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ABSTRACT

This paper presents the stability analysis of a system composed of rotating beams on a flexible,
circular fixed ring, using the Routh-Hurwitz criterion. The model displayed has been fully
developed within the rotating frame by use of an energy approach. The beams considered possess
two degrees of freedom, a flexural motion as well as a traction/compression motion. In-plane
deformations of the ring will be considered. Divergences and mode couplings have thus been
underscored within the rotating frame and in order to simplify understanding of all these phenomena,
the degrees of freedom of the beams will first be treated separately and then together. The dynamics
of radial rotating loads on an elastic ring can create divergence instabilities as well as post-critical
mode couplings. Moreover, the flexural motion of beam rubbing on the ring can also lead to mode
couplings and to the locus veering phenomenon. The presence of rubbing seems to make the system
unstable as soon as the rotational speed of the beams is greater than zero. Lastly, the influence of
an angle between the beams and the normal to the ring's inner surface will be studied with respect to
system stability, thus highlighting a shift frequency phenomenon.
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I. INTRODUCTION
Problems caused by loads moving over elastic structures occur rather frequently. The case of
rotating structures has been given special attention. A flexible rotating disk excited by loads can
experience instabilities, which for instance can occur when using a circular saw, as widely studied
by Mote [1,2], with computer memory storage disks, studied by Iwan and Stahl [3], Iwan and
Moeller [4] and Crandall [5] among others, or in the field of brake systems, Ouyang et al. [6],
Chambrette and Jezequel [7]. In all these examples, the studied system was composed of a rotating
disk whose in-plane vibrations were considered rubbed on its plane by stationary loads or by a fixed
disk rubbed by rotating loads. Post-critical instabilities have thus been identified and their leading
parameters determined. Few studies however could be found that focus on a rotating ring rubbed by
loads on its inner surface. Canchi and Parker [8] recently investigated parametric instabilities due to
rotating springs on a circular ring. This kind of system can be applied, for instance, in planetary
gears or turbo machinery, in the case of contacts between the rotor blades and the casing [9]. This
study will thus present a stability analysis of a flexible ring rubbed on its inner surface by rotating



beams with two degrees of freedom: flexural motion and traction/compression. To better understand
this phenomenon, the two degrees of freedom will first be separated and then studied together. In the
first section, the ring will be excited by beams featuring only the traction/compression degree of
freedom rotating on its inner surface. Afterwards, the beams considered will possess just a flexural
degree of freedom. Finally, these two degrees of freedom will be studied in combination with one
another. This paper will conclude with an examination of the influence of a constant angle between
each beam and the normal to the inner ring surface.

Il. THE MODEL

The model considered in this study consists of a flexible ring rubbed by one or several beams on its inner
surface, as depicted in Fig. 1a, in the case of one rotating beam. These Euler-Bernoulli beams have two
degrees of freedom in the rotating frame, i.e. in the frame attached to the beams: traction/compression
motion G, , and flexural motion o, . An energy method is used to develop the model; hence, the degrees

of freedom of the j™ beam are expressed by the following Ritz functions Uy, (x,1) =Uu, (t)sin( X ]
stat

corresponding to the exact traction/compression mode shape of a clamp-free beam, and
vy, (x,t)= vy, () (1— cos[ 5

the beam and R, the ring radius. Concerning the ring, its in-plane flexural vibrations are
considered, i.e. two degrees of freedom are considered in the rotating frame: radial displacement
U, (¢,t), and tangential displacement &(¢,t), with ¢ being the angular position of the mass centre of
a ring's cross-section in the rotating frame. This latter degree of freedom can be expressed

ktot
using [10]: w(g,t) = ZA](t) cosng+ B, (t)sinng, in which the rigid body motion has been eliminated.
n=2

TX

D for its flexural degree of freedom, with x being the local axis along

stat

In order to generate as simple a model as possible, only one mode shape, the n™ one, will be
considered for the ring, hence: w(g,t) = A, (t)cosng+ B, (t)sinng. Moreover, the considered ring is

assumed to be inextensible, thus implying that its radial displacement can be expressed from its tangential

_ow(pt)
=5

displacement by: u, (¢,t) . The beam free ends are assumed to remain in steady-state contact

with the inner surface of the ring, therefore, a link relationship between the pertinent degrees of freedom
must be written as follows: u (¢ = ¢;,t) = —U, (X=Rg,t)cosa; + vy, (X=Rg,t)sina;, with «; being the

stat ? stat !

angle between the j™ beam and the normal to the ring's inner surface. Since an energy method has been

applied to develop the entire model, the kinetic energy and potential energy are defined for both the
beams and the ring. Rubbing strength is introduced by defining its work. The expressions of these
energies and of this work are given in Appendix A, along with expressions for the mass matrix, stiffness
matrix, circulatory matrix and gyroscopic matrix associated with this model. To better understand the
phenomenon appearing within this structure however, the beams are first considered to be normal to the
ring's inner surface (a; =0°). In this case, the system can be separated into simpler structures. The first

such structure consists of beams with just a traction/compression degree of freedom rubbing on the ring.
The second consists of beams with just a flexural motion rubbing on the ring. Then, both of these degrees
of freedom will be combined. In these cases and for the sake of simplicity (to handle modal mass and
stiffness), the beams will be compared to radial spring-masses having two degrees of freedom (see
Fig. 1b). The associated model has been developed in Appendix B. Lastly, the effect of an angle of
inclination between the beams and the ring will be analysed.



I1l. ROTATING RADIAL BEAMS RUBBING ON A FLEXIBLE RING

The stability of an elastic ring rubbed by one or several beams can be investigated by determining the
solution A=a+ib to the characteristic equation det(1?M + A(G+R)+K)=0, where M, G, R and K
are the mass matrix, gyroscopic matrix, circulatory matrix and stiffness matrix of the system,
respectively. The system becomes unstable if one or more of the eigenvalue real parts a are positive.
Throughout this section, the beams are assumed to be radial to the ring's inner surface («; =0°).

1. BEAMS WITH JUST A TRACTION/COMPRESSION DEGREE OF FREEDOM

In this section, the beams considered contain only a traction/compression degree of freedom. They
can thus be represented by radial rotating spring-masses rubbing on the elastic ring, as plotted on
Figure 2 in the particular case of just one rotating load. Due to the link relationship between the
radial degrees of freedom of the model, the system has two degrees of freedom and the associated
matrices can be deduced from the complete system developed in Appendix B. In the case of just one
rotating load, the dynamic behaviour of the system can thus be described by the following matrix
equation:

M (0 +1) —y{1+ 2Fzm(nz—l)}mrn {A}+ 0 -2M ,nQ(n* +1) {An}
B.) | 2M,n0(n* +1) 0 B,

0 M g (0 +1)+m,n?

h
2(n2 2 2 h 2 2 1+ n2 -1 m QZR +N
. Ko (0° =1)° = M n°Q? (n° +1) —ﬂ{l+ Rsta‘(n —1)}(kr—mrQ )n {Q} _ ﬂ{ ZRM( )}( 22 Rt u) (1)
0 Kslalnz(nz _1)2 - MstathQZ(nz +1) + (kr - mrQZ)nz ! _erstatQZn
E. .l .7
1 — _ stat ~ stat
Wlth Mstat - pstatsstat Rstat” and Kstat - 3

stat
It is obvious that rubbing makes the mass and stiffness matrices asymmetric, which is known to be
characteristic of a potentially-unstable system. Some potential critical speeds of the system may be
determined analytically using the Routh-Hurwitz criterion. The characteristic polynomial of this
matrix equation actually has the following form: p(s) = As* + Bs® + Cs* + Ds+ E With:

A=[ M (0% +1)] + M (0% +2)n2m,

B={1+ h (nz—l)}yerMan(nz+1)Q
stat

C = Ky (n? =1)2[ 2M, (n? +1) +0%m, |+ M n?0* (0% +1)° [2M, —m, ]+ My, (n? +1)nk,

stat

D=l1+—" (n2 —1) [k “m QZ}yZM nz(n2+1)Q
2R at r r stat
S

n’(n* -1)* + nzkr]

stat

)

E =[-M,n?Q? (n® +1) + K, n?(n? —1)2][—n292 (Mg (n® +2)+m, ) + K

stat

According to the Routh-Hurwitz criterion, the polynomial p(s)=As*+Bs*+Cs?+Ds+E has all its roots with

2
real parts negative if A, B, BC_AD, (BC AD)D B'E
B BC-AD
change of one of these terms implies that one of the roots of the characteristic polynomial crosses the
vertical axis, making its real part positive, hence the system becomes unstable. It is obvious that A and
B are always positive.

BC—AD

and E have the same sign. Each sign

Regarding the term



- 1f Mg, (n*+1)(1+2n%) > m,n*, itis positive if:

M g (N7 +1) , nz[mrn2+2Mstat(n2+1)]
[Mstat(nz+1)(1+2n2)—mrn4] C[Mm(nz+1)(1+2n2)—mrn“]
nz[mrn2+2Mstat(n2+l)]

2 2 2
Q° >0, =w;

provided that @} > Q? , otherwise Q_ =0.

M g (N +1)
- 1f My, (n*+1)(1+2n%) <m,n*, itis negative if Q> Q?, provided that :
n*| mn*+2M_, (n*+1
wf < Q? [ i ;tat( )] , otherwise Q_ =0.
M g (0% +1) :
_ _R2
Regarding the term (BC AD)D B E:
BC-AD
n? [m,n2 +2M g, (n° +l)]
-If 0? > Q2 - : the numerator is positive if
M (0 +1)

—[Za)f (n2 +l)+ 20%n? (n? —1)J+ 4n*Q? (n2 +1) wf —n*Q? —[wa (n? +1)+ 20°n? (n2 —1)} —4n’QY? (n2 +1) wf —n*Q)?

72(n2+1)2 72(n2+1)2

provided that —[ 247 (n® +1)+202n? (n? 1) |+ 4n°Q2 |(n* +1)0? —n°Q2 <0 ; Otherwise, if

~[ 207 (n* +1)+ 20%0* (n* -1) |- 40’2 (n” +1) 0 -1’7 | The denominator is positive
-2(n?+1)

Q=

c5

2 2
<QT<Q =

0<Q*<Qf =

for Q7 > QZ, if M, (n*+1)(1+2n%)>m,n*; otherwise, it is always negative.

n® [mrn2 +2M (n2 +1)]

n ) e
- If 2 > > Q2 : the numerator is positive if
‘ M g (N7 +1) T (n* )
o [ 207 (0 +1)+ 200" (n* -1) |+ 4n°Q2, (0” +1) o — 7022 <Q2<Q§52:—[za)f(nz+1)+29§n2(n2—1)}—4n295 (n? +1)? — 0?02

w —2(n* +1)° —2(n* +1)°

and [ 20 (n +1)+202n° (n? -1) |+ 4n°Q2 [(n* +1) o —n’Q? <0 ; Otherwise, if
~[ 207 (0 +1)+2070% (1° ~1) |- 40°Q} | (n° +1) o ~ 17022
-2(n?+1)°

0<Q?<Q =

The denominator is negative for Q7 >QZ, if M, (n?+1)(1+2n?)<mn*; otherwise, it is

always positive.
2

n . . . . :
-1f Q7 ( . 1) >’ the numerator is always negative. The sign of the denominator is the same
n°+
as in the above case.
2 2
The last term E is negative between Q_, and Q. with o= 2 + v and
1o m Mslal(n +1)

M

stat

(n2+1) 1+ m

24\
ngl\jw(r;z:l), corresponding to the ring's first critical speed. These last two rotational speeds
determine the rotational speed range over which the system is unstable even without rubbing. It will be
shown below that this instability consists of a divergence in the ring's forward mode shape. This
phenomenon is close to that shown by Canchi and Parker [8] or by Iwan and Stahl [3], and Iwan and
Moeller [4] in the case of a disk instead of a ring, with the influences of the load parameters also being

quite similar.



In all these expressions, a)fJ =— js the squared angular frequency of the radial spring-mass.

T

It can thus be seen that this kind of system with rubbing is almost always unstable. As a matter of fact, it
only lies within specific rotational speed ranges, i.e. only between chl and QCsz can the above

coefficients all be positive in the case of a lightweight system in comparison with the ring's
n2

(n*+1)

The effects of both a mass rubbing on the ring and of the stiffness may be separated. Figures 3a

and 3c display the stability analysis of a radial stiffness (without mass) rubbing against the ring with
#=0.01 and «=0.1, respectively. Figures 3b and 3d show associated zooms of Figs. 3a and 3c,

respectively. As explained previously, a divergence instability in the forward mode shape of the ring
between Q. and Q_, can be observed. Moreover, as expected, once the rotational speed is greater

than 0 RPM, the system, and especially the backward mode shape of the ring, is unstable because of
rubbing. This rubbing effect is well-known and has been highlighted, for instance, in the case of a
modal representation of a turbine engine excited by rubbing forces [11]. It thus appears that as the
rubbing coefficient increases, instability rises even faster. The case of just one mass rubbing on a
ring will now be considered; Figure 4 presents the associated stability analysis. Here again, the
system is unstable as soon as the rotational speed differs from zero, with the unstable mode now
however being the ring's forward mode shape. A divergence instability in the forward mode shape
nonetheless remains after reaching the critical system speed, between Q  and €., and mode

coupling between the forward and backward mode shapes of the ring. It should be noted that this
mode-coupling appears even without rubbing and is due to load displacement on the elastic ring.
This phenomenon has been reported in the case of a disk instead of a ring (see [3,4]). Figures 4c
and 4d show the stability analysis for the same system as in Figures 4a and 4b, but with a higher
rubbing coefficient. The effect of the rubbing coefficient is the same as before. Both a stiffness and
mass will now be considered. Figures 5a and 5¢ (with the associated zooms in Figs. 5b and 5d,
respectively) display stability analysis for a radial spring-mass rubbing on the ring's two-node
diameter mode shape. In both cases, the mass is m, =100kg, yet Figures 5a and 5b include

(i.e. mn* <M, (n®+1)(1+2n%)) and a stiffness, such that: o] > Q?

k, =1.10°N.m™, whereas k, =1.10°N.m™ in Figures 5¢c and 5d. A cross between the real part curves

of the ring's forward and backward mode shapes can be observed, which seems to be correct in
comparison with the last results taken separately. At low rotational speeds, the stiffness actually
destabilises the backward mode shape of the ring, but at higher rotational speeds the mass, with a

negative stiffening effect proportional to rotational speed (-m, Q?), destabilises the ring's forward
mode shape. This cross only occurs if @, > @,, where @, is the angular frequency of the spring-mass
and o, the angular frequency of the ring's n" nodal diameter mode shape. Moreover, as indicated
on these last figures, the cross occurs at a rotational speed between Q. and Q. As earlier

discussed, the system may be stable between Q% and Q. , as shown in Figures 5b and 5d. Figure 6

presents a stability analysis for the same system as in Figure 5a, but with a higher rubbing
coefficient, once again emphasising its effect. It can be pointed out that the rubbing coefficient
exerts no effect on the remarkable critical rotational speeds Q., Q_, Q. and Q_ . As the number

of nodal diameters of the ring's mode shape increases to infinity, the speed range [QCSI,QCJ

collapses to Q_, which itself tends to infinity.

The case of several radial rotating spring-masses rubbing on the ring will now be investigated.
Certain configurations appear to avoid the divergence instability of the forward mode shape between
Q. and Q , as shown in Figure 7 in the case of spring-masses with @, =100rad/s and x=0.01.



Since this divergence instability is present without rubbing, the Routh-Hurwitz criterion applied to
the characteristic polynomial of the system with x#=0 can yield a sufficient condition for the

disappearance of divergence. This condition may be written as:
an sin?(ng,) = an cos’(ng;)
] ]

an sin(ng,) cos(ng;) =0
Z m, sin’(ng;) = Z m, cos*(ng;)
Zmrj sin(ng, ) cos(ng;) =0

3)
These conditions are obviously satisfied in the case shown in Figure 7c since all the spring-masses
have the same parameter values and are located at ¢ =60°, ¢, =120° and ¢, =180°, which is not

true in the cases shown on the other figures. It can be noted that even in the case with no divergence
of the ring's forward mode shape, the system is still unstable once the rotational speed differs from
0 RPM.

2. BEAMS WITH JUST ONE FLEXURAL DEGREE OF FREEDOM

Here again, this system is quite similar to a rubbing rotating spring-mass tangent to the ring, as
depicted in Figure 8, in the case of one spring-mass. The matrix equation for the dynamic behaviour
of such systems is now: (2-+number of loads) x (2 + number of loads). From a stability analysis point

of view, the differences between the beam model with just one flexural degree of freedom and the

tangent spring-mass model stem from the spin-softening terms. Those associated with the beam
2

model do not take into account the entire flexural modal mass, but rather (mtj =Py Iy, %} Another

difference also concerns matrix R, which is neither symmetric nor skew-symmetric (see Appendices A
and B). The phenomenon occurring for the tangent spring-masses rubbing on the ring should
however be the same as for beams with just a flexural degree of freedom rubbing on a ring. The
stability analysis of such systems can thus be performed using the tangent spring-mass model, which
allows considering load modal parameters. In the case of only one tangent spring-mass rubbing on the
casing, the characteristic polynomial of its matrix equation is:

P(s)= [szmt +s(2umQ)+k, - thZ][(sz (pMstat (n? +1))+ KN’ (n* =17 =M

stat

stat stat

n’Q’ (n2 +1))2 +s° (ZM nQ(n2 +1))2}

By calculating just the roots of this polynomial, which correspond with the roots of its first member
s?m, +s(2umQ)+k, —mQ?, spring-mass stability can be studied. The discriminant of this first member

is: A=07(2m)" (1 +1)—4mk,. If Q* < k—tz then A <0 and the roots of this polynomial are:

m, (,u +1)
5, = —2,uth+i\/X and s, = —Zyth—i\/Z |
2m, 2m,
thus Re(s,)<0 and Re(s,)<0 and the spring-mass is stable. Now, if Q° >k—t2, then A>0
mt(,u +1)
and s :w and s, :M, thus Re(s,) <0. Concerning the real part of s, itis
t t

negative if Q* <—L=@? and positive if Q* > @, corresponding to a system divergence. All these results
mt



are valid for the beam, but the remarkable rotational speeds are Amk,

R 7?
2up Sy % | +4m | m—pyl,
Vs 8R

stat

K and t instead of ﬁ Figure 9 presents the stability analysis of

m, (/,12 +1) [ 72 m,

instead of

m, _prDST

one tangent spring-mass rubbing on the ring's two-node diameter mode shape, with k, =1.10°N.m™
and m, =100kg , and with: a) #=0.01 and b) x#=0.1. As expected, the spring-mass is stable until

stat

Q? > @}, at which point it experiences divergence instability. The effect of the rubbing coefficient is

the same as before. In the case of several tangent spring-masses rubbing against the ring, no
additional phenomenon occurs. It can also be observed that both of the ring's mode shapes appear to
be perfectly stable.

Since the effects of each degree of freedom for a beam rubbing on an elastic ring have been studied
separately, the beams can now be considered to possess both degrees of freedom.

3. BEAMS WITH BOTH A TRACTION/COMPRESSION DEGREE OF FREEDOM AND A
FLEXURAL DEGREE OF FREEDOM

The beam's two degrees of freedom will now be considered. Once again, this system, as detailed in
Appendix A, is similar to a spring-mass with two degrees of freedom (see Appendix B), as displayed
in Figure 1. The differences between these two models, in addition to all those described above,
stem from the gyroscopic terms present since the spring-masses have two degrees of freedom that
are not expressed in the same manner. These gyroscopic terms are likely to create new mode
couplings in the system. Nevertheless, as seen in the latter case, the phenomenon appearing for these
two systems should be the same. The spring-mass system will be studied in order to easily handle
modal parameters and afterwards will be compared with the beam model.

Figure 10 shows the stability analysis of the two-node diameter mode shape of the ring rubbed by a

spring-mass with m=100kg, k, =k =1.10°N.m™ and x=0.1. All phenomena studied earlier

resulting from a tangent spring-mass or a radial spring-mass rubbing on the ring are once again
present. The effect of the rubbing coefficient (not represented here) is still the same: an increase in
the slope of the curves' real part. A locus veering phenomenon is also in effect between the ring's
backward mode shape and the spring-mass, followed by mode coupling between the ring's forward
mode shape and the spring-mass. This mode coupling may result from the gyroscopic terms.
Moreover, the speed range concerned by this mode coupling is very sensitive to the tangential
stiffness k, of the spring-mass, as shown in Figure 11. The greater the tangential stiffness, the wider

the range in mode coupling speed.

Lastly, the effects of several rotating spring-masses can also be studied. Figure 12 shows the
stability analysis for the two-node diameter mode shape of the ring rubbed by two identical spring-
masses with m=100kg, k, =k =1.10°N.m™ and x=0.1; Figure 12a corresponds to two loads

separated by 60° from each other, whereas Figure 12b corresponds to two loads separated by 180°.
In both cases, it appears that only one spring-mass exchanges its mode shape with the backward
mode shape of the ring (locus veering) and then experiences mode coupling with this ring's forward
mode shape. Moreover, in the first case (i.e. spring-masses separated by 60°), the eigenfrequencies
of both spring-masses slightly increase after their theoretical divergence, as shown in Figure 12a;
this does not occur when the two spring-masses are diametrically opposed (see Fig. 12b). This
phenomenon will be analysed further below. Figure 13 exhibits the stability analysis for the two-
node diameter mode shape of the ring rubbed by three identical rotating spring-masses with
m=100kg , k, =k, =1.10°N.m™ and x=0.1, but either separated by 60° from each other (Fig. 13a),

or two separated by 60° and the third at 180° from one of the other two (Fig. 13b). In the first case,



the sufficient condition for eliminating the divergence instability between Q. and Q_ is satisfied,

hence Figure 13a shows no divergence between these rotational speeds, whereas this divergence is
still present in Figure 13b. Once again, in both cases, only one spring-mass exchanges its mode
shape with the ring's backward mode shape and then experiences mode coupling with this ring's
forward mode shape. Moreover, after the theoretical divergence in rotational speed for the three
spring-masses, two of them also seem to have slightly increased in eigenfrequency. The spring-mass
eigenfrequencies can be adjusted through their masses and stiffness. A stability analysis for the two-
node diameter mode shape of the ring rubbed by two spring-masses with two different
eigenfrequencies separated by 60° from each other has been plotted on Figure 14. In this case, just
one spring-mass exchanges its mode shape with the ring's backward shape, yet both spring-masses
experience mode coupling with the ring's forward mode shape. The system, like in all other
examples, is unstable once the rotational speed differs from zero.

Concerning the increase in eigenfrequencies of the divergent beams (see Figs. 12a and 13), there is
actually a transition between the divergence and flutter of two, and only two, beams becoming
coupled through the ring. The mode shape being considered for the ring is indeed very important for
this coupling between two beams and the ring that provides steady-state contact. Although all
simulations presented in this paper pertain to the ring's two-node diameter mode shape, Figure 15
shows the angular regions where a beam located at 60° in the rotating frame can couple with another
beam for: a) the ring's two-node diameter mode shape, and b) its three-node diameter mode shape. It
thus appears that four regions exist for the ring's two-node diameter mode shape, whereas six exist
with the ring's three-node diameter mode shape. It can moreover be seen that as ring deformation
increases, the coupling regions become narrower. For the two-node diameter mode shape for
example, each coupling region is 36° wide, while for the three-node diameter mode shape, each one
is 16° wide. It can be noted that the whole angular position range, over which two blades can couple,
is greater in the case of the ring's two-node diameter mode shape (144°) than in the case of its three-
node diameter mode shape (96°). Figure 16 shows a zoom of Figure 12a near the coupling region. It
can clearly be seen on this image that after beam divergence, the associated real parts couple with
one another, thereby leading to an unstable dynamic configuration. A case of changing instability
has been uncovered by Gaul and Wagner [12], whereby a rotating system experienced instability
divergent from mode-coupling. Moreover, the rotational speed at which coupling appears varies over
the coupling angular region, as indicated in Table 1 for the case of the two-node diameter mode

shape of the ring rubbed (x=0.1) by two spring-masses with m=100kg and k =k, =1.10°N.m™,

the first one being at 60° in the rotating frame and the other between 87° and 123°. It must be
pointed out that this phenomenon also occurs with beams featuring different modal parameters.

It has been said prior that phenomena occurring in the case of a spring-mass with two degrees of
freedom rubbing on the flexible ring are the same as those occurring in the case of a beam also with
two degrees of freedom rubbing on this ring. This can be confirmed for one rotating load rubbing on
the ring's two-node diameter mode shape. Figure 17 displays a stability analysis for this ring's mode
shape rubbed either by a spring-mass (Fig. 17a) or by a beam (Fig. 17b), both having the same
modal parameters: o, =251rad/s and @,=100rad/s (for the spring-mass: m=142.8kg,

k, =9.036.10°N.m™ and k =1.428.10°N.m™ and for the beam: m =185.66kg, m, =100kg,

k, =1.175.10'N.m™ and k, =1.10°N.m™). As expected, the same phenomena occur in both cases:

locus veering is in effect between the spring-mass and the ring's backward mode shape, along with a
divergence in its forward mode shape between Q. and Q. , mode coupling between this forward

mode shape and the spring-mass, a divergence in this spring-mass and mode coupling between the
ring's forward and backward mode shapes. The only difference between these two systems is the
offset of these phenomena due to modal parameter differences. The system naturally becomes
unstable once the rotational speed differs from 0 RPM.



IV. ROTATING BEAMS RUBBING ON A FLEXIBLE RING WITH AN ANGLE OF
INCLINATION

The effect of an angle of inclination of a beam rubbing on a rotating disk has been studied by,
among others, Chambrette and Jezequel [7], yet no studies have been found in the literature on the
influence of such an angle between beams rotating with rubbing on the inner surface of an elastic
ring. The previous study by Chambrette and Jezequel [7] demonstrated that this kind of angle can
modify the parametric domains where the system is unstable: the investigated system was a rotating
disk excited by a beam with both traction/compression motion and flexural motion. It has been
shown that the same kind of instabilities as those included in the present study, i.e. divergence after
the critical speed and mode coupling, could be obtained and modified by the angle between the beam
and the disk. The main results from this study were in fact that as the beam became more heavily
inclined, the ring's divergence speed range narrowed and the ring's mode coupling was more heavily
delayed. It has also been reported that mode couplings could arise even before the critical speed if
the frequency of the beam's flexural degree of freedom was below the disk's frequency or close to it.
The influence of the angle of inclination on the present system, in the case of just one beam rubbing
on the ring, could thus be studied when the frequency of the beam's flexural motion lies below or
above or close to that of the ring. It appears however that the mechanisms occurring due to this
angle of inclination are the same in all three of these cases; therefore, only the case where the beam's
flexural motion frequencies lie below ring frequencies will be detailed herein.

The ring's two-node diameter mode shape has been set at 30 Hz and the flexural motion of the beam
at 20 Hz. Figure 18 presents the stability analysis for a beam rubbing on the ring's two-node
diameter mode shape, with: a) « =0°, b) & =5°, ¢) & =10° and d) « =89°. These values of « have
been chosen because of the high evolution in system frequencies for low values of «. Figure 19
exhibits the associated appropriate zooms of Figure 18. First of all, it may be observed on Figure 18
that as o increases, the rotational speed at which the system experiences mode coupling between
the ring's forward and backward mode shapes rises, as does the rotational speed at which the beam's
flexural degree of freedom diverges. Moreover, mode coupling between the ring's forward mode
shape and this flexural degree of freedom of the beam appears before divergent instability in the
latter, when « increases, as shown on Figure 19. On this same figure, it appears that the rotational
speed range over which the ring's forward mode shape diverges decreases as « increases and then
finally disappears. For low values of «, a locus veering phenomenon between the ring's forward
mode shape and the beam's flexural motion may be observed, especially on Figure 19a. During this
phenomenon, the system is bound to be unstable; this instability (mode coupling type) can thus take
effect before the ring's critical speed. As « increases, the flexural degree of freedom frequency
increases and hence the locus veering phenomenon with the forward mode shape disappears. As for
mode coupling between the ring's forward mode shape and the beam's flexural motion mentioned
above, Figure 19 shows that as « increases, the associated rotational speed range begins later and
has greater values. This instability occurs after the ring's critical speed. All these phenomena may be
seen continuously as a function of «, as indicated on Figures 20 and 21. The evolution in the
rotational speed at which both mode shapes of the ring couple can be monitored on Figure 20.
Figure 21 shows the evolution of the post-critical mode couplings between the ring's forward mode
shape and the beam's flexural motion, as well as the divergence of this latter degree of freedom. The
rotational speed range associated with this mode coupling may be increased about 500 RPM, from a
configuration at « =0° to one at a =89°.

The mechanism involved in the inclination of a beam rubbing on an elastic ring thus primarily
consists of an increase in the beam's flexural frequency. If, when the beam is radial to the ring, its
flexural frequency is below that of the ring because of the evolution with rotational speed, either
locus veering or mode coupling can occur between the ring's forward mode shape and the beam's
flexural motion even before the ring's critical speed. In this case, both eigenfrequencies (of the beam
and the ring) are very close to each other (see Fig. 19a), and the system is bound to be unstable. As
a increases, beam frequencies increase until reaching the frequency of its traction/compression
degree of freedom. Once the beam frequency has risen above ring frequencies (from « >15°), locus



veering concerns its backward mode shape and, as seen on Figure 19d, the specific eigenfrequencies
are no longer close to one another. This veering does not cause system instability.

This mechanism is the same as in the case where the beam's flexural frequency is higher than that of
the ring. As « increases, the beam's flexural frequency increases; however, since it always remains
above the ring's, locus veering may occur even before the ring's critical speed yet can only concern
its backward mode shape. In this case, both frequencies are not very close to one another and this
veering does not make the system unstable. While the beam's flexural frequency decreases with an
increase in rotational speed, mode coupling with the ring's forward mode shape then occurs.

The influence of the angle of inclination of the beam rubbing on an elastic ring is therefore close to
that of a beam rubbing on a disk (see [7]). This angle acts upon the same critical phenomena. As the
inclination angle increases, the rotational speed range over which the ring's forward mode shape
diverges can in fact be modified (reduced), as can the rotational speed for both mode shapes of the
ring couple (put away). The system can also be made unstable before the ring's critical speed by
means of mode coupling between the beam's flexural motion and the ring's forward mode shape
provided the flexural frequency lies below the ring's frequency. The beam's angle of inclination
actually modifies the values of the normal and tangential strength between both structures in contact,
thereby modifying phenomena like divergence or the ring's mode coupling. This angle also modifies
the flexural frequency of the beam in contact with the ring, making mode couplings possible or not
provided items have frequencies close to each other.

All simulations have been conducted for a ring's two-node diameter mode shape, yet the same
phenomena are present for other mode shapes as well. Moreover, only one mode shape for the ring
and beams has been considered herein; the phenomena targeted in this study however are quite
similar to those that may arise when considering several mode shapes for each item of the model, as
illustrated by Iwan and Stahl [3] and Iwan and Moeller [4].

V. CONCLUSION

The stability of rotating beams rubbing on an elastic ring has been studied in this article. An energy
model of flexible beams possessing two degrees of freedom in steady-state contact with an elastic
ring possessing just one in-plane mode shape has been developed within the rotating frame. This
model, devoid of time-dependent terms, has been studied from a stability point of view. It appears
that rubbing always makes the system unstable once the beam's rotational speed is nonzero. It has
also been shown that a radial stiffness rubbing on the ring tends to make its backward mode shape
unstable, whereas a concentrated mass rubbing on a ring makes the forward mode shape unstable.
The traction/compression degree of freedom of a beam rubbing on a ring, in addition to the unstable
phenomena occurring even without rubbing (divergence of the ring's forward mode shape near its
critical speed and post-critical mode coupling between forward and backward mode shapes), thus
starts by making its backward mode shape unstable and then its forward mode shape. The
remarkable rotational speeds of these phenomena have been determined analytically. As the rubbing
coefficient rises, the gradient of the eigenvalue real parts also rises. The beams' flexural degree of
freedom yields mode couplings and locus veering with the ring. The influence of several beams
rubbing on a ring has been examined and some cases of coupling between beams highlighted. Lastly,
an angle of inclination between the beams and the ring has been considered. It has also been
demonstrated that the main result of this parameter was the increase in the beam's flexural frequency
with inclination, thus leading to veering and mode couplings.
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APPENDIX A

Expressions of the kinetic energy and potential energy, as well as the work of rubbing strength associated
with the model of j rotating beams located at ¢; within the rotating frame rubbing on the flexible

inextensible ring with inclination angle «; .

The expression of the kinetic energy of the system is given by:
1 27-Qt

T= | pus ﬂu (-0 q;«zﬁ,t)} {ww,t)—ﬂ%@,t)}}Rmdqﬁ

+Zj%RI“ Py Sy {Utzj (x,t) + ij (x,1) + Q7 ((x +U, (X,t))2 + ufj (x,t)j + ZQ(ij (x,t)(x +U, (x,t)) -, (x,t)og (x,t))} dx

Rstat 8 b ,t 2
+Z Ipb b[ +—Ufé(x )] dx

X

The expression of the potential energy of the system is given by :

1 e Estatlstat s e o ( ¥ aZUfj (X’t) 2
=3 | T{aw AR t)} 3] E { } 2ale {T} "

-0t stat X

When including Ritz functions for the degrees of freedom in the above expressions and in considering the
relationship between the ring's radial degree of freedom and both the beam's degrees of freedom:
U (4 =¢;,1) = —U, (X=Ry, 1) cosar; +u; (X =Ry, t)sine;, these energies and potentials can be written

by:

stat !

127[ Qt

T:E .[ pstat stat {|:U (¢ t) Q ;(¢lt)j| +|:W(¢!t)_9%(¢lt):| }Rstatd¢

-Qt

Tinare S0 s 2
+Z P5,Ss Rstat{ Lanta. +(§_%D+QRMWOH _QZU;((:éS,ZTfJ}
E 8 Y o e, |
+z Po, b, R {Qz “tan’ o +(§—%Bua vL%QZstlt tan ;v +§Q Rsztat}
2

+z pb b, [8R uf +ZQUf +Q Rstat]

stat

The expression of the potential energy of the system is now given by:

27[ Qt 2 u (¢ ,t)
= stat stat s t)+u t do+ E S 71' Hs \Pjt)
!;t Ria {f%z $.0+ule )} ¢ Z "0 8Ry, COS% @,
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1 7’ 1 7% tang,
+ —E. S tan® a;+— E | o
Z{ " 7P B8R, 2 0 32R3 } 2 1% B8Ry, COS (9. Doy

stat

The expression for rubbing work is given by:

h h ou,(g,t) .
W, = ZTbj—)stat {w(ﬁt){l— 2Rstat} R o [ vy, (x= Rstat,t)(cosaj +sing; tang; )—uS (g,t) tan aj] o(¢—9¢,)

with, in the direct centripetal frame, T,

,ostat —

is the slip speed of the beam on the ring and N

—HNy, s SI9N(Vy;,) being the rubbing strength of the i

beam on the ring. In this expression, V. the radial

slip b; —stat

load of the j™ beam on the stator. For instance, in the case of contacts between blades of a rotating
machine and the casing, it can be expressed by the radial load due to the unbalanced mass —N, plus a

dynamic load due to the dynamics of the j™ beam. In order to include this rubbing strength into the

matrix equation of system dynamic behaviour and perform a stability analysis, this rubbing strength can
be expressed by:

S, R 2
Ty o = ;{NU P (G, () - 0%, (D) E, S, U (4.0 -2, , 00, (¢,t)tana}5(¢—¢j>

stat

Rsa H ) Rsa 3 4 2 H
+u 2pbvsb- “Q(COS(Z]- +sma] tana])uf- (X: Rslatlt)_ Po Shv - ~Ps Sbv Rslat[ j Po Ib Uf (X: Rstat’t)smaj 5(¢_¢j)
! ] T ] ] ] 2 ] ] 2 V.4 ] 18Rsla[ ]
2 2 4
+u| 4p, S, RS‘;’ Q?-|E, S, “p, S, Rage Ey l o+ 2 So Rstath(s 4] , (x=RyDsing; |6(@-¢). This implies that
i BTN gR, Y 2 I 32R?, 2

rubbing strength always follows the same dlrection, making this model valid if the radial load due to
unbalanced mass is far greater than the dynamic load due to dynamics of the j™ beam, which is

acceptable, and if V;,, always retains the same sign. This latter condition is true for a sufficient rotational

speed. In all cases, the main purpose of this model and of this study is to detect the appearance of
instabilities and not to calculate potential limit cycles this far into the study. The expression of Ty, can

—stat

be obtained by the Hamilton principle using Lagrangian multipliers. It should be noted that the Ritz
functions for the beams' equal unity at their end rubbing against the ring; beam parameters appearing in
this rubbing strength are hence actually modal parameters of the beams at their end rubbing against the
ring. Only one mode shape of the stator has been considered at this time,i.e.:

o(¢,t) = A, (t)cosng + B, (t)sinng and u,(4,t) =—nA,(t)sinng+nB, (t)cosng .
The matrix equation of system dynamic behaviour is:
MX+(G+R)X+KX=F

T
with: X _{A1 B, v, v o Ufj}
[ My M., 0 cer e e 7
My, M,, 0 e eee e 0
tana, . . tana, .
m, | —=— u(cose, +sing; tane, ) |nsin(n -m, | —2 — u(cosa, +sine, tane,) [ncos(n M., 0 oo oo 0
r1[003041 u(cosa, ! 1)] (ng.) ﬁ(cos% u(cosa 1 1)} (ng) Mg
M= : : 0 .0 - 0
: M : 0 -. . s
: 0
tana _ tana; _
m, —,u(cosa +sing;tana; ) [nsin(ng;) —m, - u(cosa; +sine tane;) [ncos(ng;) 0 0 <+ 0 M.
" cose, | cosa,

M., = Slat( +1) Z ,sin (n¢) Zm H (nz—1)}cos(n¢j)—nsin(n¢j)tanajJnsin(n¢j)

stat
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My =, e SMO)COS(00) S, HH : :

i COS a stat

My =m0 sm(n¢)cos(n¢) Zm ({

; cos’

(n? —1)} cos(ng,) —nsin(ng,) tana, J ncos(ng,)

(n? —1)}sin(n¢j) +ncos(ng,) tan a; ] nsin(ng,)

stat

i COS a; stat

MZZZMstat(n2+1)+Zmrjn cos (n¢) Zm H 2; (nz—1)}sin(n¢j)+ncos(nqﬁj)tanajJncos(nqij)

Mg =m +m, tan®e; — u(cosa, +sing tane, ) (M, —m, )sine

_ 2 . B .
M ooz = M +M, tan° a; - u(cosa, +sina; tana; )(m, —m, )sina,

[ i sin(n
0 —2M_n (n +1) _gpqsq%QnM e e 2p 8, statQ (¢)
z cosa, P cosq,
cos(n
2M g, Q(n2+1) 0 Zpblsbl%QnM ......... zpb_s SlaIQ ( ¢)
P cosa, i g cosa,
2p, S RS“’“Q sin(n,) -2p.S %Qnm 0 e e 0
G=| T, cosa Posh cosa.
1 1
sin(n cos(n
2p,,Sy, R 5 S0 -2p, S, R 5, 05(19,) 0 e e 0
P cosq;, P cosq,
[ R, R, Ry e e e lez) 7]
R21 R22 R23 ......... RZ(j+2)
R .
Ry Ry 2upS, :;a‘ Q(cose, +sina tangy)” 0 -+ 0 0
R=| : : 0 .0
: : : 0 . 0
0
Rstat H 2
Rion Rip = 0 2up, S, Q(cosaj+smaj tane; )

ZZypb R Qnsm(n¢ Jtana; H 1)}cos(n¢) nsin(ng,)tan j

stat

R, = Z 24Py, Sy, R;a‘ Qncos(ng;) tan o ({H n —1) cos(ng; ) —nsin(ng,) tan aj]
J

stat

= —Z 2up,, S, R Qnsin(ng, ) tan « Hl+ 1)}sm(n¢ )+ncos(ng,) tan ]

Stat

R,, = Z 2up, S, RS“"‘ Qncos(ng;)tan H n —1)}sin(n¢j )+ncos(ng;) tan ]
j oz

stat

h

R =—2up, S, %Q(cos @, +5in o tan al)HlJr (n? —1)}cos(n¢1) —nsin(ng,) tan alJ

stat

Ryjiz) = —2,upbj Sbj %Q(cos a;+sing;tana; )HH (n2 —1)}cos(n¢j)— nsin(ng;) tan aj]

stat

(n? —1)}sin(n¢l) +ncos(ng) tan alJ

R .
Ry, =—24p, S, %Q(cos a, +sin g, tan al)[{lJr

stat
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R .
Rogiz) = 2040, Sy %Q(coswj +sina; tana; ) {1+

stat

(n? —1)}sin(n¢j )+ncos(ng,) tana,

R . .
Ry = 2up, S, =2 Qnsin(ng ) tan o, (cos o, +sin; tan )
T
Ryat ;
Ry, = —2up, S, —2-Qncos(ng,) tan o, (cos o +sin e, tan o )
T
Rstat ; ;
Rijan = 21405 S, —2-Qnsin(ng, ) tan a; (cos a; +sina; tan a )
T
R .
R j2 = 24P Sy, —2-Qncos(ng; ) tana (cosa; +sina; tana; )
T
- Kll K12 K13 ......... Kl(j+2)
K21 Kzz Kza """"" K2(j+2)
. t . t .
(krl - mHQZ)nsm(n;ﬁl)[czr;Zi — p(cosa, +sing, tan al)J —(krl - mﬁQz)ncos(ngﬁl)[czr;Zi — p(cosq, +sina, tan al)j Ky O - - 0
K= : 0 .0 0
0 e :
: 0
(k -m Qz)nsin(n¢.) fana; — pu(cosa; +sina; tana; ) —(k -m Qz)ncos(nyﬁ.) tana; - pu(cosa; +sina; tana; )| 0 0 0 K
I T T ] cosaj i j i T T ] cosaj i j i (j+2)(j+2)
202 292 , sin (n¢) 2 . h 2 .
Ky = K (0 =1)* =M, n°Q* (n” +1) + Z(k -m, Q°)n’® ,uZ(k,J—m,jQ )nsm(n¢j) 1+ (n*—1) cos(ng;) - nsin(ng;) tan o
] J stat
sin(ng.) cos(ng;
Kp=-3 (k - Qz)nzw—ﬂZ(kr _mrgZ)ncos(nqﬁj)[{u h
j ] S J J ]
, Sin(ng;) cos(ng, ) .
K, ==Y (k, —m Q*)n* ——1—— 1= k, —m, Q% )nsin(ng,)| {1+
21 ZJ:( r COS 0! IUZJ:( I r ) ( ¢J)
Ky = Ky’ (n* =1)* =M, n°Q* (n? +1) + Z(k -m, Q*)n’® 2008 (n¢) Z(k,} —m,JQZ)ncos(n¢j)

j i

. tan o h -
K13:(krl—mﬁQZ)nsm(n@)COSO;+/4({1+2R“(n2_1)}cos(n¢1)—nsm(n¢1)tanocl]{(kﬁ—mHQZ)_[ktl [ AN R

Ky =k, =m, ©°)nsi

sta!

el

}cos(n(/ﬁ) nsin(ng;) tang, ][(kr; merZ)(hl [mn -p, 1y

(n? —1)} cos(ng,) - nsin(ng; ) tan J

stat

(n? —1)}sin(n¢j)+ ncos(ng,) tan aj]

[

stat

(n? —1)}sin(n¢j) +ncos(ng,) tan aj]

e
£

2R

stat

sina;

B 2
Kyy =—(k, —m Qz)ncos(n;é1 [{ (n —1)}sin(n¢1)+ncos(n¢l)tana1] (kq—mﬁQz)—[kxI—[my—PbeLSF\ijQZHSi”%
stat stat
h . 2 .
Ky(jez) =—(krl —mrJQZ) i +#({1+2Rm(n2 —1)}sm(n¢j)+ncos(n¢j)tan ai]{(kn _anz)—[k', —(mt =P, I, SRMJQ?Hsma
2 i 2
=]k tan’ o +k |- m tan’ e + [m Pyl 5o ] Q° - pu(cose +sina; tanay )| (k, —m, Q%) k, - [ VAN jQZ sing,
stat L stat
2 - 7[2 .
Koo :[kn tanzaﬁk‘] {m tan’ +[m -, B HQZ p(cosa; +sing; tanaj){(k -m QZ) (kl 7[m[l -, SRSR‘JQZHS|nozJ
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sin(ng;)

Cosa

]

RZ,
2[4%5% %Q +Nujn

j i
cos(ng;)

CoOSa

RZ
—Z[4pbj S,, %QZ + NUJn

i i
R 7
[4pb18b1 —EQTN,

RZ

stat

2
A

[4%] SbJ

In these expressions, m, = p, S, % and m_=p, S, R, (g_ij
] J ] J ] ] T

traction/compression and flexure, respectively. k. =E, S, ——

+ ZuHu =

e
]tanal_

Q%+ N, Jtanaj — u[ cosa; +sing; tan aJ[4pr S,,

2
h (nz —1)}cos(n¢j) —nsin(ng,) tan ():]}[4%]3hj %QZ + NU]

stat

h

stat

2
(n? _1)}sin(n¢j) +ncos(ng,) tan e }(4%] S,, %QZ n NU]

Rs,za 2
7[‘2‘ Q° + NU]

u[cosa, +sinea; tan al]["'/%sbl

Rea
B 02+ N,

2
Va

J

+ Py, oo are the modal mass of
stat
72'2 7[4
and k =E, 1, ———— are the modal
i i 132R

stat

stiffness of traction/compression and flexure, respectively.
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APPENDIX B

Expressions of the kinetic energy and potential energy, as well as of the work of the rubbing strength
associated with the simplified model of rotating spring-masses featuring two degrees of freedom rubbing
on the flexible inextensible ring.

The expression of system kinetic energy is given by:

e . a . 2 . ow 2 1 S , )
T :E :!;t pstatsstat {|:us (¢vt)_Q 81; (¢’t):| +|:W(¢,t)—Qa—¢(¢,t):| }Rstald¢+gzmj |:us (¢vt)+Q (Rstat _us (¢!t)) :|é‘(¢_¢])

+Z%m,— (@) +Q% |6(¢—¢; )+ 2 m QU (4 O)X(A 1) + X($, ) (Re ~ U, (4.D) 6 (4~ 4,)

i
The expression of system potential energy is given by:

12”_(1[ Estatlstat 82us i 1 2 1 2
r=5 ] T{a?mt)wsw)} d¢+g§kr,.us(¢,t>5(¢—¢j)+§§ktjxj<¢,t)5(¢—¢,-)

-Qt stat

The expression of the rubbing work can now be given by:

_ __h o h au(st) ~
Wext—;Tmﬁsta{w(sé,t){l ZRM} R o xj(¢,t)}5(¢ 9.

with: T, |, = y[NU +m; (0,(4,) - QU, (4. 1) + QR + 2%, (9 )Q) + K, U, (¢,t)]5(¢—¢j) being the rubbing
strength of mass m; on the stator.

The same remarks as those offered in Appendix A can be forwarded here concerning validity conditions
of the rubbing model. Here again, only one mode shape of the stator has been considered at a time.
The matrix equation of system dynamic behaviour is as follows:

MX+(G+R)X+KX=F.

with: XT={,A\1 B, X o e e Xj}

i M., M,, 0 -or eee e 0]

M,, M,, 0 cee eee e 0

—umnsin(ng) wpmncos(ng) m 0 - - 0

M= : : 0 . 0 - 0

. . ST E

: : Do .0
_—,umjnsin(ngzﬁj) umncos(ng;)) 0 0 - O m; |

M,; = Mg, (n? +1)+ijn2 sinz(n¢j)+y{1+ (n? —1)}ijnsin(n¢j)cos(n¢j)

2R

stat

(n2 —1)}ijncosz(n¢j)
(nz—l)}ijnsinz(mﬁj)

(n? —1)}2 m;nsin(ng, ) cos(ng, )

M, ==Y mn’ sin(n¢j)cos(n¢j)—y{1+ =

stat

M,, == m;n’ sin(n¢j)cos(n¢j)+y{1+ 2;
j

stat

M, =M, (n?+1)+ Y myn® COSZ(n¢j)—,u{l+
j

stat
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0 -2M_,nQ(n?+1) -2mQnsin(ng) - - oo —2mQnsin(ng) |
2M,nQ(n’ +1) 0 2mQncos(ng) -+ - o 2m,Qncos(ng,)
2mQnsin(ng)  —-2mQncos(ng,) 0 e 0
G= : : : :
| 2m,Qnsin(ng;)  -2m Qncos(ng;) 0 e e 0 |
R= 2umQ 0 - 0 0
0 o0 :
: 0 . 0 :
: 0 :
0 0 0 0 0 2umQ |
[ K, K., 0 0 ]
K, K,, 0 0
—pu(k, —mQ?)nsin(ng)  (k, -mQ?)ncos(ng) k, —mQ* 0 0
K= : : 0 ' 0
: : : . 0
2 H 2 2
_“(kn -m;Q )nsm(n¢j) y(kﬁ -m,Q )ncos(n¢j) 0 0 0 ktj -m;Q

Ky = K (0 =1)? =M ,n°Q% (n* +1)+ 3" (k, —m Q*)n? sinz(n¢j)+,u{1+ (n? —1)}2(er - ijZ)nsin(n¢j)cos(n¢j)
j .

]

(n? _1)}Z(kﬁ - ijz)ncosz(nqﬁj)

]

(n? —1)}2(krj - ijZ)nsinz(n;zﬁj)

j

stat

K, = —Z(krj —m,Q%)n? sin(n¢j)cos(n¢j)—y{1+

stat

K,, = —Z (k, —m,Q*)n’ sin(n¢j)cos(n¢j)+,u{1+ 2;

stat

Ky, = Ko (0* =1)* =M, n°Q? (n® +1)+Z(krj -m,Q*)n’ cosz(n¢j)—y{1+ (n —1)}2(krj - ijz) nsin(ng;) cos(ng,)

stat J

h (n? —1)}Z(ijzR5m + Ny )cos(ng;)

stat j

(MR’ + Ny )nsin(ng;) +,u{1+

] ]

(n? —1)}Z(ijZRM + Ny )sin(ng;)

]

h
—2.(MRyu Q% + N, )ncos(ng,) +,u{1+ o
J stat

+Ny)

stat

—u(mOR

—u(mQR, + Ny)

stat

Under such conditions, differences between this system and the beam model stem from spin-softening
terms since those associated with the beam model do not take into account the entire flexural modal

2
mass, but instead (mn =Py, Iy, 8’;—}. Another difference concerning both the matrix R and gyroscopic

stat

terms has also been identified.
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Angular position of second blade Q, (RPM) Q, (RPM)
87° 1145 1266
90° 1060 1139
110° 955 973
120° 1060 1139
123° 1145 1266

Table 1 Coupling rotational speeds between two spring-masses with m =100kg and
k, =k =1.10°N.m™, the first one being at 60° in the rotating frame and the other one, in the first
coupling angular region (87° - 123°)
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(a) (b)

Figure 1 a) Model of Euler-Bernoulli beam rubbing on an elastic ring, b) model of ring rubbed by one
rotating load having two degrees of freedom

Figure 2 Model of radial spring-mass rubbing against a ring
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Figure 6 a) Stability analysis of the two nodal diameter mode shape of the ring excited by a rubbing radial
spring-mass with @, =100rad /s and ¢ =0.1, b) being the associated zoom
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Figure 7 Stability analysis of the two nodal diameter mode shape of the ring excited by a) one radial
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Figure 8 Model of rubbing rotating spring-mass tangent to the ring
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Figure 19 Zooms associated with Fig. 18 — evolution of the forward mode shape divergence of the ring
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