parametric model (called the generalized Pareto dis-

tribution (GPD) model)

F (x) := P{X ≤ x} ≈ 1 − P{X > u}

(
1 + ξ

x − u

β

)−1/ξ

,

∀x such that x − u > 0 and 1 + ξ
x − u

β
> 0 ,

(5)

for the tail of the distribution of X above a given threshold u near the upper
bound x0 of its support. The validity of this model is asymptotic: the higher
u, the more accurate the model becomes (see, e.g., (Coles, 2001) for a compre-
hensive discussion).

Once the threshold u has been fixed, the parameters ξ and β may be es-
timated by maximum likelihood or by the method of moments, among oth-
ers (Embrechts et al., 1997, pages 327-348). Only the samples of X above the
threshold are used for the estimation of ξ and β, as the model is only consid-
ered valid for X > u. P{X > u} is evaluated empirically by the Monte-Carlo
method. Asymptotic validity suggests choosing a large u, but the number of
data points available for the estimation of ξ and β then decreases, which leads
to a higher variance (a bias-variance trade-off). Various numerical methods can
be used in order to determine a suitable compromise (Dupuis, 1998).

A quantile at level 1 − α may be estimated by inverting (5),

Q1−α ≈ u +
β

ξ

[(
P{X > u}

1 − α

)ξ

− 1

]
. (6)

For the estimation of failure probabilities in Section 5, we shall need a mul-
tidimensional extension of univariate EVT. By analogy with threshold methods
for univariate extremes, in which the approximate generalized Pareto distribu-
tion is treated as exact for sufficiently high thresholds, Smith (1993) proposes,
under some technical conditions, the following approximation1 of the c.d.f of a
d-dimensional vector, based on (Resnick, 1987, proposition 5.15),

F (x) ≈ 1 − υ

(
1

P{X1 > u1}

(
1 + ξ1

x1 − u1

β1

)1/ξ1

, · · · ,

1

P{Xd > ud}

(
1 + ξd

xd − ud

βd

)1/ξd

)
, (7)

valid for x1 ≥ u1, · · · , xd ≥ ud. The function υ describes the dependence
between the variables. A number of possible parameterizations for υ have been

1This model is only valid under asymptotic dependence. See (Ledford and Tawn, 1996) for
its extension under asymptotic independence.
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proposed (see Kotz and Nadarajah (2000) for an overview). For d = 2, one of
the most popular model is the logistic model

υα(x1, x2) =
(
x
−1/α
1 + x

−1/α
2

)α

. (8)

A presentation of the various parameterizations and their relevance is out of the
scope of this paper.

The estimation procedure consists of two steps (Coles, 2001). First, a uni-
variate analysis of the marginal distributions is performed to estimate their tail
behaviours. The thresholds u1, · · · , ud are chosen separately to make a trade-off
between bias and variance for each marginal variable. The parameters ξ1, · · · , ξd

and β1, · · · , βd are estimated for each component using one of the methods cited
above. Next, the parameters defined in the dependence structure (α in case of
the logistic model) are estimated using censored likelihood (Smith, 1993). Only
the samples for which at least one component is extreme (xi > ui) are used for
this estimation.

4 Estimating extreme multidimensional quantiles

with one-class SVM

Let Q be a class of measurable subsets of X and λ be a real-valued function
defined on Q. A multivariate quantile Q1−α with respect to (X, P,Q, λ) is
defined as a set Q ∈ Q that reaches the infimum

c(α) = inf{λ(Q) : Q ∈ Q , P(Q) ≥ 1 − α} , 0 < α ≤ 1 ,

where c(α) is called generalized quantile function (Einmahl and Mason, 1992).
Note that Q1−α is not necessarily unique. If Q is the family of closed sets in R

d

and λ the Lebesgue measure, then Q1−α is a minimum-volume set that contains
at least a (1 − α)-fraction of the probability mass.

Minimum-volume set estimation has been extensively studied. Sager (1979)
and Hartigan (1987) address the particular case where Q is the class of convex
closed sets in R

2. Nolan (1991) works with ellipsoidal sets. Tsybakov (1997) uses
piecewise-polynomial estimators. Whatever the class considered, the quality of
the estimation decreases when the number of data points decreases and when
the probability of the set of interest becomes closer to one (or zero).

Nunez-Garcia et al. (2003) show that density level sets correspond to minimum-
volume sets. The reciprocal is not true: a minimum-volume set is not necessarily
a density level set. Let f̂n(x) be an estimator of the density of X based on an

n-sample of X . There exists cα such that Q̂1−α = {x ∈ X : f̂n(x) ≥ cα} is
a minimum-volume set estimator. Such estimators are called plug-in estima-

tors (Molchanov, 1990).
To estimate extreme multidimensional quantiles, that is Q1−α with 0 < α ≤ 1/n,

we need to extrapolate the behaviour of the available data. Classical methods
are not suited to this case, hence the interest of the method proposed in this
paper.
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We consider a parameterized class of subsets Q = {Bρ, ρ ∈ R
+} such that

ρ1 < ρ2 =⇒ Bρ1
⊃ Bρ2

. (9)

λ is defined by λ(Bρ) := ρ, for every Bρ ∈ Q.
In order to build such a parameterized class of subsets, we use the one-class

SVM classifier obtained by solving the following program (Schölkopf et al., 2001)

min
f∈F ,ξ∈Rn,ρ∈R

1

2
‖f‖2

F +
1

nν

n∑

i=1

(ξi − ρ) , (10)

subject to

{
f(xi) = (f, k(xi, ·))F ≥ ρ − ξi

ξi ≥ 0
(11)

where the parameter ν ∈ (0, 1] controls the trade-off between the regularization
term ‖f‖2

F and the constraints. The ξis are called slack variables. Denote by
f∗

ν,n, ξ∗ and ρ∗ the solutions of (10, 11). This program is a particular case
of (2). The convergence of one-class SVM to minimum-volume sets has been
proved recently (Vert and Vert, 2006), which motivates our choice of one-class
SVM over other classification methods.

The fraction of the data points such that (f∗
ν,n, k(x, ·))F−ρ∗ = f∗

ν,n(x)−ρ∗ <
0 tends to ν when n → ∞ (Schölkopf et al., 2001). Take Bν,n

ρ := {x ∈ X :
f∗

ν,n(x) > ρ} and let Qn be the family of subsets

{Bν,n
ρ ; ρ ≥ 0} . (12)

Qn satisfies (9) and
P(Bν=α,n

ρ∗ ) → 1 − α , (13)

when n tends to infinity. Vert and Vert (2006) show that f∗
ν,n(x) is a density

estimator of X truncated at ρ∗ if k is a Gaussian kernel. Bν=α,n
ρ∗ therefore tends

to a (1 − α)-quantile of minimal volume (Nunez-Garcia et al., 2003).
However, when α ≤ 1/n, estimating Q1−α by Bν=α,n

ρ∗ is not a viable option,
as the convergence of (13) is very slow. We use EVT instead, in order to estimate
the tail of fν,n(X).

Our objective is to accelerate the convergence of P(Bν,n
ρ ) = P{x ∈ X :

fν,n(x) > ρ} to 1 − α when n goes to infinity. For this purpose, we look for a
more suitable tuning of ν and ρ than the choice ρ = ρ∗ and ν = α suggested by
(13). In order to improve the convergence rate, and thus to reduce the number
of data points required, we need to extrapolate the behaviour of the data. The
main idea is to transform the multi-dimensional problem into a one-dimensional
one using the fact that

P{x ∈ X : fν,n(x) > ρ} = Pfν,n
(]ρ, +∞[) ,

where Pfν,n
is a probability on R defined as the probability image of P by fν,n.

Our algorithm consists of two steps.
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(a) Program (10, 11) is solved for a Gaussian kernel and a value of ν chosen
so that there are enough support vectors (typically ν = 0.5). One thus
obtains a member of the family Qn defined by (12).

(b) EVT is used to estimate ρ∗∗ from {fν,n(xi) ; i = 1, . . . , n} such that

Pfν,n
(]ρ∗∗, +∞[) ≈ 1 − α .

Example — In order to illustrate the convergence acceleration achieved by
using the method presented in the previous section, we take X = (X1, X2)

T

where

X1 = 5sin(0.125π + θ) + V and X2 = 5cos(0.125π + θ) + V .

The random variable θ follows a uniform distribution U(0, 1.25π) and V follows
a normal distribution N(0, 1).

Figure 1 shows 200 samples of X and Q̂0.999 = Bν=0.5,n
ρ∗∗ estimated by the

proposed method2.
Table 1 compares the means and standard deviations of P (Q̂0.999), when

Q̂0.999 is estimated using the SVM only and when our methodology combining
SVM and extreme value theory is used.

P(X ∈ Q̂0.999, SVM) P(X ∈ Q̂0.999, SVM+EVT)
n = 50 0.7419 (0.0769) 0.9816 (0.02816)
n = 100 0.8437 (0.0486) 0.9923 (0.0145)
n = 200 0.9186 (0.0149) 0.9964 (0.0042)
n = 400 0.9561 (0.0072) 0.9979 (0.0025)

Table 1: Comparison, based on 100 trials, of the mean (and standard deviation)

of P (Q̂0.999) when Q̂0.999 is computed using the SVM only and with combining
SVM and EVT.

This example illustrates the superior performance of the new method. The
speed of convergence of the estimator remains to be studied, as well as its
sensitivity to the dimension of X, the tail of the underlying distribution and the
choice of the kernel.

5 RKHS classification for the estimation of fail-

ure probabilities

The estimation of failure probabilities could, at least in principle, be carried out
directly by using EVT, since the choice of a probability distribution PX induces

2The choice of σ is of course an important problem in practice, not considered here for
the sake of brevity. Choosing σ, or more generally the kernel, is very similar to choosing the
kernel in the Parzen-Rozenblatt density estimator, for which numerous procedures have been
developed (see for instance Duong (2004) and Scott (1992)). Here, we used σ = ((var(X1) +
var(X2))/2)1/2 .
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Figure 1: 0.999 -quantile as estimated from 200 sample values (solid line in gray),
90% confidence regions are also drawn (dotted lines). The Gaussian kernel with
σ = 3.2 has been used. The actual minimum-volume quantile (as estimated
from 105 sample values) is in black.

a probability distribution on Y, defined by

∀A ⊂ Y , PY(A) := PX(h−1(A))

A key point for the applicability of EVT, however, is the availability of a suf-
ficiently large number of samples of Y = h(X) above ui (i = 1, · · · , q) in (7).
This number increases at the rate nP{Yi > ui} for each marginal i = 1, · · · , q,
where n is the sample size. If P{Yi > ui} is small for at least one marginal,
which is usually the case because ui has to be large in order to reduce bias,
many samples are needed to get enough data above each ui to ensure an ac-
ceptable variance. Unfortunately, when estimating failure probabilities (1), the
number of available samples if often small (the collection of samples may involve
complex and time-consuming simulations or the realization of prototypes), so
EVT can seldom be applied directly in practice.

To bypass this difficulty, we propose to use the following two-step approach,
based on RKHS classification.

(a) Choose a set S ⊂ Y that contains Υ. Draw n1 samples xi in X according

8



to PX. Build the decision function Φ of an RKHS classifier, such that
∀x ∈ X, Φ(x) = 1 when h(x) ∈ S, and Φ(x) = −1 otherwise. Estimate
P(h(X) ∈ S) by card{xi ; h(xi) ∈ S}/n1.

(b) By rejection sampling driven by the RKHS classifier, draw n2 samples xi

in X according to PX and satisfying Φ(xi) = 1. Perform an EVT analysis
based on these samples, which means (i) selecting the thresholds u1, · · · , uq

such that the EVT model (7) is valid, (ii) estimating the probabilities
P{Yi > ui}, i = 1, · · · , q, with the correction needed to take into account
the effect of rejection sampling, (iii) estimating (ξi, βi), i = 1, · · · , q.

Denote by F̂EVT the model of the tail distribution of Y obtained by using (7).
The failure probability is estimated by

P̂f =

∫

Υ

∂F̂EVT(y)

∂yT
dy . (14)

The total number of evaluations of h is then equal to n = n1 + n2. In many
engineering applications, the evaluation of h(x) is expensive and the budget for
such evaluations is limited. Hence the interest of the approach proposed, which
leads to a smaller variance of the estimators than would have been obtained if
the RKHS classifier had not been used to select suitable values of x. Figure 2
illustrates the approach.

X1

X1

X2

X2

Φ(xi) = −1

Φ(xi) = 1

classification function

• First step: Building the classification

• Second step: Sampling in the tail by rejection sampling + EVT

X

X

Y

Y

h(x)

h(x)

πY

πY

us

s

υ

υ

h(x)

h(x)

Υ = [υ,∞)

S = [s, ∞)

Figure 2: Two-step estimation of failure probabilities based on RKHS classifi-
cation (d = 2 and q = 1).
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Example — Extreme values play an important role in engineering because
they may correspond to abnormal or dangerous operating conditions. The fol-
lowing example is an academic version of an aeronautical problem. A rough
approximation of the deflexion of the tip of the wing of an airplane is given by
a beam-deflection formula

d = h(f, l, E, I) = −
fl3

6EI
,

where f is a force acting on the wing, l is the wing span, E is the modulus of
elasticity, and I is the area moment of inertia. In this example, we shall assume
that f ∼ N (1, 1), l ∼ N (10, 1), E ∼ N (50, 1), I ∼ N (5, 1) and that the failure
domain Υ is (−∞,−4]. During actual airplane conception, more complex and
more realistic models are of course employed, but it should be noted that the
methods advocated here are especially interesting for such complex models, for
which simulation budget is severely limited.

Table 2 shows failure probabilities as estimated by means of classical EVT
and the method proposed. We choose S = (−∞, 1]. A two-class SVM is used
for classification. The threshold u, above which the GPD model is valid, has
been set to 1.5, based on the mean excess plot method (Coles, 2001). The actual
value of the failure probability is considered to be the result of a Monte Carlo
experiment with 106 samples. Thus, we get Pf = 0.0028.

P̂ SVM+EVT
f P̂EVT

n1 = 50, n2 = 50 =⇒ n = 100 0.0034 (0.0031) 0.0033 (0.0034)
n1 = 50, n2 = 150 =⇒ n = 200 0.0028 (0.0016) 0.0032 (0.0030)
n1 = 50, n2 = 450 =⇒ n = 500 0.0028 (0.0010) 0.0028 (0.0019)
n1 = 50, n2 = 950 =⇒ n = 1000 0.0028 (8.1 10−4) 0.0028 (0.0015)
n1 = 50, n2 = 4950 =⇒ n = 5000 0.0028 (3.7 10−4) 0.0028 (8.4 10−4)

Table 2: Comparison, based on 200 trials, of the mean (and standard deviation)

of P̂ SVM+EVT
f and P̂EVT

f .

This example shows the superior performance of the method proposed. How-
ever, the performance depends on the choice of S, n1 and n2. The optimal choice
for these parameters remains to be studied.
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