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ANALYTICITY OF THE SCATTERING OPERATOR FOR

SEMILINEAR DISPERSIVE EQUATIONS

RÉMI CARLES AND ISABELLE GALLAGHER

Abstract. We present a general algorithm to show that a scattering
operator associated to a semilinear dispersive equation is real analytic,
and to compute the coefficients of its Taylor series at any point. We il-
lustrate this method in the case of the Schrödinger equation with power-
like nonlinearity or with Hartree type nonlinearity, and in the case of
the wave and Klein–Gordon equations with power nonlinearity. Finally,
we discuss the link of this approach with inverse scattering, and with
complete integrability.

1. Introduction

The local and global well-posedness of semilinear dispersive equations has
attracted a lot of attention for the past years. In general, when global well-
posedness is established, the existence of a scattering operator, comparing
the nonlinear dynamics and the linear one, is a rather direct by-product.
Unlike in the linear case (see e.g. [45, 56, 64]), besides continuity, very few
properties of these nonlinear scattering operators are known. A first natural
question, which can be found in [55, pp. 121–122], consists in investigat-
ing the real analyticity of the scattering operators. A positive answer is
available in some very specific cases: see [7, 8, 44] for the cubic wave and
Klein–Gordon equation in 3D, and [48] for the Hartree equation in 3D. In
this paper, we extend these results to a more general class of dispersive
equations, including the nonlinear Schrödinger equation and the nonlinear
wave equation, in space dimension n 6 4 (such an assumption is needed for
the power nonlinearity to be both analytic and energy-subcritical or criti-
cal). Moreover, unlike in [7, 8, 44, 48], we do not use an abstract analytic
implicit function theorem: we construct directly the terms of the series via
a general abstract lemma, thus extending the approach of S. Masaki [47].
We then show that the series is converging, working in suitable spaces based
on dispersive properties provided by Strichartz estimates. In general, these
estimates are a direct by-product of the proof of the existence of a nonlinear
scattering operator.

Before being more precise about the results presented here, we briefly
recall the approach for (short range) scattering theory in the context of
semilinear dispersive equations. The main examples we have in mind are
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the nonlinear Schrödinger equation

(1.1) i∂tu +
1

2
∆u = λ|u|p−1u, (t, x) ∈ R × R

n,

the Hartree equation

(1.2) i∂tu +
1

2
∆u = λ

(
|x|−γ ∗ |u|2

)
u, (t, x) ∈ R × R

n,

the nonlinear wave and Klein–Gordon equations

∂2
t u − ∆u + λup = 0, (t, x) ∈ R × R

n(1.3)

∂2
t u − ∆u + u + λup = 0, (t, x) ∈ R × R

n.(1.4)

Up to considering the unknown (u, ∂tu) instead of u alone in (1.3), (1.4),
Duhamel’s formula reads, in all these examples,

(1.5) u(t) = U(t)u0 +

∫ t

t0

U(t − s) (F (u(s)) ds,

where U(·) is the group associated to the linear equation (λ = 0), and t0
corresponds to the time for which initial data are prescribed:

(1.6) U(−t)u(t)
∣∣
t=t0

= u0.

In the study of the Cauchy problem, one usually considers the case t0 = 0.
In scattering theory, the first standard step consists in solving the Cauchy
problem near infinite time: t0 = ±∞. To consider forward in time prop-
agation, assume t0 = −∞. To define the wave operator W−, one has to
solve the Cauchy problem (1.5)-(1.6) with t0 = −∞, on some time interval
of the form ]−∞, T ], for some finite T . Classically, this step is achieved by
a fixed point argument in suitable function spaces. This may yield a time
T ≪ −1, that is, “close” to −∞ (but finite). Suppose that the classical
Cauchy problem enables us to define u up to time t = 0. Then the wave
operator W− is defined by

W−u0 = u|t=0.

The second step consists in inverting the wave operators. For initial data
prescribed at time t = 0, suppose that we can construct a solution which is
defined globally in time (or in the future only, for our purpose). Inverting
the wave operators (that is, proving the asymptotic completeness) consists
in showing that nonlinear effects become negligible for large time, and that
we can find u+ such that u(t) ∼ U(t)u+ as t → +∞:

u+ = W−1
+ u|t=0.

The scattering operator S is then defined by

Su0 = W−1
+ W−u0 = u+.

In general, for small data, the scattering operator S can be constructed in
one step only, thanks to a bootstrap argument in spaces based on Strichartz
estimates. For large data, one must expect T ≪ −1 in general. The solution
is then made global thanks to a priori estimates, such as the conservation
of a positive energy (λ > 0 in the above examples). The proof of asymptotic
completeness usually relies on different arguments: Morawetz estimates, or
existence of an extra evolution law (e.g. pseudo-conformal evolution law).
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In many cases, these arguments make it possible to define the scattering
operator. The continuity of this operator is usually an easy consequence
of its construction (provided that the proof does not rely on compactness
arguments). Finer properties, such as real analyticity, are not straightfor-
ward. We emphasize again that contrary to the case of the wave operators,
real analyticity of the scattering operator (for arbitrary data) cannot be a
mere consequence of the fixed point method used to construct solutions; we
show here that real analyticity of the scattering operator is very often a
consequence of the (global in time) estimates which are established in order
to show that there is scattering. In all this paper, by “analytic”, we mean
“real analytic”:

Definition 1.1. Let X and Y be Banach spaces, and consider an operator
A : X → Y . We say that A is real analytic (or simply analytic) from X
to Y if A is infinitely Fréchet-differentiable at every point of X, with a locally
norm-convergent series: for all f ∈ X, there exists ε0 > 0, such that for all
g ∈ X, ‖g‖X 6 1, we can find (wj)j∈N ∈ Y N such that for 0 < ε 6 ε0,

∞∑

j=0

εj‖wj‖Y < ∞, and A(f + εg) = A(f) + ε

∞∑

j=0

εjwj .

First, it should be noted that the analyticity of scattering operators near
the origin can be obtained rather directly in general, by applying a fixed
point argument with analytic parameters. Of course, if the nonlinearity is
not analytic, one must not expect the scattering operator to be analytic.
As an illustration, consider the nonlinear Schrödinger equation (1.1). As
noticed in [17] (in the case n = 1), and following the approach of [25], the
first terms of the asymptotic expansion of the nonlinear scattering operator
S near the origin are given by:

S (εu−) = εu− − iεp

∫ +∞

−∞
e−i t

2
∆

(∣∣∣ei t
2
∆u−

∣∣∣
p−1

ei t
2
∆u−

)
dt + OL2

(
ε2p−1

)
.

The complete proof of this relation is available in [18] in the L2-critical case
p = 1 + 4/n, for any n > 1. This shows that if p is not an integer, the
operator S is not analytic near the origin: it is Hölder continuous, of order p
and not better. We shall therefore consider only analytic nonlinearities:
in (1.3), (1.4), we shall always assume that p is an integer, and in (1.1), we
shall assume that p is an odd integer. We can now state two typical results
of our approach. Denote

Σ = {f ∈ H1(Rn), x 7→ |x|f(x) ∈ L2(Rn)}.

This space is naturally a Hilbert space. The main results of the paper are
the following.

Theorem 1.2. Let 1 6 n 6 4 and λ > 0. Assume that p > 3 is an odd
integer, with in addition

• p > 5 if n = 1.
• p = 3 or 5 if n = 3.
• p = 3 if n = 4.
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Then the wave and scattering operators associated to the nonlinear Schrö-
dinger equation (1.1) are analytic from Σ to Σ. If moreover p > 7 for n = 1
and p > 5 for n = 2, then the wave and scattering operators associated to
(1.1) are analytic from H1(Rn) to H1(Rn).

Theorem 1.3. Let n > 3 and λ > 0. Assume that 2 6 γ < min(4, n). Then
the wave and scattering operators associated to the Hartree equation (1.2)
are analytic from Σ to Σ. If moreover γ > 2, then the wave and scattering
operators associated to (1.2) are analytic from H1(Rn) to H1(Rn).

Theorem 1.4. Let λ > 0. Assume that either (n, p) = (3, 5) or (n, p) =
(4, 3). Then the wave and scattering operators associated to the nonlinear

wave equation (1.3) are analytic Ḣ1(Rn) × L2(Rn) to Ḣ1(Rn) × L2(Rn).

Theorem 1.5. Let 1 6 n 6 4 and λ > 0. Assume that p > 3 is an odd
integer, with

• p > 7 if n = 1.
• p > 5 if n = 2.
• p = 3 or 5 if n = 3.
• p = 3 if n = 4.

The wave and scattering operators associated to the nonlinear Klein–Gordon
equation (1.4) are analytic from H1(Rn) × L2(Rn) to H1(Rn) × L2(Rn).

Notation. If A and B are two real numbers, we will write A . B if there
is a universal constant C, which does not depend on varying parameters
of the problem, such that A 6 CB. If A . B and B . A, then we will
write A ∼ B.

2. An abstract result

In this section we intend to study an abstract semilinear equation, and to
present the assumptions we will make in order to conclude to the analyticity
of the nonlinear scattering operator associated to the equation. We begin
(in Section 2.1) by writing down in an informal way the equations and
the expected expansion of the solution around a given state. That will
motivate the computations of Section 2.2 in which an abstract result is
proved, showing under what assumptions on the equation one can justify
such an expansion.

2.1. Setting of the problem. Consider a first order partial differential
equation, of the form

∂tu = L(∂x)u, (t, x) ∈ R × R
n, u : R × R

n → C or R
d, d > 1.

We assume that the evolution of the solution to this linear equation is de-
scribed by a group U(t). In the semilinear equations we have in mind, the
nonlinearity will be a power law Φ of degree p > 2. Let us consider any
solution u to the following equation

∂tu = L(∂x)u + Φ(u).

Introduce the Duhamel formula associated to this equation:

(2.1) u(t) = U(t)u0 + N(u)(t),
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where we have defined

(2.2) N(u)(t) :=

∫ t

t0

U(t − s)Φ (u(s)) ds.

In scattering theory, one must think of the initial time as being infinite,
t0 = −∞, in which case u0 = u− is an asymptotic state.

Example 2.1. To make our discussion a little more concrete, we illustrate it
with the case of a nonlinear Schrödinger equation

(2.3) i∂tu +
1

2
∆u = |u|p−1u.

In this case, U(t) = ei t
2
∆, and Φ(u) = −i|u|p−1u.

Example 2.2. In the case of the nonlinear wave equation

(2.4) ∂2
t u − ∆u + up = 0,

we set u = t(u, ∂tu). Denote

ω = (−∆)1/2 ; W (t) = ω−1 sin (ωt) ; Ẇ (t) = cos (ωt) .

Then (2.4) takes the form (2.1)–(2.2), with

U(t) =

(
Ẇ (t) W (t)

−ω2W (t) Ẇ (t)

)
; Φ(u) =

(
0

−up
1

)
=

(
0

−up

)
.

The same holds in the case of the nonlinear Klein–Gordon equation

∂2
t u − ∆u + u + up = 0.

The only adaptation needed in this case consists in substituting ω with
Λ = (1 − ∆)1/2.

We suppose that this semilinear equation has global solutions in time
and that a nonlinear scattering theory is available (examples are provided
in Section 3 below). The discussion that follows is purely formal, and is
intended as a motivation to the computations carried out in the coming
paragraph.

Let us construct a solution to the equation associated with an initial data
which is a perturbation of u0, written u0 +εu0 where ε is a small parameter,
and let us write the solution uε under the form uε = u+wε. We are looking
for an expansion of the perturbation wε in powers of ε. Writing Φ(u+wε) in
terms of Φ(u) using Taylor’s formula yields easily that the equation on wε

must be of the following type:

(2.5) wε(t) = U(t)(εu0) +

p∑

j=1

∫ t

t0

U (t − s)Φj (u(s), wε(s), . . . , wε(s)) ds,

where from now on Φj(α0, α1, . . . , αj) denotes a multi-linear form, which
is (p−j)-linear in α0 and linear in its j last arguments. In general, this multi-
linearity is on R only, since in the case of the nonlinear Schrödinger equation,
conjugation is involved in the above formula. To ease the notations, we
introduce

(2.6) Nj(u,w, . . . , w)(t) =

∫ t

t0

U (t − s)Φj (u(s), w(s), . . . , w(s)) ds.
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Our aim is now to write an expansion of wε in powers of ε, wε =
∑

k∈N

εk+1wk.

Two different situations can occur, according to the value of u0: either u0

is identically zero (and the situation corresponds to the case of small data),
or it is not.

Case 1: Expansion around zero. Suppose u0 vanishes identically. In that
case the only Φj in (2.5) which is not identically zero is when j = p, and
each wk can be computed explicitly: the only non vanishing terms in the
expansion are terms of the type wk(p−1), for k ∈ N, with

w0(t) = U(t)u0,

and where the other terms of the expansion are given by an explicit algo-
rithm, of the form

w(k+1)(p−1)(t) = Gk

(
w0(t), wp−1(t), . . . , wk(p−1)(t)

)
, k > 0.

Typically, w0 and wp−1 are given by

w0(t) = U(t)u0 ; wp−1(t) = Np (w0(t), . . . , w0(t)) .

Example 2.3. In the above example of the nonlinear Schrödinger equa-
tion (2.3), this yields

w0(t, x) = ei t
2
∆u0(x),

wp−1(t, x) = −i

∫ t

−∞
ei t−s

2
∆
(
|ei s

2
∆u0(x)|p−1ei s

2
∆u0(x)

)
ds.

In other words, w0 and wp−1 solve

i∂tw0 +
1

2
∆w0 = 0 ; U(−t)w0(t)

∣∣
t=−∞

= u0.

i∂twp−1 +
1

2
∆wp−1 = |w0|

p−1w0 ; U(−t)w1(t)
∣∣
t=−∞

= 0.

It is obvious that e−i t
2
∆w0(t, x) converges as t → +∞, and part of the game

consists in showing that so does e−i t
2
∆w1(t, x).

Case 2: Expansion around any initial data. In that case all the Φj’s have to
be taken into account in (2.5), so the series will be full if u 6= 0. Moreover
the wk’s are not computed explicitly. For instance the first two terms w0

and w1 of the expansion satisfy

w0(t) = U(t)u0 + N1 (u,w0) (t) ; w1(t) = N1 (u,w1) (t)+ N2 (u,w0, w0) (t).

Example 2.4. In our Schrödinger example (2.3), this means that w0 must
solve

i∂tw0 +
1

2
∆w0 = p|u|p−1w0 + (p − 1)u(p+1)/2u(p−1)/2w0,

U(−t)w0(t)
∣∣
t=−∞

= u0.

Note that the above Hamiltonian is not self-adjoint in general. However,
this aspect will not be an obstruction to our analysis.
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Conclusion. To summarize the above considerations, the solution to the
equation

uε(t) = U(t)(εu0) + N (uε) (t)

can be expanded as

uε = ε

∞∑

k=0

εk(p−1)wk(p−1),

where the wk(p−1) satisfy linear equations and can be computed explicitly
by induction. On the other hand, the solution to the equation

uε(t) = U(t)(u0 + εu0) + N (uε) (t)

can be expanded as

uε = u + ε
∞∑

k=0

εkwk,

where again the wk satisfy linear equations, but this time are only known
implicitly (again by induction). Those expansions allow to conclude that
the scattering operator is analytic, around any given state (small or large).
In order to make those heuristical remarks rigorous, we need to prove the
convergence of the series formally obtained above. This is performed in
the next section, where we prove an abstract result stating under what
conditions the series does converge.

2.2. An abstract lemma. In this section we adapt [47, Theorem 3.2] to
the case of a perturbation around any given state (in [47], the perturbation
is around zero only).

We keep the notation of the previous paragraph. Let us define D as the
Banach space in which the data lies, and F the space in which the linear
flow transports the data. The space F is a space-time Banach space, which
we will write as F = F1 ∩ F2, where

F1 := (C ∩ L∞)(R;D)

corresponds to the energy space, while

F2 = Lq1(R;X1) ∩ Lq2(R;X2), 1 6 q1, q2 < ∞.

for some Banach spaces X1 and X2. Typically F2 should be thought of as a
Strichartz space, taking into account dispersive effects. In several applica-
tions, we will consider q1 = q2 and X1 = X2. The main assumption on the
linear evolution is that

Assumption (H1). There exists C0 > 0 such that for all g ∈ D,

‖U(·)g‖F 6 C0‖g‖D.

This assumption will always be satisfied thanks to Strichartz estimates.

Example 2.5. Suppose that we consider the nonlinear Schrödinger at the L2

level. A natural choice is then D = L2(Rn), F = (C ∩ L∞)(R;L2(Rn)) ∩
Lq(R;Lr(Rn)) for some Strichartz admissible pair (q, r) (with r = p + 1).
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As in the previous paragraph we consider a family of p-linear forms de-
noted by (Nj)16j6p, who are (p − j)-linear in the first variable and linear
in each of the j remaining variables. We recall that the family (Nj)16j6p is
constructed as follows:

(2.7) ∀(a, b), N(a + b) − N(b) =

p∑

j=1

Nj(a, b, . . . , b).

We will consider the second assumption:

Assumption (H2). There exists δ, C > 0 such that for all u, u1, . . . , uj ∈ F
and for all I interval in R, we have:

‖1t∈INj(u, u1, . . . , uj)‖F 6 C‖1t∈Iu‖
δ
F2
‖u‖p−δ−j

F

j∏

ℓ=1

‖uℓ‖F if j 6 p − 1,

‖1t∈INp(u1, . . . , up)‖F 6 C

p∑

ℓ=1

‖1t∈Iuℓ‖
δ
F2
‖uℓ‖

1−δ
F

p∏

ℓ′ 6=ℓ

‖uℓ′‖F .

Remark 2.6. The definition of F implies that if A and B are two disjoint
intervals of R, then

(2.8) ‖1t∈A∪Bf‖F ∼ ‖1t∈Af‖F + ‖1t∈Bf‖F .

Moreover Lebesgue’s theorem implies that

(2.9) ∀v ∈ F2, lim
T→+∞

‖1t>T v‖F2 = 0.

Similarly, we notice that (H2), applied to j = 1, implies that R may be
decomposed into a finite, disjoint union of K intervals (Ik)16k6K such that

(2.10) ∀u, v ∈ F, ‖1t∈Ik
N1(u, v)‖F 6

1

2
‖1t∈Ik

v‖F .

Fix u0 in D. We construct by induction a family (wk)k∈N:

w0(t) = U(t)u0 + N1(u,w0)(t),

wm =

p∑

j=1

∑

j+ℓ1+···+ℓj=m+1
ℓi>0

Nj(u,wℓ1 , . . . , wℓj
),

with the convention that
∑

∅

= 0. We have the following important lemma.

Lemma 2.7. Let u ∈ F solve (2.1) with initial data u0 ∈ D, and let u0

be a given function in D, with ‖u0‖D 6 M . Assume (H1) and (H2) hold.
Then there exists ε0 = ε0 (‖u‖F ,M) > 0 such that for 0 < ε 6 ε0, the

series
∑

k∈N

εkwk converges normally in F , and

uε := u + ε
∑

k∈N

εkwk solves: uε(t) = U(t)(u0 + εu0) + N (uε) (t).

Remark 2.8. Lemma 2.7 implies in particular the real analyticity of the wave
operators as functions of D, by considering the above result at time t = 0,
since for t0 = −∞, uε

|t=0 = W− (u0 + εu0).
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Proof. Let us start by finding a bound on w0 in F . Inequality (2.10) allows
to write that

‖1t∈Ik
w0‖F 6 ‖1t∈Ik

U(·)u0‖F + ‖1t∈Ik
N1(u,w0)‖F

6 ‖1t∈Ik
U(·)u0‖F +

1

2
‖1t∈Ik

w0‖F .

This implies directly, using (2.8), that

‖w0‖F . ‖U(·)u0‖F

so by (H1) we infer that

(2.11) ‖w0‖F . C0‖u0‖D.

We prove by induction that there exists Λ > 1 such that for all m > 1,

(Rm) ‖wm‖F 6 Λm.

We notice that if that is the case, then the convergence of the series
∑

k∈N

εkwk

in F is obvious as soon as εΛ < 1.

Let us start by proving (R1). We have by definition

w1 = N1(u,w1) + N2(u,w0, w0),

and the same argument as in the case of w0 gives

‖1t∈Ik
w1‖F 6 ‖1t∈Ik

N1(u,w1)‖F + ‖1t∈Ik
N2(u,w0, w0)‖F

6
1

2
‖1t∈Ik

w1‖F + ‖1t∈Ik
N2(u,w0, w0)‖F .

By (2.8), we infer that

‖w1‖F . ‖N2(u,w0, w0)‖F .

The continuity property (H2) then implies that

‖w1‖F . C2‖u‖
p−2
F ‖w0‖

2
F

so finally by (2.11)

‖w1‖F . C2‖u‖
p−2
F (C0‖u0‖D)2.

So we can choose Λ & 1 + C2‖u‖
p−2
F (C0‖u0‖D)2 to get

‖w1‖F 6 Λ.

Now let us turn to the hierarchy of equations on wm, for m > 2. Supposing
that (Rℓ) holds for all 1 6 ℓ 6 m − 1, let us prove (Rm). To simplify the
notation we define

Ñ(u,w0, . . . , wm−1) :=

p∑

j=2

∑

j+ℓ1+···+ℓj=m+1
ℓi>0

Nj(u,wℓ1 , . . . , wℓj
).

The same argument as above yields

‖1t∈Ik
wm‖F 6 ‖1t∈Ik

N1(u,wm)‖F + ‖1t∈Ik
Ñ(u,w0, . . . , wm−1)‖F

6
1

2
‖1t∈Ik

wm‖F + ‖1t∈Ik
Ñ(u,w0, . . . , wm−1)‖F .
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Obviously this implies, using (2.8), that

‖wm‖F . ‖Ñ(u,w0, . . . , wm−1)‖F .

By (H2) and defining C := max16j6p Cj, we get that

‖wm‖F . C

p∑

j=2

‖u‖p−j
F

∑

j+ℓ1+···+ℓj=m+1
ℓi>0

j∏

i=1

‖wℓi
‖F

. C

p∑

j=2

‖u‖p−j
F

∑

j+ℓ1+···+ℓj=m+1
ℓi>0

j∏

i=1

Λℓi(C0‖u0‖D)♯{i,ℓi=0}

. C(1 + C0‖u0‖D + ‖u‖F )p
p∑

j=2

Λm+1−j

. C(1 + C0‖u0‖D + ‖u‖F )pΛm−1

since Λ > 1. To summarize, choosing

Λ & 1 + C(1 + C0‖u0‖D + ‖u‖F )p

we have ‖wm‖F 6 Λm, and (Rm) is proved for all m > 1. As remarked
above, this enables us to infer that as soon as ε is small enough, the series
of general term εkwk is convergent.

To conclude the proof of the lemma, let us prove that the solution of

(2.12) uε(t) = U(t)(u0 + εu0) + N (uε) (t)

satisfies

uε = u + ε
∑

k∈N

εkwk.

We show that the solution uε of (2.12) satisfies

lim
n→∞

∥∥∥∥∥u
ε − u − ε

n∑

k=0

εkwk

∥∥∥∥∥
F

= 0,

by writing the equation satisfied by w̃ε
n := uε − u − ε

∑n
k=0 εkwk. It is here

that the exact definition of the multi-linear operators Nj given in (2.7) is

used. First, we know that for εΛ < 1, the series
∑

εkwk converges normally
in F . Therefore, w̃ε

n has a limit in F as n → ∞, provided that ε is fixed
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such that εΛ < 1. On the other hand, by the definition of w̃ε
n,

w̃ε
n = N

(
u + ε

n∑

k=0

εkwk + w̃ε
n

)
− N(u)

− ε

n∑

k=0

εk
p∑

j=1

∑

j+ℓ1+···+ℓj=k+1
ℓi>0

Nj(u,wℓ1 , . . . , wℓj
)

=

p∑

j=1

Nj


u, ε

n∑

ℓ1=0

εℓ1wℓ1 + w̃ε
n, . . . , ε

n∑

ℓj=0

εℓjwℓj
+ w̃ε

n




− ε

n∑

k=0

εk
p∑

j=1

∑

j+ℓ1+···+ℓj=k+1
ℓi>0

Nj(u,wℓ1 , . . . , wℓj
)

From the above estimates, we can write

p∑

j=1

Nj


u, ε

n∑

ℓ1=0

εℓ1wℓ1 + w̃ε
n, . . . , ε

n∑

ℓj=0

εℓjwℓj
+ w̃ε

n


 = Gn (w̃ε

n)

+

p∑

j=1

Nj


u, ε

n∑

ℓ1=0

εℓ1wℓ1 , . . . , ε

n∑

ℓj=0

εℓjwℓj


 ,

where Gn is such that we can decompose R as a finite, disjoint union of
intervals Jq, 1 6 q 6 Q, independent of n, such that

‖1t∈JqGn (w̃ε
n)‖F 6

1

2
‖1t∈Jq w̃

ε
n‖F .

We infer

w̃ε
n = Gn (w̃ε

n) +

p−1+pn∑

k=n+1

ε1+k
p∑

j=1

∑

j+ℓ1+···+ℓj=k+1
06ℓi6n

Nj(u,wℓ1 , . . . , wℓj
).

Using (2.8) and summing over the intervals Jq, we conclude

‖w̃ε
n‖F = O

(
(εΛ)n+2

)
.

Since εΛ < 1 in order for all the above estimates to hold, Lemma 2.7 follows
from uniqueness for (2.12) in F , which in turn is a consequence of (H2). �

This result allows us to infer the analyticity of the scattering operator, as
shown in the following lemma.

Lemma 2.9. Let the assumptions (H1) and (H2) be satisfied. Assume
furthermore that U(·) is uniformly continuous in D. Then U(−t)u(t) con-
verges to a limit u+ in D as t → +∞, and for all k > 0, U(−t)wk(t) has

a limit in D, denoted by w+
k . Moreover, for ε sufficiently small, the series∑

k∈N
εkw+

k converges normally in D and the function

uε
+ := u+ + ε

∑

k∈N

εkw+
k
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is the limit of U(−t)uε(t) in D as t → +∞.
In particular, the scattering operator is analytic from D to D.

Proof. Let us start by proving the existence of u+. We have

‖U(−t2)u(t2) − U(−t1)u(t1)‖D =

∥∥∥∥
∫ t2

t1

U(−s)Φ(u) ds

∥∥∥∥
D

=
∥∥1[t1,t2]U(−t)N(u)

∥∥
D

.
∥∥1[t1,t2]N(u)

∥∥
F1

6
∥∥1[t1,t2]N(u)

∥∥
F

.
∥∥1[t1,t2]u

∥∥δ

F2
‖u‖p−δ

F ,

by assumption (H2). We conclude by the fact that the right-hand side goes
to zero as t1, t2 go to infinity.

Now we prove the result on U(−t)wk(t) by induction on k. For k = 0 we
have, in the same fashion as above,

‖U(−t2)w0(t2) − U(−t1)w0(t1)‖D =
∥∥1[t1,t2]U(−t)N1(u,w0)

∥∥
D

.
∥∥1[t1,t2]N1(u,w0)

∥∥
F

.
∥∥1[t1,t2]u

∥∥δ

F2
‖u‖p−1−δ

F ‖w0‖F ,

since w0 belongs to F due to (2.11). We conclude as above.
Now suppose that for m > 1 and for all 0 6 ℓ 6 m− 1, U(−t)wℓ(t) has a

limit. We prove the result for U(−t)wm(t). We have as above

‖U(−t2)wm(t2) − U(−t1)wm(t1)‖D 6

6

p∑

j=1

∑

j+ℓ1+···+ℓj=m+1
ℓi>0

∥∥1[t1,t2]U(−t)Nj(u,wℓ1 , . . . , wℓj
)
∥∥

D

.

p∑

j=1

∑

j+ℓ1+···+ℓj=m+1
ℓi>0

∥∥1[t1,t2]Nj(u,wℓ1 , . . . , wℓj
)
∥∥

F

.

p−1∑

j=1

∑

j+ℓ1+···+ℓj=m+1
ℓi>0

∥∥1[t1,t2]u
∥∥δ

F2
‖u‖p−δ−j

F

j∏

k=1

‖wℓk
‖F

+
∑

p+ℓ1+···+ℓp=m+1
ℓi>0

p∑

k=1

∥∥1[t1,t2]uℓk

∥∥δ

F2
‖uℓk

‖1−δ
F

∏

k′ 6=k

‖wℓk′
‖F .

The result follows as previously.
The convergence of the series defining uε

+ is due to Lemma 2.7, and
Lemma 2.9 follows directly. �

2.3. An easy and useful adaptation. For nonlinear Schrödinger and
wave equations, Lemmas 2.7 and 2.9 are well adapted to study the wave
and scattering operators in energy spaces. On the other hand, as recalled in
the introduction, weighted Sobolev spaces are very useful in scattering the-
ory for these equations. Typically, for the nonlinear Schrödinger equation,
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the natural energy space is H1(Rn), but more results concerning scattering
are available in Σ, defined in the introduction. In the case of the energy
space H1, we will see that the natural choice for the space F is

F = C ∩ L∞
(
R;H1(Rn)

)
∩ L

4p+4
n(p−1)

(
R;W 1,p+1(Rn)

)
,

which is of the form considered in §2.2, with X = W 1,p+1(Rn). When
working on Σ, the natural choice for F is

F̃ = F ∩
{
f ∈ C(R; Σ), J(t)f ∈ L

4p+4
n(p−1)

(
R;Lp+1(Rn)

)}
,

where J(t) = x + it∇ is the Galilean operator. It satisfies the important
property J(t) = U(t)xU(−t). The situation is fairly similar in the case of
the nonlinear wave equation.

It is therefore natural to adapt the framework of §2.2. For the same
spaces D and F , introduce

F̃ = F ∩ F3, where ‖f‖F3 = ‖Jf‖L∞(R;E) + ‖Jf‖Lq(R;Y ),

for some Banach spaces E and Y , and some operator J depending on time.

Define the space D̃ and F̃2 by their norms

‖g‖D̃ = ‖g‖D + ‖J(0)g‖E ; ‖f‖F̃2
= ‖f‖F2 + ‖Jf‖Lq(R;Y ).

It is easy to check that Lemmas 2.7 and 2.9 remain valid if F is replaced

by F̃ , provided that (H1) and (H2) are replaced by:

(H̃1) ∃C0, ∀g ∈ D̃, ‖U(·)g‖
F̃

6 C0‖g‖D̃
.

and

Assumption (H̃2). There exists δ, C > 0 such that for all u, u1, . . . , uj ∈ F̃
and for all I interval in R, we have:

‖1t∈INj(u, u1, . . . , uj)‖F̃ 6 C‖1t∈Iu‖
δ
F̃2
‖u‖p−δ−j

F̃

j∏

ℓ=1

‖uℓ‖F̃ if j 6 p − 1,

‖1t∈INp(u1, . . . , up)‖F̃ 6 C

p∑

ℓ=1

‖1t∈Iuℓ‖
δ
F̃2
‖uℓ‖

1−δ

F̃

p∏

ℓ′ 6=ℓ

‖uℓ′‖F̃ .

In the applications, we shall also use the following lemma, whose proof
follows the same lines as the proofs of Lemmas 2.7 and 2.9, and is left out.

Lemma 2.10. Let u ∈ F̃ solve (2.1) with initial data u0 ∈ D̃, and let u0

be a given function in D̃, with ‖u0‖D̃ 6 M . Assume (H̃1) and (H̃2) hold.
Then there exists ε0 = ε0 (‖u‖F ,M) > 0 such that for 0 < ε 6 ε0, the

series
∑

k∈N

εkwk converges normally in F̃ , and

uε := u + ε
∑

k∈N

εkwk solves: uε(t) = U(t)(u0 + εu0) + N (uε) (t).

Assume furthermore that U(·) is uniformly continuous in D̃. Then U(−t)u(t)

converges to a limit u+ in D̃ as t → +∞, and for all k > 0, U(−t)wk(t) con-

verges to w+
k in D̃. Moreover, for ε sufficiently small, the series

∑
k∈N

εkw+
k
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converges in D̃ and the function

uε
+ := u+ + ε

∑

k∈N

εkw+
k

is the limit of U(−t)uε(t) in D̃ as t → +∞.

In particular, the scattering operator is analytic from D̃ to D̃.

3. Application to semilinear dispersive equations

3.1. The Schrödinger equation.

3.1.1. General presentation. We consider the nonlinear Schrödinger equa-
tion with gauge invariant nonlinearity presented in the introduction:

(3.1) i∂tu +
1

2
∆u = |u|p−1u, (t, x) ∈ R × R

n.

In order for the nonlinearity to be analytic, we assume that p is an odd
integer, with p > 3. Note that compared to Eq. (1.1), we have imposed
the value λ = +1 for the coupling constant. We consider defocusing nonlin-
earities, for which the scattering theory is much richer than in the focusing
case, where the existence of solitons and finite time blow-up phenomenon
may prevent the solution u from scattering at infinity.

Two different frameworks seem particularly well suited to study scattering
for (3.1): H1(Rn), and

Σ = {f ∈ H1(Rn), x 7→ |x|f(x) ∈ L2(Rn)}.

We apply Lemmas 2.7 and 2.9 in the first case, and Lemma 2.10 in the
second case. Note that another framework should be well suited as well,
which is the L2 case. If p > 1 + 4/n, then the nonlinearity in (3.1) is
L2-supercritical: the results of [23] show that a scattering theory in L2

with continuous dependence on the data is hopeless. If p < 1 + 4/n, then
scattering is not known at the L2 level, and does fail if p 6 1 + 2/n ([13,
26, 61, 62]). In the L2-critical case p = 1 + 4/n, scattering is known for
small data [20]. Note that p = 1 + 4/n is an odd integer only when n = 1
or 2. For n = 1, scattering for large L2 data is not known so far. For n = 2,
scattering for large L2 radial data was proved in [43]. To avoid an endless
numerology, we leave out the discussion on the L2 case at this stage.

Note also that the case of non-Euclidean geometries could be considered.
In [12], the existence of scattering operators was established in H1 for so-
lutions to the nonlinear Schrödinger equation on hyperbolic space, in space
dimension three, for energy-subcritical nonlinearities: the nonlinearity is an-
alytic if it is cubic (and only in that case, since the energy-critical case has
not been treated so far). Also, from the results in [40], scattering in H1 is
available on the two-dimensional hyperbolic space. The analyticity of wave
and scattering operators in these cases can then be established by the same
argument as in §3.1.2 below.
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3.1.2. The case of H1. For p > 1+4/n, with p < 1+4/(n− 2) when n > 3,
the existence and continuity of wave operators was established in [29]. If we
assume moreover that p > 1+4/n, then asymptotic completeness holds: this
was proved initially in [29] for n > 3 (see also [63] for a simplified proof), and
in [51, 53] for n = 1, 2 (see also [19]). We assume 1+4/n < p < 1+4/(n−2).
In order to prove the second part of Theorem 1.2 in the energy-subcritical
case, it suffices to exhibit spaces D and F2 such that (H1) and (H2) are
satisfied. We consider the energy-critical case p = 1+4/(n−2) in a different
paragraph, since the proof is slightly different.

We set naturally D = H1(Rn), hence F1 = (C ∩ L∞)(R;H1(Rn)). The
space F2 is motivated by Strichartz estimates:

F2 = L
4p+4

n(p−1)
(
R;W 1,p+1(Rn)

)
.

Note that the pair (q, r) = ( 4p+4
n(p−1) , p + 1) is L2-admissible:

2

q
= n

(
1

2
−

1

r

)
=: δ(r), 2 6 r 6

2n

n − 2
, (n, q, r) 6= (2, 2,∞).

The fact that (H1) is satisfied is a consequence of homogeneous Strichartz
inequalities ([30, 42]). To check (H2), we use inhomogeneous Strichartz
inequalities, and the following algebraic lemma:

Lemma 3.1. Let p > 1 + 4/n, with p < 1 + 4/(n − 2) if n > 3. Set

(q, r) =

(
4p + 4

n(p − 1)
, p + 1

)
.

Then (q, r) is admissible. Set

θ =
p + 1

p − 1
×

n(p − 1) − 4

n(p − 1)
.

Then θ ∈ [0, 1[. Define s = r = p + 1 and k = q/(1 − θ). Obviously,

1

s
=

1 − θ

r
+

θ

p + 1
;

1

k
=

1 − θ

q
+

θ

∞
,

and we have:
1

r′
=

1

r
+

p − 1

s
, and

1

q′
=

1

q
+

p − 1

k
.

Recall that the nonlinear terms Nj stem from an inhomogeneous term in
integral form, (2.6). For a time interval I ⊂ R, inhomogeneous Strichartz
estimates yield, for 1 6 j 6 p,

‖1t∈INj (u, u1, . . . , uj)‖L∞(R;L2)∩Lq(R;Lr) 6 C

∥∥∥∥∥1t∈I |u|
p−j

j∏

ℓ=1

|uℓ|

∥∥∥∥∥
Lq′(R;Lr′)

,
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for some constant C independent of I, and u, u1, . . . , uj ∈ F . Using Lemma 3.1,
we infer, if j 6 p − 1:

‖1t∈INj (. . .)‖L∞L2∩LqLr . ‖1t∈Iu‖LqLr ‖1t∈Iu‖
p−1−j
LkLs

j∏

ℓ=1

‖1t∈Iuℓ‖LkLs

. ‖1t∈Iu‖LqLr ‖u‖
(1−θ)(p−1−j)
LqLr ‖u‖

θ(p−1−j)
L∞Lp+1 ×

×

j∏

ℓ=1

‖uℓ‖
1−θ
LqLr ‖uℓ‖

θ
L∞Lp+1

Using the embedding H1(Rn) →֒ Lp+1(Rn), we deduce:

‖1t∈INj (. . .)‖L∞L2∩LqLr . ‖1t∈Iu‖LqLr ‖u‖
p−1−j
F

j∏

ℓ=1

‖uℓ‖F .

The estimate for Np in L∞L2 ∩ LqLr follows from the same computation.
To estimate Nj in L∞H1 ∩ LqW 1,r, we mimic the above computation. To
simplify the presentation, and to explain why Assumption (H2) is stated in
such an apparently intricate way, we consider only the case j = 1. All the
other cases can be deduced in the same fashion. We have obviously

|1t∈I∇N1 (u, u1)| .
∣∣1t∈Iu

p−2u1∇u
∣∣+
∣∣1t∈Iu

p−1∇u1

∣∣ .

Proceeding as above, we consider the L∞L2 ∩ LqLr norm, and use Hölder’s
inequality, as suggested by Lemma 3.1. However, we do not have the same
room to balance the different Lebesgue’s norms: we do not want to use
Sobolev embedding to control the derivatives. We find

‖1t∈I∇N1 (u, u1)‖L∞L2∩LqLr . ‖∇u‖LqLr ‖1t∈Iu‖
p−2
LkLs ‖1t∈Iu1‖LkLs

+ ‖∇u1‖LqLr ‖1t∈Iu‖
p−1
LkLs

. ‖u‖F ‖1t∈Iu‖
(1−θ)(p−2)
LqLr ‖u‖

θ(p−2)
L∞Lp+1 ‖u1‖F

+ ‖u1‖F ‖1t∈Iu‖
(1−θ)(p−1)
LqLr ‖u‖

θ(p−1)
L∞Lp+1

. ‖1t∈Iu‖
1−θ
LqLr ‖u‖

p+θ−2
F ‖u1‖F ,

where we have used the same estimates as above (recall that p > 3). There-
fore, Assumption (H2) is satisfied, with δ = 1− θ. Note that δ > 0 because
we consider the energy-subcritical case, p < 1 + 4/(n − 2).

Therefore, we can apply Lemmas 2.7 and 2.9 with F as above. This yields
the second part of Theorem 1.2, except for the energy-critical case. Note
that in the following two cases:

• n = 1 and p = 5 (quintic nonlinearity),
• n = 2 and p = 3 (cubic nonlinearity),

which are L2 critical p = 1 + 4/n, Lemma 2.7 shows that the wave oper-
ators are analytic on H1(Rn). However, scattering in the energy space for
arbitrary data is not known in these cases.
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3.1.3. The case of Σ. To overcome the drawback mentioned at the end of
the previous paragraph, we shall consider the weighted Sobolev space Σ.
Generally speaking, working in Σ makes it possible to decrease the admissi-
ble values for p in order to have scattering, from p > 1 + 4/n, to p > p0(n),
for some 1 + 2/n < p0(n) < 1 + 4/n; see [22, 27, 36, 54]. However, the gain
in the present context is rather weak, since we consider only integer values
for p: the gain corresponds exactly to the two cases pointed out above.

As suggested in §2.3, we consider the space

F̃ = F ∩
{
f ∈ C(R; Σ), J(t)f ∈ L

4p+4
n(p−1)

(
R;Lp+1(Rn)

)}
,

where J(t) = x + it∇, and F was defined in the previous paragraph. We
can then mimic the above computation, in order to apply Lemma 2.10. We
recall two important properties of the operator J which make it possible to

check Assumptions (H̃1) and (H̃2):

• It commutes with the linear Schrödinger group: J(t) = U(t)xU(−t).
• It acts on gauge invariant nonlinearities like a derivative, since

J(t) = itei|x|2/(2t)∇
(
e−i|x|2/(2t)·

)
, ∀t 6= 0.

Lemma 2.10 and the results of [27] yield Theorem 1.2 in all the cases, but
the energy critical one, which is considered in the next paragraph.

3.1.4. The energy-critical case. To complete the proof of Theorem 1.2, two
cases remain, which correspond to the case p = 1 + 4/(n − 2):

• n = 3 and p = 5.
• n = 4 and p = 3.

Global existence and scattering for arbitrary data in H1(Rn) were estab-
lished in [24] and [57], respectively. A crucial tool in the energy critical case

is the existence of Strichartz estimates for Ḣ1-admissible pairs, as opposed
to the notion of L2-admissible pairs used above. It is fairly natural that our
definition for F is adapted in view of this notion. Recall that for n > 3, a
pair (q, r) is Ḣ1-admissible if

2

q
+

n

r
=

n

2
− 1.

Denote

γ0 = 2 +
4

n
and γ1 = 2 +

8

n − 2
.

The pair (γ0, γ0) is L2-admissible, and (γ1, γ1) is Ḣ1-admissible. We set

F = F1 ∩ F2, with F1 = (C ∩ L∞)
(
R;H1(Rn)

)
, and

F2 = Lγ0
(
R;W 1,γ0(Rn)

)
∩ Lγ1(R × R

n).

With such a space F , Assumption (H1) is satisfied, thanks to Strichartz

estimates, along with the Sobolev embedding Ḣ1(Rn) →֒ L2n/(n−2)(Rn). To
check that Assumption (H2) is satisfied as well, we distinguish the two cases
we consider, for a more convenient numerology.
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The quintic case, with n = 3. In this case, we have γ0 = 10/3 and γ1 = 10.
For u1, . . . , u5 ∈ F , we have, for k = 0 or 1, thanks to Strichartz estimates
and Hölder’s inequality:

∥∥∥∇k

∫ t

t0

U(t − s) (u1 × . . . × u5) (s)ds
∥∥∥

L∞(I;L2)∩L10/3(I×Rn)

.
∥∥∥∇k (u1 × . . . × u5)

∥∥∥
L10/7(I×Rn)

.

5∑

j=1

∥∥∥∇kuj

∥∥∥
L10/3(I×Rn)

∏

ℓ 6=j

‖uℓ‖L10(I×Rn) .

5∏

j=1

‖1t∈Iuj‖F2
.

We also have, in view of Sobolev embedding,

∥∥∥
∫ t

t0

U(t − s) (u1 × . . . × u5) (s)ds
∥∥∥

L10(I×Rn)

.
∥∥∥
∫ t

t0

U(t − s) (u1 × . . . × u5) (s)ds
∥∥∥

L10(I;W 1,30/13)

.

1∑

k=0

∥∥∥∇k (u1 × . . . × u5)
∥∥∥

L10/7(I×Rn)
,

thanks to Strichartz estimates. Using the above computation, we infer that
Assumption (H2) is satisfied.

The cubic case, with n = 4. In this case we have γ0 = 3 and γ1 = 6. For
u1, u2, u3 ∈ F , we have, for k = 0 or 1, thanks to Strichartz estimates and
Hölder’s inequality:

∥∥∥1t∈I∇
k

∫ t

t0

U(t − s) (u1u2u3) (s)ds
∥∥∥

L∞

t L2
x∩L3

t,x

.
∥∥∥∇k (u1u2u3)

∥∥∥
L3/2(I×Rn)

.

3∑

j=1

∥∥∥∇kuj

∥∥∥
L3(I×Rn)

∏

ℓ 6=j

‖uℓ‖L6(I×Rn) .

3∏

j=1

‖1t∈Iuj‖F2
.

We also have, in view of Sobolev embedding,

∥∥∥
∫ t

t0

U(t − s) (u1u2u3)(s)ds
∥∥∥

L6(I×Rn)

.
∥∥∥
∫ t

t0

U(t − s) (u1u2u3)(s)ds
∥∥∥

L6(I;W 1,12/5)
.

1∑

k=0

∥∥∥∇k (u1u2u3)
∥∥∥

L3(I×Rn)
,

thanks to Strichartz estimates. Using the above computation, we infer that
Assumption (H2) is satisfied.

Finally, it is easily checked that we can replace H1 with Σ, as in the
previous paragraph. This completes the proof of Theorem 1.2.

Remark 3.2. At the level of H1, it is possible to have a unified presenta-
tion, that is, without distinguishing the H1-subcritical and H1-critical cases.
The price to pay consists in considering Besov spaces for the definition of
F2, instead of Sobolev spaces. We have chosen to work in Sobolev for the
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simplicity and the explicit form of the computations. A more synthetic
approach would consist in setting

F2 = Lγ0
(
R;B1

γ0,2(R
n)
)
∩ Lγ1 (R × R

n) ,

with γ0 = 2 +
4

n
and

p − 1

γ1
+

1

γ0
=

1

γ′
0

.

Sobolev and Strichartz inequalities are replaced by

‖u‖L∞(R;H1) + ‖u‖F2 6 C

(
‖u0‖H1 +

∥∥∥i∂tu +
1

2
∆u
∥∥∥

Lγ′
0

(
R;B1

γ′0,2
(Rn)

)
)

,

an estimate established in [51, §3]. Note that in the energy-critical case
p = 1+ 4

n−2 , this is the estimate which we have used, up the replacing Besov

spaces B1
p,2 with W 1,p (a modification which is non-trivial since p 6= 2).

3.2. The Hartree equation. We now consider the Hartree equation (1.2)
with a defocusing nonlinearity, λ = +1, in space dimension n > 3:

(3.2) i∂tu +
1

2
∆u =

(
|x|−γ ∗ |u|2

)
u.

Note that the nonlinearity u 7→
(
|x|−γ ∗ |u|2

)
u is always a smooth homo-

geneous (cubic) function of u. We assume 2 6 γ < min(4, n). A complete
scattering theory is available in the space Σ; see [28, 37]. If we assume more-
over γ > 2, then Σ can be replaced by H1(Rn); see [34, 50]. The counterpart
of Lemma 3.1 is:

Lemma 3.3. Let n > 3 and 2 6 γ < min(4, n). Set

(q, r) =

(
8

γ
, 4n

2n − γ

)
.

Then (q, r) is L2-admissible. Set θ = 2− 4/γ. Then θ ∈ [0, 1[. Define s = r
and k = q/(1 − θ). Obviously,

1

s
=

1 − θ

r
+

θ

r
;

1

k
=

1 − θ

q
+

θ

∞
,

and we have s <
2n

n − γ
, with

1

r′
=

1

r
+

2

s
+

γ

n
− 1 and

1

q′
=

1

q
+

2

k
.

We can then proceed as in the energy-subcritical case for the nonlinear
Schrödinger equation (3.1), in order to prove Theorem 1.3. The only dif-
ference is the use of the Hardy–Littlewood–Sobolev inequality. Since the
computations are very similar to those presented in §3.1, we shall be rather
sketchy, and detail only the most important computation. We set

F1 = (C ∩ L∞)(R;H1(Rn)) ; F2 = Lq
(
R;W 1,r(Rn)

)
,

where (q, r) is now given by Lemma 3.3. It follows from Strichartz estimates
that (H1) is satisfied. For t ∈ R and I an interval in R, we have, for ℓ = 0
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or 1:∥∥∥∥∥1t∈I∇
ℓ

∫ t

t0

U(t − τ)
((
|x|−γ ∗ (u1u2)

)
u3

)
(τ)dτ

∥∥∥∥∥
L∞

t L2
x∩Lq

t Lr
x

.
∥∥∥1t∈I∇

ℓ
(
|x|−γ ∗ (u1u2)

)
u3

∥∥∥
Lq′

t Lr′
x

.
∥∥∥‖u1∇

ℓu2‖L
s/2
x

‖u3‖Lr
x

∥∥∥
Lq′

t (I)
+
∥∥∥‖u2∇

ℓu1‖L
s/2
x

‖u3‖Lr
x

∥∥∥
Lq′

t (I)

+
∥∥∥‖u1u2‖L

s/2
x

‖∇ℓu3‖Lr
x

∥∥∥
Lq′

t (I)

.

3∑

j=1

∥∥∥‖∇ℓuj‖Lr
x

∏

j′ 6=j

‖uj′‖Lr
x

∥∥∥
Lq′

t (I)

where we have used Hölder and Hardy–Littlewood–Sobolev inequalities in
the space variable. Using Hölder’s inequality in time, we can estimate each
term of the above sum by:∥∥∥∇ℓuj

∥∥∥
Lq(I;Lr)

∏

j′ 6=j

‖uj′‖Lk(I;Lr)

.
∥∥∥∇ℓuj

∥∥∥
Lq(I;Lr)

∏

j′ 6=j

(
‖uj′‖

1−θ
Lq(I;Lr)‖uj′‖L∞(I;Lr)

)

.

3∏

j=1

‖1t∈Iuj‖
1−θ
F2

‖uj‖
θ
F ,

where we have used the embedding H1 →֒ Lr. This estimate suffices to check
that Assumption (H2) is satisfied (with δ = 1 − θ > 0), hence Theorem 1.3
in the case of H1(Rn). In the case of Σ (which allows to consider the value
γ = 2), one uses the operator J(t) = x + it∇ like in §3.1.3, to complete the
proof of Theorem 1.3.

3.3. The wave equation. We now turn to the case of the nonlinear wave
equation

(3.3) ∂2
t u − ∆u + up = 0, (t, x) ∈ R × R

n.

In order for the nonlinearity to be analytic, we assume that p is an integer.
Moreover, for the anti-derivative of the nonlinearity to have a constant sign,
we need to assume that p is odd; without this assumption, scattering for
arbitrary large data does not hold.

The existence of wave and scattering operators in

Σ2 = {(f, g) ∈ H1(Rn) × L2(Rn), x 7→ |x|∇f(x), x 7→ |x|g(x) ∈ L2(Rn)}

was established in [31], under the assumption

1 +
4

n − 1
6 p < 1 +

4

n − 2
.

As a matter of fact, some values for p < 1+4/(n−1) are also allowed there.
See also [6] and [39] for n = p = 3. With these results, we could certainly
prove that the wave and scattering operators are analytic from Σ2 to Σ2,
for 2 6 n 6 4 and
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• p > 5 if n = 2.
• p = 3 or 5 if n = 3.
• p = 3 if n = 4.

We leave out the discussion at this stage, since the estimates based on the
conformal decay are fairly long to write.

The existence of wave and scattering operators in Ḣ1(Rn) × L2(Rn) was
established in [9, 41, 59, 60] for the energy-critical case

p = 1 +
4

n − 2
, n = 3, 4.

(The space dimensions 3 and 4 are the only ones for which the energy-critical
nonlinearity corresponds to an odd integer p.) As stated in Theorem 1.4, we
shall content ourselves with these two cases. Note also that from [32], the
existence of scattering operators in the energy space is known for energy-
subcritical nonlinearities. However, this range for p does not include odd
integers, and we are left with the above two cases. Also, if we considered only
small data scattering, then more results would be available. We choose not
to distinguish too many cases, and restrict our attention to the framework
of Theorem 1.4.

Naturally, we have D = Ḣ1(Rn) × L2(Rn), and

F1 = (C ∩ L∞)(R; Ḣ1(Rn)) × (C ∩ L∞)(R;L2(Rn)).

As in the case of the Schrödinger equations studied above, the space F2 is
defined using Strichartz estimates: we set

F2 =

{
L5
(
R;L10(R3)

)
× L∞

(
R;L2(R3)

)
if n = 3,

L3
(
R;L6(R4)

)
× L∞

(
R;L2(R4)

)
if n = 4.

Recall that for n > 3, and (q, r) satisfying

1

q
+

n

r
=

n

2
− 1, 6 6 r < ∞ if n = 3,

2n

n − 2
6 r 6

2n + 2

n − 3
if n > 4,

Strichartz estimates yield (see e.g. [33, 42])

‖u‖Lq(I;Lr) + ‖u‖L∞(I;Ḣ1) + ‖∂tu‖L∞(I;L2)

6 Cr

(∥∥u|t=0

∥∥
Ḣ1 +

∥∥∂tu|t=0

∥∥
L2 +

∥∥(∂2
t − ∆

)
u
∥∥

L1(I;L2)

)
,

for some constant Cr independent of the time interval I. Note that the pairs
(5, 10) and (3, 6) are admissible for n = 3 and n = 4, respectively.

In the case n = 3, and in view of Example 2.2, it is enough to control
‖u1u2u3u4u5‖L1(I;L2) by the product of the ‖uj‖L5(I;L10), to verify Assump-
tion (H2). Such an estimate if of course trivially satisfied. Similarly, for
n = 4, ‖u1u2u3‖L1(I;L2) is controlled by the product of the ‖uj‖L3(I;L6).
Therefore, Theorem 1.4 follows from Lemmas 2.7 and 2.9.

3.4. The Klein–Gordon equation. We conclude with the case of the
Klein–Gordon equation

(3.4) ∂2
t u − ∆u + u + up = 0, (t, x) ∈ R × R

n.
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As above, we assume that p is an odd integer. The natural energy space
is D = H1(Rn) × L2(Rn). For n > 3, scattering in the energy space was
established in [16] for

1 +
4

n
< p 6 1 +

4

n − 1
,

and in [30] for

1 +
4

n
< p < 1 +

4

n − 2
.

The case of the low dimensions n = 1 or 2 was treated by K. Nakanishi
[51] (see also [53]), for p > 1 + 4/n. The existence of wave and scattering
operators in the energy-critical case p = 1 + 4/(n − 2) in space dimension
n > 3 was established in [52]. All in all, scattering in the energy space is
known for p > 1+4/n, and p 6 1+4/(n− 2) when n > 3. Such values for p
corresponding to an odd integer are exactly those considered in Theorem 1.5.

As pointed out in [31], this numerology is the same as in the case of
the nonlinear Schrödinger equation (3.1). The proof of Theorem 1.5 follows
essentially the same lines as the proof of Theorem 1.2, up to the following
adaptation. For the space F1, we keep

F1 = (C ∩ L∞)
(
R;H1(Rn)

)
.

For the space F2, Sobolev spaces are replaced by Besov spaces:

F2 = Lγ0

(
R;B

1/2
γ0,2(R

n)
)
∩ Lγ1 (R × R

n) ,

with γ0 = 2 +
4

n
and

p − 1

γ1
+

1

γ0
=

1

γ′
0

.

Equation (3.9) in [51] yields the analogue of the estimate recalled in Re-
mark 3.2:

‖u‖L∞(R;H1)+‖∂tu‖L∞(R;L2) + ‖u‖F2

6 C

(
‖u0‖H1 + ‖u1‖L2 +

∥∥∥∂2
t u − ∆u + u

∥∥∥
Lγ′

0

(
R;B

1/2

γ′0,2
(Rn)

)
)

,

The proof of Theorem 1.5 then follows the same lines as the proof of Theo-
rem 1.2, up to the technical modifications which can be found in [51].

4. Some consequences

4.1. Invariant skew-symmetric forms. Let

(4.1) ωwave (u1, u2) (t) :=

∫

Rn

(u1∂tu2 − u2∂tu1) (t, x)dx.

It is proved in [49] that for the cubic three-dimensional Klein–Gordon equa-
tion (Eq. (3.4) with n = p = 3), ωwave induces a skew-symmetric differential
form on some space F (based on the energy space), which is invariant under
S. In [8], the space F was replaced by the energy space, in the small data
case. Following the proof of [49], we have the following extension:
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Proposition 4.1. For m > 0, consider the equation (wave or Klein–Gordon)

∂2
t u − ∆u + m2u + up = 0.

Then under the algebraic assumptions of Theorem 1.4 (case m = 0) or
Theorem 1.5 (case m > 0), ωwave induces a skew-symmetric differential
form on the energy space, which is invariant under S.

Sketch of the proof. Since the proof follows the same lines as in [49], we shall
simply recall the main steps. At least for smooth solutions, we compute

d

dt
ωwave(u1, u2) =

∫

Rn

(u2u
p
1 − u1u

p
2) dx.

If u1, u2 and u3 solve the above equation, then using the above relation and
expanding

ωwave (u2 − u1, u3 − u1) = ωwave (u2, u3) + ωwave (u1, u2) − ωwave (u1, u3) ,

we find

(4.2)

d

dt
ωwave (u2 − u1, u3 − u1) =

∫ ((
up−1

2 − up−1
3

)
(u2 − u1)u3

)
dx

+

∫ ((
up−1

2 − up−1
1

)
(u3 − u2)u1

)
dx.

Elementary computations show that (u1 − u2)(u1 − u3)(u2 − u3) can be
factored out in the above expression. Now let u−, v− and w− be in the
energy space (whose definition varies whether m = 0 or m > 0). In (4.2),
we consider u1, u2 and u3 with asymptotic states as t → −∞ given by u−,
u− +εv− and u− +εw−, respectively. The results of Section 2 show that the
image of v− under dS(u−) is v+, which is the asymptotic state as t → +∞
of v, satisfying

∂2
t v − ∆v + m2v + pup−1v = 0,

with asymptotic state v− as t → −∞ (v+ = v− if u ≡ 0: S is almost the
identity near the origin; v+ is implicit otherwise, see §2.1). Integrating (4.2)
over all t, we get:

ωwave ((u2 − u1)+, (u3 − u1)+) − ωwave (εv−, εw−) = O
(
ε3
)
,

from the factorization mentioned above. Simplifying by ε2, the result follows
by letting ε → 0. �

In the case of the Schrödinger operator, introduce

ωSchröd (u1, u2) (t) = Im

∫

Rn

(u1u2) (t, x)dx.

Like above, if u1 and u2 solve

i∂tuj +
1

2
∆uj = Fj ,

then we have:

d

dt
ωSchröd (u1, u2) = Re

∫

Rn

(
F 1u2 − u1F2

)
.
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If u1, u2 and u3 solve (3.1), we find:

d

dt
ωSchröd (u2 − u1, u3 − u1) =

∫ (
|u2|

p−1 − |u3|
p−1
)
Re(u2 − u1)u3

+

∫ (
|u2|

p−1 − |u1|
p−1
)
Re(u3 − u2)u1.

Viewing the right hand side as a polynomial in three unknowns u1, u2 and
u3, we note that it is zero for u1 = u2, u3 = u1 and u2 = u3. We can then
use the same argument as above, to claim that it yields a contribution of
order O(ε3). Proceeding as above, we have:

Proposition 4.2. Consider the equation

i∂tu +
1

2
∆u = |u|p−1u.

Under the algebraic assumptions of Theorem 1.2, ωSchröd induces a skew-
symmetric differential form on H1(Rn) (or Σ), which is invariant under S,
the scattering operator associated to the above equation.

Finally, if u1, u2 and u3 solve

i∂tuj +
1

2
∆uj =

(
V ∗ |uj |

2
)
uj ,

then we find

d

dt
ωSchröd (u2 − u1, u3 − u1) =

∫ (
V ∗

(
|u2|

2 − |u3|
2
))

Re(u2 − u1)u3

+

∫ (
V ∗

(
|u2|

2 − |u1|
2
))

Re(u3 − u2)u1.

Proposition 4.3. Consider the equation

i∂tu +
1

2
∆u =

(
|x|−γ ∗ |u|2

)
u.

Under the algebraic assumptions of Theorem 1.3, ωSchröd induces a skew-
symmetric differential form on H1(Rn) (or Σ), which is invariant under S,
the scattering operator associated to the above equation.

4.2. Infinitely many conserved quantities. In [5, 8], the authors con-
sider the Klein-Gordon equations (1.4) with p = 3, and prove that the
analyticity of the scattering operator (which at the time was only known for
small data) implies the existence of a complete set of conserved quantities
with vanishing Poisson brackets. The proof of [8] relies upon the construc-
tion of invariant skew-symmetric forms, as in the previous section. Once the
form ωwave is known, one can construct explicitly a complete set of integrals
of motion Fj , with vanishing Poisson brackets. The statement is given be-
low, in all the cases studied in the paper. We refer to [8] for the proof of the
result, which can be directly adapted to the skew-symmetric form ωSchröd.

Proposition 4.4. For each of the equations (1.1) to (1.4) considered in
this paper, and under the algebraic assumptions of Theorems 1.2 to 1.5 re-
spectively there is a family Fj of analytic functionals acting from the space
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of initial data D into R, invariant under the nonlinear evolution, and such
that there is a vector field vj in D such that

dFj = ω(vj, ·)

where ω denotes respectively ωSchröd and ωwave. Moreover, generically in u,
for any couple of vector fields (v,w) in TuD such that dFjv = dFjw = 0, we
have ω(v,w) = 0.

This result can be understood as the existence of a Birkhoff normal form
(see e.g. [10, 35] for a general definition and a presentation of results). How-
ever, for nonlinear equations, Birkhoff normal forms are usually employed to
establish long time existence results (see e.g. [15, 11]), whereas in our case,
they come as a consequence of asymptotic properties of solutions which are
already known to exist globally.

4.3. Inverse scattering. As noticed in [49, Theorem 2], knowing the scat-
tering operator near the origin for a nonlinear equation with analytic non-
linearity suffices to determine the nonlinearity, since the coefficients of its
Taylor series can be computed by induction.

In [58], the first term of the asymptotic expansion of the scattering op-
erator is shown to fully determine a nonlocal nonlinearity whose form is
known in advance (Hartree type nonlinearity). This approach is applied in
the Schrödinger case, as well as in the Klein–Gordon case. In that case, the
nonlinearity need not be analytic, and only the first nontrivial term of the
asymptotic expansion of S near the origin is needed. Typically, in the same
spirit, consider the nonlinear Schrödinger equation

(4.3) i∂tu +
1

2
∆u = λ|u|p−1u,

with λ ∈ R (possibly negative), p > 1 + 4/n and p 6 1 + 4/(n − 2) if n > 3,
not necessarily an integer. For small data, solutions to (4.3) are global in
time, and admit scattering states. To see this, recall that the nonlinearity
in (4.3) is Hs-critical, with

s =
n

2
−

2

p − 1
> 0.

In the small data case, Strichartz and Sobolev inequalities show that global
existence and scattering follow from a simple bootstrap argument (see e.g.
[20] in the case of s = 0, [21] in the case s > 0). In addition, we have

W± (εφ) = εφ + iλεp

∫ ±∞

0
e−i t

2
∆

(∣∣∣ei t
2
∆φ
∣∣∣
p−1

ei t
2
∆φ

)
dt + OHs

(
ε2p−1

)
,

hence

S (εφ) = εφ − iλεp

∫ +∞

−∞
e−i t

2
∆

(∣∣∣ei t
2
∆φ
∣∣∣
p−1

ei t
2
∆φ

)
dt + OHs

(
ε2p−1

)
.

See [18] for the proof in the case s = 0. The proof for s > 0 follow the same
lines, up to the modifications which can be found in [21]. Loosely speaking,
the leading order term of S(εφ) − εφ suffices to determine λ and p. For
instance,

p = lim
ε→0

log‖S(εφ) − εφ‖Hs

log ε
,
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for φ a Gaussian function, so that the term in εp cannot be zero.

4.4. On the complete integrability. When speaking of complete inte-
grability, one has to be rather cautious: several notions are present in the
literature [4, 65]. The weakest definition (which is in fact useful mainly in
a finite dimensional situation) consists in saying that there exists as many
conserved quantities as the number of degrees of freedom (infinitely many in
infinite dimensional situations), with vanishing Poisson brackets; this corre-
sponds to the discussion in Section 4.2 above. One can observe that those
conserved quantities may not be relevant in terms of Sobolev norms (see
for example [14]). In the Hamiltonian case, the quantities are the Hamil-
tonian and first integrals; see e.g. [1, 2, 3]. At a higher (in the infinite
dimensional case) level of precision, there may exist a nonlinear change of
variables which makes the original equation linear. This is typically the case
of one-dimensional Schrödinger equations with cubic nonlinearity [66], and
is related to the existence of Lax pairs [46]. The strongest notion of inte-
grability consists in trivializing the equation on some Lie algebra; see e.g.
[38].

Acknowledgments. The authors are grateful to Prof. Tohru Ozawa for
pointing out several references, and to Satoshi Masaki for an early view of
his result [47]. They also thank Frédéric Hélein for useful explanations on
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Théor. 46 (1987), no. 2, 187–213.
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