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ABSTRACT 
 

This paper presents the stability analysis of a system composed of rotating beams on a flexible, 
circular fixed ring, using the Routh-Hurwitz criterion. The model displayed has been fully 
developed within the rotating frame by use of an energy approach. The beams considered possess 
two degrees of freedom, a flexural motion as well as a traction/compression motion. In-plane 
deformations of the ring will be considered. Divergences and mode couplings have thus been 
underscored within the rotating frame and in order to simplify understanding of all these phenomena, 
the degrees of freedom of the beams will first be treated separately and then together. The dynamics 
of radial rotating loads on an elastic ring can create divergence instabilities as well as post-critical 
mode couplings. Moreover, the flexural motion of beam rubbing on the ring can also lead to mode 
couplings and to the locus veering phenomenon. The presence of rubbing seems to make the system 
unstable as soon as the rotational speed of the beams is greater than zero. Lastly, the influence of 
an angle between the beams and the normal to the ring's inner surface will be studied with respect to 
system stability, thus highlighting a shift frequency phenomenon. 
 
Keywords: Stability analysis, rotating beams, circular elastic ring, divergence, mode couplings, rubbing. 
 
 

I. INTRODUCTION 
Problems caused by loads moving over elastic structures occur rather frequently. The case of 
rotating structures has been given special attention. A flexible rotating disk excited by loads can 
experience instabilities, which for instance can occur when using a circular saw, as widely studied 
by Mote [1,2], with computer memory storage disks, studied by Iwan and Stahl [3], Iwan and 
Moeller [4] and Crandall [5] among others, or in the field of brake systems, Ouyang et al. [6], 
Chambrette and Jezequel [7]. In all these examples, the studied system was composed of a rotating 
disk whose in-plane vibrations were considered rubbed on its plane by stationary loads or by a fixed 
disk rubbed by rotating loads. Post-critical instabilities have thus been identified and their leading 
parameters determined. Few studies however could be found that focus on a rotating ring rubbed by 
loads on its inner surface. Canchi and Parker [8] recently investigated parametric instabilities due to 
rotating springs on a circular ring. This kind of system can be applied, for instance, in planetary 
gears or turbo machinery, in the case of contacts between the rotor blades and the casing [9]. This 
study will thus present a stability analysis of a flexible ring rubbed on its inner surface by rotating 
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beams with two degrees of freedom: flexural motion and traction/compression. To better understand 
this phenomenon, the two degrees of freedom will first be separated and then studied together. In the 
first section, the ring will be excited by beams featuring only the traction/compression degree of 
freedom rotating on its inner surface. Afterwards, the beams considered will possess just a flexural 
degree of freedom. Finally, these two degrees of freedom will be studied in combination with one 
another. This paper will conclude with an examination of the influence of a constant angle between 
each beam and the normal to the inner ring surface. 
 

II. THE MODEL 
 
The model considered in this study consists of a flexible ring rubbed by one or several beams on its inner 
surface, as depicted in Fig. 1a, in the case of one rotating beam. These Euler-Bernoulli beams have two 
degrees of freedom in the rotating frame, i.e. in the frame attached to the beams: traction/compression 
motion tu , and flexural motion fυ . An energy method is used to develop the model; hence, the degrees 

of freedom of the thj  beam are expressed by the following Ritz functions ( , ) ( )sin
2j jt t

stat

xu x t u t
R
π⎛ ⎞

= ⎜ ⎟
⎝ ⎠

, 

corresponding to the exact traction/compression mode shape of a clamp-free beam, and 

( , ) ( ) 1 cos
2j jf f

stat

xx t t
R
πυ υ

⎛ ⎞⎛ ⎞
= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 for its flexural degree of freedom, with x  being the local axis along 

the beam and statR  the ring radius. Concerning the ring, its in-plane flexural vibrations are 
considered, i.e. two degrees of freedom are considered in the rotating frame: radial displacement 

( , )su tφ , and tangential displacement ( , )tω φ , with φ  being the angular position of the mass centre of 
a ring's cross-section in the rotating frame. This latter degree of freedom can be expressed 

using [10]: 
2

( , ) ( ) cos ( )sin
totk

n n
n

t A t n B t nω φ φ φ
=

= +∑ , in which the rigid body motion has been eliminated. 

In order to generate as simple a model as possible, only one mode shape, the thn  one, will be 
considered for the ring, hence: ( , ) ( ) cos ( )sinn nt A t n B t nω φ φ φ= + . Moreover, the considered ring is 
assumed to be inextensible, thus implying that its radial displacement can be expressed from its tangential 

displacement by: ( ) ( ),
,s

t
u t

ω φ
φ

φ
∂

=
∂

. The beam free ends are assumed to remain in steady-state contact 

with the inner surface of the ring, therefore, a link relationship between the pertinent degrees of freedom 
must be written as follows: ( , ) ( , ) cos ( , ) sin

j js j t stat j f stat ju t u x R t x R tφ φ α υ α= = − = + = , with jα  being the 

angle between the thj  beam and the normal to the ring's inner surface. Since an energy method has been 
applied to develop the entire model, the kinetic energy and potential energy are defined for both the 
beams and the ring. Rubbing strength is introduced by defining its work. The expressions of these 
energies and of this work are given in Appendix A, along with expressions for the mass matrix, stiffness 
matrix, circulatory matrix and gyroscopic matrix associated with this model. To better understand the 
phenomenon appearing within this structure however, the beams are first considered to be normal to the 
ring's inner surface ( 0jα = ° ). In this case, the system can be separated into simpler structures. The first 
such structure consists of beams with just a traction/compression degree of freedom rubbing on the ring. 
The second consists of beams with just a flexural motion rubbing on the ring. Then, both of these degrees 
of freedom will be combined. In these cases and for the sake of simplicity (to handle modal mass and 
stiffness), the beams will be compared to radial spring-masses having two degrees of freedom (see 
Fig. 1b). The associated model has been developed in Appendix B. Lastly, the effect of an angle of 
inclination between the beams and the ring will be analysed. 
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III. ROTATING RADIAL BEAMS RUBBING ON A FLEXIBLE RING 
 
The stability of an elastic ring rubbed by one or several beams can be investigated by determining the 
solution iba+=λ  to the characteristic equation det( ² ( ) ) 0λ λ+ + + =M G R K , where M , G , R  and K  
are the mass matrix, gyroscopic matrix, circulatory matrix and stiffness matrix of the system, 
respectively. The system becomes unstable if one or more of the eigenvalue real parts a  are positive. 
Throughout this section, the beams are assumed to be radial to the ring's inner surface ( 0jα = ° ). 
 

1. BEAMS WITH JUST A TRACTION/COMPRESSION DEGREE OF FREEDOM 
 

In this section, the beams considered contain only a traction/compression degree of freedom. They 
can thus be represented by radial rotating spring-masses rubbing on the elastic ring, as plotted on 
Figure 2 in the particular case of just one rotating load. Due to the link relationship between the 
radial degrees of freedom of the model, the system has two degrees of freedom and the associated 
matrices can be deduced from the complete system developed in Appendix B. In the case of just one 
rotating load, the dynamic behaviour of the system can thus be described by the following matrix 
equation: 

( ) ( )

( )

2 2

2 2

1 1 1
2

0 1

stat r n
stat

n
stat r

hM n n m n AR
B

M n m n

µ
⎡ ⎤⎧ ⎫⎪ ⎪+ − + −⎢ ⎥⎨ ⎬ ⎧ ⎫⎪ ⎪⎪ ⎪⎩ ⎭⎢ ⎥ ⎨ ⎬

⎪ ⎪⎢ ⎥ ⎩ ⎭+ +⎢ ⎥⎣ ⎦

( )
( )

2

2

0 2 1

2 1 0

stat n

nstat

M n n A
BM n n

⎡ ⎤− Ω + ⎧ ⎫⎪ ⎪⎢ ⎥+ ⎨ ⎬
⎢ ⎥ ⎪ ⎪Ω + ⎩ ⎭⎣ ⎦

 

( ) ( ) ( )

( )

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

( 1) 1 1 1
2

0 ( 1) 1 ( )

stat stat r r n
stat

n
stat stat r r

hK n n M n n n k m n AR
B

K n n M n n k m n

µ
⎡ ⎤⎧ ⎫⎪ ⎪− − Ω + − + − − Ω⎢ ⎥⎨ ⎬ ⎧ ⎫

⎪ ⎪+ ⎩ ⎭⎢ ⎥ ⎨ ⎬
⎩ ⎭⎢ ⎥− − Ω + + − Ω⎢ ⎥⎣ ⎦

 ( ) ( )2 2

2

1 1
2 r stat U

stat

r stat

h n m R N
R

m R n

µ
⎧ ⎫⎧ ⎫⎪ ⎪+ − Ω +⎪ ⎪⎨ ⎬= ⎪ ⎪⎨ ⎬⎩ ⎭
⎪ ⎪− Ω⎩ ⎭

   (1) 

with stat stat stat statM S Rρ π=  and 3
stat stat

stat
stat

E IK
R

π
=  

It is obvious that rubbing makes the mass and stiffness matrices asymmetric, which is known to be 
characteristic of a potentially-unstable system. Some potential critical speeds of the system may be 
determined analytically using the Routh-Hurwitz criterion. The characteristic polynomial of this 
matrix equation actually has the following form: 4 3 2( )P s As Bs Cs Ds E= + + + +  with: 

( ) ( )22 2 21 1stat stat rA M n M n n m⎡ ⎤= + + +⎣ ⎦  

( ) ( )2 2 21 1 2 1
2 r stat

stat

hB n m M n n
R

µ
⎧ ⎫

= + − + Ω⎨ ⎬
⎩ ⎭

 

                  ( ) ( ) [ ] ( )22 2 2 2 2 2 2 2 2 2( 1) 2 1 1 2 1stat stat r stat stat r stat rC K n n M n n m M n n M m M n n k⎡ ⎤= − + + + Ω + − + +⎣ ⎦            

(2) 

( ) ( )2 2 2 21 1 2 1
2

hD n k m M n nr r statRstat
µ

⎧ ⎫⎪ ⎪⎡ ⎤= + − − Ω + Ω⎨ ⎬⎢ ⎥⎣ ⎦⎪ ⎪⎩ ⎭
 

( ) ( )( )2 2 2 2 2 2 2 2 2 2 2 2 21 ( 1) 1 ( 1)stat stat stat r stat rE M n n K n n n M n m K n n n k⎡ ⎤⎡ ⎤= − Ω + + − − Ω + + + − +⎣ ⎦ ⎣ ⎦  

 
According to the Routh-Hurwitz criterion, the polynomial 4 3 2( )P s As Bs Cs Ds E= + + + +  has all its roots with 

real parts negative if A , B , BC AD
B
− , ( ) 2BC AD D B E

BC AD
− −

−
 and E  have the same sign. Each sign 

change of one of these terms implies that one of the roots of the characteristic polynomial crosses the 
vertical axis, making its real part positive, hence the system becomes unstable. It is obvious that A  and 
B  are always positive. 

Regarding the term BC AD
B
− : 
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- If ( )( )2 2 41 1 2stat rM n n m n+ + > , it is positive if: 

( )
( )( )

( )
( )( )

2 2 22
2 2 2 2

4 2 2 4 2 2 4

2 11

1 1 2 1 1 2
r statstat

c r c
stat r stat r

n m n M nM n

M n n m n M n n m n
ω

⎡ ⎤+ ++ ⎣ ⎦Ω > Ω = −Ω
⎡ ⎤ ⎡ ⎤+ + − + + −⎣ ⎦ ⎣ ⎦

       

provided that  
( )

( )
2 2 2

2 2
2

2 1

1
r stat

r c
stat

n m n M n

M n
ω

⎡ ⎤+ +⎣ ⎦> Ω
+

  

 , otherwise 
4

0cΩ = .

 
- If ( )( )2 2 41 1 2stat rM n n m n+ + < , it is negative if 2 2

4cΩ > Ω  provided that :   

  

    

( )
( )

2 2 2
2 2

2

2 1

1
r stat

r c
stat

n m n M n

M n
ω

⎡ ⎤+ +⎣ ⎦< Ω
+

 , otherwise 
4

0cΩ = .

 

Regarding the term ( ) 2BC AD D B E
BC AD
− −

−
: 

- If 
( )

( )
2 2 2

2 2
2

2 1

1
r stat

r c
stat

n m n M n

M n
ω

⎡ ⎤+ +⎣ ⎦> Ω
+

: the numerator is positive if

 
( ) ( ) ( )

( )
( ) ( ) ( )

( )1 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2
5 52 22 2

2 1 2 1 4 1 2 1 2 1 4 1

2 1 2 1

r c c r c r c c r c
c c

n n n n n n n n n n n n

n n

ω ω ω ω⎡ ⎤ ⎡ ⎤− + + Ω − + Ω + − Ω − + + Ω − − Ω + − Ω⎣ ⎦ ⎣ ⎦Ω = < Ω < Ω =
− + − +  

provided that ( ) ( ) ( )2 2 2 2 2 2 2 2 2 2 22 1 2 1 4 1 0r c c r cn n n n n nω ω⎡ ⎤− + + Ω − + Ω + − Ω <⎣ ⎦

  

; otherwise, if 

 

( ) ( ) ( )
( )2

2 2 2 2 2 2 2 2 2 2 2
2 2

5 22

2 1 2 1 4 1
0

2 1

r c c r c
c

n n n n n n

n

ω ω⎡ ⎤− + + Ω − − Ω + − Ω⎣ ⎦< Ω < Ω =
− +

. The denominator is positive  

for 2 2
4c cΩ > Ω

 

if

 
( )( )2 2 41 1 2stat rM n n m n+ + > ; otherwise, it is always negative. 

- If 
( )

( ) ( )
2 2 2 2

2 2 2
2 2

2 1

1 1
r stat

c r c
stat

n m n M n n
M n n

ω
⎡ ⎤+ +⎣ ⎦Ω > > Ω

+ +
: the numerator is positive if

 
( ) ( ) ( )

( )
( ) ( ) ( )

( )1 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2
5 52 22 2

2 1 2 1 4 1 2 1 2 1 4 1

2 1 2 1

r c c r c r c c r c
c c

n n n n n n n n n n n n

n n

ω ω ω ω⎡ ⎤ ⎡ ⎤− + + Ω − + Ω + − Ω − + + Ω − − Ω + − Ω⎣ ⎦ ⎣ ⎦Ω = < Ω < Ω =
− + − +   

and ( ) ( ) ( )2 2 2 2 2 2 2 2 2 2 22 1 2 1 4 1 0r c c r cn n n n n nω ω⎡ ⎤− + + Ω − + Ω + − Ω <⎣ ⎦
 ; otherwise, if

  ( ) ( ) ( )
( )2

2 2 2 2 2 2 2 2 2 2 2
2 2

5 22

2 1 2 1 4 1
0

2 1

r c c r c
c

n n n n n n

n

ω ω⎡ ⎤− + + Ω − − Ω + − Ω⎣ ⎦< Ω < Ω =
− +

.  

The denominator is negative for 2 2
4c cΩ > Ω

 

if

 
( )( )2 2 41 1 2stat rM n n m n+ + < ; otherwise, it is 

always positive. 

- If 
( )

2
2 2

2 1c r
n

n
ωΩ >

+
 

the numerator is always negative. The sign of the denominator  is the same 

as in the above case. 
The last term E  is negative between 2cΩ  and cΩ  with 

( )
( )

2 2
2

2 2

2
11 11

c
c

stat

stat

m M n
M n m

ωΩ
Ω = +

++ ++

 and 

( )22
2

2

1

1
stat

c
stat

nK
M n

−
Ω =

+
, corresponding to the ring's first critical speed. These last two rotational speeds 

determine the rotational speed range over which the system is unstable even without rubbing. It will be 
shown below that this instability consists of a divergence in the ring's forward mode shape. This 
phenomenon is close to that shown by Canchi and Parker [8] or by Iwan and Stahl [3], and Iwan and 
Moeller [4] in the case of a disk instead of a ring, with the influences of the load parameters also being 
quite similar. 
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In all these expressions, 2 j

j

j

r
r

r

k

m
ω =  is the squared angular frequency of the radial spring-mass. 

It can thus be seen that this kind of system with rubbing is almost always unstable. As a matter of fact, it 
only lies within specific rotational speed ranges, i.e. only between 

51cΩ  and 
52cΩ  can the above 

coefficients all be positive in the case of a lightweight system in comparison with the ring's 

(i.e. ( )( )4 2 21 1 2r statm n M n n< + + ) and a stiffness, such that: 
( )

2
2 2

2 1r c
n

n
ω > Ω

+
. 

The effects of both a mass rubbing on the ring and of the stiffness may be separated. Figures 3a 
and 3c display the stability analysis of a radial stiffness (without mass) rubbing against the ring with 

0.01µ =  and 0.1µ = , respectively. Figures 3b and 3d show associated zooms of Figs. 3a and 3c, 
respectively. As explained previously, a divergence instability in the forward mode shape of the ring 
between cΩ  and 2cΩ  can be observed. Moreover, as expected, once the rotational speed is greater 
than 0 RPM, the system, and especially the backward mode shape of the ring, is unstable because of 
rubbing. This rubbing effect is well-known and has been highlighted, for instance, in the case of a 
modal representation of a turbine engine excited by rubbing forces [11]. It thus appears that as the 
rubbing coefficient increases, instability rises even faster. The case of just one mass rubbing on a 
ring will now be considered; Figure 4 presents the associated stability analysis. Here again, the 
system is unstable as soon as the rotational speed differs from zero, with the unstable mode now 
however being the ring's forward mode shape. A divergence instability in the forward mode shape 
nonetheless remains after reaching the critical system speed, between 

2cΩ  and cΩ , and mode 
coupling between the forward and backward mode shapes of the ring. It should be noted that this 
mode-coupling appears even without rubbing and is due to load displacement on the elastic ring. 
This phenomenon has been reported in the case of a disk instead of a ring (see [3,4]). Figures 4c 
and 4d show the stability analysis for the same system as in Figures 4a and 4b, but with a higher 
rubbing coefficient. The effect of the rubbing coefficient is the same as before. Both a stiffness and 
mass will now be considered. Figures 5a and 5c (with the associated zooms in Figs. 5b and 5d, 
respectively) display stability analysis for a radial spring-mass rubbing on the ring's two-node 
diameter mode shape. In both cases, the mass is 100rm kg= , yet Figures 5a and 5b include 

6 11.10 .rk N m−= , whereas 5 11.10 .rk N m−=  in Figures 5c and 5d. A cross between the real part curves 
of the ring's forward and backward mode shapes can be observed, which seems to be correct in 
comparison with the last results taken separately. At low rotational speeds, the stiffness actually 
destabilises the backward mode shape of the ring, but at higher rotational speeds the mass, with a 
negative stiffening effect proportional to rotational speed ( 2

rm− Ω ), destabilises the ring's forward 
mode shape. This cross only occurs if r nω ω> , where rω  is the angular frequency of the spring-mass 
and nω  the angular frequency of the ring's thn  nodal diameter mode shape. Moreover, as indicated 
on these last figures, the cross occurs at a rotational speed between 

51cΩ  and 
52cΩ . As earlier 

discussed, the system may be stable between 
51cΩ  and 

52cΩ , as shown in Figures 5b and 5d. Figure 6 

presents a stability analysis for the same system as in Figure 5a, but with a higher rubbing 
coefficient, once again emphasising its effect. It can be pointed out that the rubbing coefficient 
exerts no effect on the remarkable critical rotational speeds cΩ , 

2cΩ , 
51cΩ  and 

52cΩ . As the number 

of nodal diameters of the ring's mode shape increases to infinity, the speed range 
5 51 2

,c c
⎡ ⎤Ω Ω⎣ ⎦  

collapses to cΩ , which itself tends to infinity. 
The case of several radial rotating spring-masses rubbing on the ring will now be investigated. 
Certain configurations appear to avoid the divergence instability of the forward mode shape between 

cΩ  and 
2cΩ , as shown in Figure 7 in the case of spring-masses with 100 /r rad sω =  and 0.01µ = . 
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Since this divergence instability is present without rubbing, the Routh-Hurwitz criterion applied to 
the characteristic polynomial of the system with 0µ =  can yield a sufficient condition for the 
disappearance of divergence. This condition may be written as: 

     

2 2

2 2

sin ( ) cos ( )

sin( )cos( ) 0

sin ( ) cos ( )

sin( )cos( ) 0

j j

j

j j

j

r j r j
j j

r j j
j

r j r j
j j

r j j
j

k n k n

k n n

m n m n

m n n

φ φ

φ φ

φ φ

φ φ

⎧ =
⎪
⎪ =⎪⎪
⎨

=⎪
⎪
⎪ =
⎪⎩

∑ ∑

∑

∑ ∑

∑

                                    

(3) 
These conditions are obviously satisfied in the case shown in Figure 7c since all the spring-masses 
have the same parameter values and are located at 1 60φ = ° , 2 120φ = °  and 3 180φ = ° , which is not 
true in the cases shown on the other figures. It can be noted that even in the case with no divergence 
of the ring's forward mode shape, the system is still unstable once the rotational speed differs from 
0 RPM. 
 

2. BEAMS WITH JUST ONE FLEXURAL DEGREE OF FREEDOM 
 

Here again, this system is quite similar to a rubbing rotating spring-mass tangent to the ring, as 
depicted in Figure 8, in the case of one spring-mass. The matrix equation for the dynamic behaviour 
of such systems is now: (2 ) (2 )number of loads number of loads+ × + . From a stability analysis point 
of view, the differences between the beam model with just one flexural degree of freedom and the 
tangent spring-mass model stem from the spin-softening terms. Those associated with the beam 

model do not take into account the entire flexural modal mass, but rather 
2

8j j jt b b
stat

m I
R
πρ

⎛ ⎞
−⎜ ⎟

⎝ ⎠
. Another 

difference also concerns matrix R , which is neither symmetric nor skew-symmetric (see Appendices A 
and B). The phenomenon occurring for the tangent spring-masses rubbing on the ring should 
however be the same as for beams with just a flexural degree of freedom rubbing on a ring. The 
stability analysis of such systems can thus be performed using the tangent spring-mass model, which 
allows considering load modal parameters. In the case of only one tangent spring-mass rubbing on the 
casing, the characteristic polynomial of its matrix equation is: 

( ) ( )( ) ( )( ) ( )( )2 22 2 2 2 2 2 2 2 2 2 2 2( ) 2 1 ( 1) 1 2 1t t t t stat stat stat statP s s m s m k m s M n K n n M n n s M n nµ ρ⎡ ⎤⎡ ⎤= + Ω + − Ω + + − − Ω + + Ω +⎣ ⎦ ⎢ ⎥⎣ ⎦
 

By calculating just the roots of this polynomial, which correspond with the roots of its first member 
( )2 22t t t ts m s m k mµ+ Ω + − Ω , spring-mass stability can be studied. The discriminant of this first member 

is: ( ) ( )22 22 1 4t t tm m kµ∆ = Ω + − . If 
( )

2
2 1
t

t

k
m µ

Ω <
+

, then 0∆ <  and the roots of this polynomial are: 

1 2
2 2

2 2
t t

t t

m i m is and s
m m

µ µ− Ω+ ∆ − Ω− ∆
= = , 

 thus 1 2Re( ) 0 Re( ) 0s and s< <  and the spring-mass is stable. Now, if 
( )

2
2 1
t

t

k
m µ

Ω >
+

, then 0∆ >  

and 1 2
2 2

2 2
t t

t t

m ms and s
m m

µ µ− Ω+ ∆ − Ω− ∆
= = , thus 2Re( ) 0s < . Concerning the real part of 1s , it is 

negative if 2 2t
t

t

k
m

ωΩ < =  and positive if 2 2
tωΩ > , corresponding to a system divergence. All these results 
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are valid for the beam, but the remarkable rotational speeds are 
2 2

4

2 4
8

t t

stat
b b t t b b

stat

m k
RS m m I

R
πµρ ρ

π
⎛ ⎞⎛ ⎞ + −⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

 

instead of 
( )2 1

t

t

k
m µ +

 and 
2

8

t

t b b
stat

k

m I
R
πρ

⎛ ⎞
−⎜ ⎟

⎝ ⎠

 instead of t

t

k
m

. Figure 9 presents the stability analysis of 

one tangent spring-mass rubbing on the ring's two-node diameter mode shape, with 6 11.10 .tk N m−=  
and 100tm kg= , and with: a) 0.01µ =  and b) 0.1µ = . As expected, the spring-mass is stable until 

2 2
tωΩ > , at which point it experiences divergence instability. The effect of the rubbing coefficient is 

the same as before. In the case of several tangent spring-masses rubbing against the ring, no 
additional phenomenon occurs. It can also be observed that both of the ring's mode shapes appear to 
be perfectly stable. 
Since the effects of each degree of freedom for a beam rubbing on an elastic ring have been studied 
separately, the beams can now be considered to possess both degrees of freedom. 
 

3. BEAMS WITH BOTH A TRACTION/COMPRESSION DEGREE OF FREEDOM AND A 
FLEXURAL DEGREE OF FREEDOM 

 
The beam's two degrees of freedom will now be considered. Once again, this system, as detailed in 
Appendix A, is similar to a spring-mass with two degrees of freedom (see Appendix B), as displayed 
in Figure 1. The differences between these two models, in addition to all those described above, 
stem from the gyroscopic terms present since the spring-masses have two degrees of freedom that 
are not expressed in the same manner. These gyroscopic terms are likely to create new mode 
couplings in the system. Nevertheless, as seen in the latter case, the phenomenon appearing for these 
two systems should be the same. The spring-mass system will be studied in order to easily handle 
modal parameters and afterwards will be compared with the beam model. 
Figure 10 shows the stability analysis of the two-node diameter mode shape of the ring rubbed by a 
spring-mass with 100m kg= , 6 11.10 .r tk k N m−= =  and 0.1µ = . All phenomena studied earlier 
resulting from a tangent spring-mass or a radial spring-mass rubbing on the ring are once again 
present. The effect of the rubbing coefficient (not represented here) is still the same: an increase in 
the slope of the curves' real part. A locus veering phenomenon is also in effect between the ring's 
backward mode shape and the spring-mass, followed by mode coupling between the ring's forward 
mode shape and the spring-mass. This mode coupling may result from the gyroscopic terms. 
Moreover, the speed range concerned by this mode coupling is very sensitive to the tangential 
stiffness tk  of the spring-mass, as shown in Figure 11. The greater the tangential stiffness, the wider 
the range in mode coupling speed. 
Lastly, the effects of several rotating spring-masses can also be studied. Figure 12 shows the 
stability analysis for the two-node diameter mode shape of the ring rubbed by two identical spring-
masses with 100m kg= , 6 11.10 .r tk k N m−= =  and 0.1µ = ; Figure 12a corresponds to two loads 
separated by 60° from each other, whereas Figure 12b corresponds to two loads separated by 180°. 
In both cases, it appears that only one spring-mass exchanges its mode shape with the backward 
mode shape of the ring (locus veering) and then experiences mode coupling with this ring's forward 
mode shape. Moreover, in the first case (i.e. spring-masses separated by 60°), the eigenfrequencies 
of both spring-masses slightly increase after their theoretical divergence, as shown in Figure 12a; 
this does not occur when the two spring-masses are diametrically opposed (see Fig. 12b). This 
phenomenon will be analysed further below. Figure 13 exhibits the stability analysis for the two-
node diameter mode shape of the ring rubbed by three identical rotating spring-masses with 

100m kg= , 6 11.10 .r tk k N m−= =  and 0.1µ = , but either separated by 60° from each other (Fig. 13a), 
or two separated by 60° and the third at 180° from one of the other two (Fig. 13b). In the first case, 
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the sufficient condition for eliminating the divergence instability between cΩ  and 
2cΩ  is satisfied, 

hence Figure 13a shows no divergence between these rotational speeds, whereas this divergence is 
still present in Figure 13b. Once again, in both cases, only one spring-mass exchanges its mode 
shape with the ring's backward mode shape and then experiences mode coupling with this ring's 
forward mode shape. Moreover, after the theoretical divergence in rotational speed for the three 
spring-masses, two of them also seem to have slightly increased in eigenfrequency. The spring-mass 
eigenfrequencies can be adjusted through their masses and stiffness. A stability analysis for the two-
node diameter mode shape of the ring rubbed by two spring-masses with two different 
eigenfrequencies separated by 60° from each other has been plotted on Figure 14. In this case, just 
one spring-mass exchanges its mode shape with the ring's backward shape, yet both spring-masses 
experience mode coupling with the ring's forward mode shape. The system, like in all other 
examples, is unstable once the rotational speed differs from zero. 
Concerning the increase in eigenfrequencies of the divergent beams (see Figs. 12a and 13), there is 
actually a transition between the divergence and flutter of two, and only two, beams becoming 
coupled through the ring. The mode shape being considered for the ring is indeed very important for 
this coupling between two beams and the ring that provides steady-state contact. Although all 
simulations presented in this paper pertain to the ring's two-node diameter mode shape, Figure 15 
shows the angular regions where a beam located at 60° in the rotating frame can couple with another 
beam for: a) the ring's two-node diameter mode shape, and b) its three-node diameter mode shape. It 
thus appears that four regions exist for the ring's two-node diameter mode shape, whereas six exist 
with the ring's three-node diameter mode shape. It can moreover be seen that as ring deformation 
increases, the coupling regions become narrower. For the two-node diameter mode shape for 
example, each coupling region is 36° wide, while for the three-node diameter mode shape, each one 
is 16° wide. It can be noted that the whole angular position range, over which two blades can couple, 
is greater in the case of the ring's two-node diameter mode shape (144°) than in the case of its three-
node diameter mode shape (96°). Figure 16 shows a zoom of Figure 12a near the coupling region. It 
can clearly be seen on this image that after beam divergence, the associated real parts couple with 
one another, thereby leading to an unstable dynamic configuration. A case of changing instability 
has been uncovered by Gaul and Wagner [12], whereby a rotating system experienced instability 
divergent from mode-coupling. Moreover, the rotational speed at which coupling appears varies over 
the coupling angular region, as indicated in Table 1 for the case of the two-node diameter mode 
shape of the ring rubbed ( 0.1µ = ) by two spring-masses with 100m kg=  and 6 11.10 .r tk k N m−= = , 
the first one being at 60° in the rotating frame and the other between 87° and 123°. It must be 
pointed out that this phenomenon also occurs with beams featuring different modal parameters. 
It has been said prior that phenomena occurring in the case of a spring-mass with two degrees of 
freedom rubbing on the flexible ring are the same as those occurring in the case of a beam also with 
two degrees of freedom rubbing on this ring. This can be confirmed for one rotating load rubbing on 
the ring's two-node diameter mode shape. Figure 17 displays a stability analysis for this ring's mode 
shape rubbed either by a spring-mass (Fig. 17a) or by a beam (Fig. 17b), both having the same 
modal parameters: 251 /r rad sω =  and 100 /t rad sω =  (for the spring-mass: 142.8m kg= , 

6 19.036.10 .rk N m−=  and 6 11.428.10 .tk N m−=  and for the beam: 185.66rm kg= , 100tm kg= , 
7 11.175.10 .rk N m−=  and 6 11.10 .tk N m−= ). As expected, the same phenomena occur in both cases: 

locus veering is in effect between the spring-mass and the ring's backward mode shape, along with a 
divergence in its forward mode shape between cΩ  and 

2cΩ , mode coupling between this forward 
mode shape and the spring-mass, a divergence in this spring-mass and mode coupling between the 
ring's forward and backward mode shapes. The only difference between these two systems is the 
offset of these phenomena due to modal parameter differences. The system naturally becomes 
unstable once the rotational speed differs from 0 RPM. 
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IV. ROTATING BEAMS RUBBING ON A FLEXIBLE RING WITH AN ANGLE OF 
INCLINATION 

 
The effect of an angle of inclination of a beam rubbing on a rotating disk has been studied by, 
among others, Chambrette and Jezequel [7], yet no studies have been found in the literature on the 
influence of such an angle between beams rotating with rubbing on the inner surface of an elastic 
ring. The previous study by Chambrette and Jezequel [7] demonstrated that this kind of angle can 
modify the parametric domains where the system is unstable: the investigated system was a rotating 
disk excited by a beam with both traction/compression motion and flexural motion. It has been 
shown that the same kind of instabilities as those included in the present study, i.e. divergence after 
the critical speed and mode coupling, could be obtained and modified by the angle between the beam 
and the disk. The main results from this study were in fact that as the beam became more heavily 
inclined, the ring's divergence speed range narrowed and the ring's mode coupling was more heavily 
delayed. It has also been reported that mode couplings could arise even before the critical speed if 
the frequency of the beam's flexural degree of freedom was below the disk's frequency or close to it. 
The influence of the angle of inclination on the present system, in the case of just one beam rubbing 
on the ring, could thus be studied when the frequency of the beam's flexural motion lies below or 
above or close to that of the ring. It appears however that the mechanisms occurring due to this 
angle of inclination are the same in all three of these cases; therefore, only the case where the beam's 
flexural motion frequencies lie below ring frequencies will be detailed herein. 
The ring's two-node diameter mode shape has been set at 30 Hz and the flexural motion of the beam 
at 20 Hz. Figure 18 presents the stability analysis for a beam rubbing on the ring's two-node 
diameter mode shape, with: a) 0α = ° , b) 5α = ° , c) 10α = °  and d) 89α = ° . These values of α  have 
been chosen because of the high evolution in system frequencies for low values of α . Figure 19 
exhibits the associated appropriate zooms of Figure 18. First of all, it may be observed on Figure 18 
that as α  increases, the rotational speed at which the system experiences mode coupling between 
the ring's forward and backward mode shapes rises, as does the rotational speed at which the beam's 
flexural degree of freedom diverges. Moreover, mode coupling between the ring's forward mode 
shape and this flexural degree of freedom of the beam appears before divergent instability in the 
latter, when α  increases, as shown on Figure 19. On this same figure, it appears that the rotational 
speed range over which the ring's forward mode shape diverges decreases as α  increases and then 
finally disappears. For low values of α , a locus veering phenomenon between the ring's forward 
mode shape and the beam's flexural motion may be observed, especially on Figure 19a. During this 
phenomenon, the system is bound to be unstable; this instability (mode coupling type) can thus take 
effect before the ring's critical speed. As α  increases, the flexural degree of freedom frequency 
increases and hence the locus veering phenomenon with the forward mode shape disappears. As for 
mode coupling between the ring's forward mode shape and the beam's flexural motion mentioned 
above, Figure 19 shows that as α  increases, the associated rotational speed range begins later and 
has greater values. This instability occurs after the ring's critical speed. All these phenomena may be 
seen continuously as a function of α , as indicated on Figures 20 and 21. The evolution in the 
rotational speed at which both mode shapes of the ring couple can be monitored on Figure 20. 
Figure 21 shows the evolution of the post-critical mode couplings between the ring's forward mode 
shape and the beam's flexural motion, as well as the divergence of this latter degree of freedom. The 
rotational speed range associated with this mode coupling may be increased about 500 RPM, from a 
configuration at 0α = °  to one at 89α = ° . 
The mechanism involved in the inclination of a beam rubbing on an elastic ring thus primarily 
consists of an increase in the beam's flexural frequency. If, when the beam is radial to the ring, its 
flexural frequency is below that of the ring because of the evolution with rotational speed, either 
locus veering or mode coupling can occur between the ring's forward mode shape and the beam's 
flexural motion even before the ring's critical speed. In this case, both eigenfrequencies (of the beam 
and the ring) are very close to each other (see Fig. 19a), and the system is bound to be unstable. As 
α  increases, beam frequencies increase until reaching the frequency of its traction/compression 
degree of freedom. Once the beam frequency has risen above ring frequencies (from 15α > ° ), locus 
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veering concerns its backward mode shape and, as seen on Figure 19d, the specific eigenfrequencies 
are no longer close to one another. This veering does not cause system instability. 
This mechanism is the same as in the case where the beam's flexural frequency is higher than that of 
the ring. As α  increases, the beam's flexural frequency increases; however, since it always remains 
above the ring's, locus veering may occur even before the ring's critical speed yet can only concern 
its backward mode shape. In this case, both frequencies are not very close to one another and this 
veering does not make the system unstable. While the beam's flexural frequency decreases with an 
increase in rotational speed, mode coupling with the ring's forward mode shape then occurs. 
The influence of the angle of inclination of the beam rubbing on an elastic ring is therefore close to 
that of a beam rubbing on a disk (see [7]). This angle acts upon the same critical phenomena. As the 
inclination angle increases, the rotational speed range over which the ring's forward mode shape 
diverges can in fact be modified (reduced), as can the rotational speed for both mode shapes of the 
ring couple (put away). The system can also be made unstable before the ring's critical speed by 
means of mode coupling between the beam's flexural motion and the ring's forward mode shape 
provided the flexural frequency lies below the ring's frequency. The beam's angle of inclination 
actually modifies the values of the normal and tangential strength between both structures in contact, 
thereby modifying phenomena like divergence or the ring's mode coupling. This angle also modifies 
the flexural frequency of the beam in contact with the ring, making mode couplings possible or not 
provided items have frequencies close to each other. 
All simulations have been conducted for a ring's two-node diameter mode shape, yet the same 
phenomena are present for other mode shapes as well. Moreover, only one mode shape for the ring 
and beams has been considered herein; the phenomena targeted in this study however are quite 
similar to those that may arise when considering several mode shapes for each item of the model, as 
illustrated by Iwan and Stahl [3] and Iwan and Moeller [4]. 
 

V. CONCLUSION 
 
The stability of rotating beams rubbing on an elastic ring has been studied in this article. An energy 
model of flexible beams possessing two degrees of freedom in steady-state contact with an elastic 
ring possessing just one in-plane mode shape has been developed within the rotating frame. This 
model, devoid of time-dependent terms, has been studied from a stability point of view. It appears 
that rubbing always makes the system unstable once the beam's rotational speed is nonzero. It has 
also been shown that a radial stiffness rubbing on the ring tends to make its backward mode shape 
unstable, whereas a concentrated mass rubbing on a ring makes the forward mode shape unstable. 
The traction/compression degree of freedom of a beam rubbing on a ring, in addition to the unstable 
phenomena occurring even without rubbing (divergence of the ring's forward mode shape near its 
critical speed and post-critical mode coupling between forward and backward mode shapes), thus 
starts by making its backward mode shape unstable and then its forward mode shape. The 
remarkable rotational speeds of these phenomena have been determined analytically. As the rubbing 
coefficient rises, the gradient of the eigenvalue real parts also rises. The beams' flexural degree of 
freedom yields mode couplings and locus veering with the ring. The influence of several beams 
rubbing on a ring has been examined and some cases of coupling between beams highlighted. Lastly, 
an angle of inclination between the beams and the ring has been considered. It has also been 
demonstrated that the main result of this parameter was the increase in the beam's flexural frequency 
with inclination, thus leading to veering and mode couplings. 
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APPENDIX A 

Expressions of the kinetic energy and potential energy, as well as the work of rubbing strength associated 
with the model of j  rotating beams located at jφ  within the rotating frame rubbing on the flexible 
inextensible ring with inclination angle jα . 

The expression of the kinetic energy of the system is given by: 
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The expression of the potential energy of the system is given by : 
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When including Ritz functions for the degrees of freedom in the above expressions and in considering the 
relationship between the ring's radial degree of freedom and both the beam's degrees of freedom: 
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The expression of the potential energy of the system is now given by: 
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The expression for rubbing work is given by: 
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with, in the direct centripetal frame, ( )
j jb stat b stat slipT N sign Vµ→ →= −  being the rubbing strength of the thj  

beam on the ring. In this expression, slipV  is the slip speed of the beam on the ring and 
jb statN →  the radial 

load of the thj  beam on the stator. For instance, in the case of contacts between blades of a rotating 
machine and the casing, it can be expressed by the radial load due to the unbalanced mass UN−  plus a 
dynamic load due to the dynamics of the thj  beam. In order to include this rubbing strength into the 
matrix equation of system dynamic behaviour and perform a stability analysis, this rubbing strength can 
be expressed by: 

( )
2

2( , ) ( , ) ( , ) 2 ( , ) tan ( )
2 8

j j

j j j j j

b b stat stat
b stat U s s b b s b b s j

stat

S R R
T N u t u t E S u t S u t

R

ρ πµ φ φ φ ρ φ α δ φ φ
π→

⎡ ⎤
= + −Ω + − Ω −⎢ ⎥

⎢ ⎥⎣ ⎦

( )
23 42 cos sin tan ( , ) ( , )sin ( )

2 2 8j j j j j j j j j j

stat stat
b b j j j f stat b b b b stat b b f stat j j

stat

R RS x R t S S R I x R t
R
πµ ρ α α α υ ρ ρ ρ υ α δ φ φ

π π
⎡ ⎤⎛ ⎞⎛ ⎞+ Ω + = − − − − = −⎢ ⎥⎜ ⎟⎜ ⎟

⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦
2 2 4

2 2 2
2 3

3 44 ( , )sin ( )
8 2 32 2j j j j j j j j j j j

stat stat
b b b b b b b b b b stat f stat j j

stat stat

R RS E S S E I S R x R t
R R
π πµ ρ ρ ρ υ α δ φ φ

π π
⎡ ⎤⎛ ⎞⎛ ⎞+ Ω − − Ω − + Ω − = −⎢ ⎥⎜ ⎟⎜ ⎟

⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦
. This implies that 

rubbing strength always follows the same direction, making this model valid if the radial load due to 
unbalanced mass is far greater than the dynamic load due to dynamics of the thj  beam, which is 
acceptable, and if slipV  always retains the same sign. This latter condition is true for a sufficient rotational 
speed. In all cases, the main purpose of this model and of this study is to detect the appearance of 
instabilities and not to calculate potential limit cycles this far into the study. The expression of 

jb statT →  can 
be obtained by the Hamilton principle using Lagrangian multipliers. It should be noted that the Ritz 
functions for the beams' equal unity at their end rubbing against the ring; beam parameters appearing in 
this rubbing strength are hence actually modal parameters of the beams at their end rubbing against the 
ring. Only one mode shape of the stator has been considered at this time, i.e.: 
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∑ ∑  

( ) ( )
2

2 2 2
22 2

cos ( )
1 1 1 sin( ) cos( ) tan cos( )

cos 2j j

j
stat r r j j j j

j jj stat

n hM M n m n m n n n n n n
R

φ
µ φ φ α φ

α
⎛ ⎞⎧ ⎫

= + + − + − +⎜ ⎟⎨ ⎬⎜ ⎟⎩ ⎭⎝ ⎠
∑ ∑  

( )
1 1 1 1

2
33 1 1 1 1tan cos sin tan ( )sint r j r tM m m m mα µ α α α α= + − + −  

( )2
( 2)( 2) tan cos sin tan ( )sin

j j j jj j t r j j j j r t jM m m m mα µ α α α α+ + = + − + −  
 

( )

( )

1 1

1 1

1 1 1 1

2 1

1

2 1

1

1 1

1

sin( )sin( )0 2 1 2 2
cos cos

cos( )cos( )2 1 0 2 2
cos cos

sin( ) cos(2 2
G cos

j j

j j

jstat stat
stat b b b b

j

jstat stat
stat b b b b

j

stat stat
b b b b

nR n RM n n S n S n

nR n RM n n S n S n

R n R nS n S n

φφρ ρ
π α π α

φφρ ρ
π α π α

φ φρ ρ
π α π

− Ω + − Ω − Ω

Ω + Ω Ω

Ω − Ω
= 1

) 0 0
cos

sin( ) cos( )
2 2 0 0

cos cosj j j j

j jstat stat
b b b b

j j

n nR RS n S n

α

φ φ
ρ ρ

π α π α

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥Ω − Ω⎢ ⎥⎢ ⎥⎣ ⎦

 

( )

( ) ( ) ( )

1 1

11 12 13 1( 2)

21 22 23 2( 2)

2
31 32 1 1 1

2

2 1 2 2

2 cos sin tan 0 0 0

R 0 0
0 0

0

0 0 0 2 cos sin tan
j j

j

j

stat
b b

stat
b b j j jj j

R R R R
R R R R

RR R S

RR R S

µρ α α α
π

µρ α α α
π

+

+

+ +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

Ω +⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥Ω +⎢ ⎥⎣ ⎦

 

( )2
11 2 sin( ) tan 1 1 cos( ) sin( ) tan

2j j

stat
b b j j j j j

j stat

R hR S n n n n n n
R

µρ φ α φ φ α
π

⎛ ⎞⎧ ⎫
= − Ω + − −⎜ ⎟⎨ ⎬⎜ ⎟⎩ ⎭⎝ ⎠
∑  

( )2
12 2 cos( ) tan 1 1 cos( ) sin( ) tan

2j j

stat
b b j j j j j

j stat

R hR S n n n n n n
R

µρ φ α φ φ α
π

⎛ ⎞⎧ ⎫
= Ω + − −⎜ ⎟⎨ ⎬⎜ ⎟⎩ ⎭⎝ ⎠
∑  

( )2
21 2 sin( ) tan 1 1 sin( ) cos( ) tan

2j j

stat
b b j j j j j

j stat

R hR S n n n n n n
R

µρ φ α φ φ α
π

⎛ ⎞⎧ ⎫
= − Ω + − +⎜ ⎟⎨ ⎬⎜ ⎟⎩ ⎭⎝ ⎠
∑  

( )2
22 2 cos( ) tan 1 1 sin( ) cos( ) tan

2j j

stat
b b j j j j j

j stat

R hR S n n n n n n
R

µρ φ α φ φ α
π

⎛ ⎞⎧ ⎫
= Ω + − +⎜ ⎟⎨ ⎬⎜ ⎟⎩ ⎭⎝ ⎠
∑  

( ) ( )
1 1

2
13 1 1 1 1 1 12 cos sin tan 1 1 cos( ) sin( ) tan

2
stat

b b
stat

R hR S n n n n
R

µρ α α α φ φ α
π

⎛ ⎞⎧ ⎫
= − Ω + + − −⎜ ⎟⎨ ⎬⎜ ⎟⎩ ⎭⎝ ⎠

 

( ) ( )2
1( 2) 2 cos sin tan 1 1 cos( ) sin( ) tan

2j j

stat
j b b j j j j j j

stat

R hR S n n n n
R

µρ α α α φ φ α
π+

⎛ ⎞⎧ ⎫
= − Ω + + − −⎜ ⎟⎨ ⎬⎜ ⎟⎩ ⎭⎝ ⎠

( ) ( )
1 1

2
23 1 1 1 1 1 12 cos sin tan 1 1 sin( ) cos( ) tan

2
stat

b b
stat

R hR S n n n n
R

µρ α α α φ φ α
π

⎛ ⎞⎧ ⎫
= − Ω + + − +⎜ ⎟⎨ ⎬⎜ ⎟⎩ ⎭⎝ ⎠
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( ) ( )2
2( 2) 2 cos sin tan 1 1 sin( ) cos( ) tan

2j j

stat
j b b j j j j j j

stat

R hR S n n n n
R

µρ α α α φ φ α
π+

⎛ ⎞⎧ ⎫
= − Ω + + − +⎜ ⎟⎨ ⎬⎜ ⎟⎩ ⎭⎝ ⎠

 

( )
1 131 1 1 1 1 12 sin( ) tan cos sin tanstat

b b
RR S n nµρ φ α α α α
π

= Ω +  

( )
1 132 1 1 1 1 12 cos( ) tan cos sin tanstat

b b
RR S n nµρ φ α α α α
π

= − Ω +  

( ) ( )2 1 2 sin( ) tan cos sin tan
j j

stat
b b j j j j jj

RR S n nµρ φ α α α α
π+ = Ω +  

( ) ( )2 2 2 cos( ) tan cos sin tan
j j

stat
b b j j j j jj

RR S n nµρ φ α α α α
π+ = − Ω +  

( ) ( ) ( ) ( )

( )

1 1 1 1

11 12 13 1( 2)

21 22 23 2( 2)

2 21 1
1 1 1 1 1 1 1 1 33

1 1

2

tan tansin( ) cos sin tan cos( ) cos sin tan 0 0
cos cos

0 0 0K
0

0

tan
sin( )

cosj j

j

j

r r r r

j
r r j

K K K K
K K K K

k m n n k m n n K

k m n n

α αφ µ α α α φ µ α α α
α α

α
φ

α

+

+

⎛ ⎞ ⎛ ⎞
− Ω − + − − Ω − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
=

− Ω ( ) ( ) ( )2
( 2)( 2)

tan
cos sin tan cos( ) cos sin tan 0 0 0

cosj j

j
j j j r r j j j j j j

j j

k m n n K
α

µ α α α φ µ α α α
α + +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎛ ⎞ ⎛ ⎞⎢ ⎥− + − − Ω − +⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 
( ) ( ) ( )

2
2 2 2 2 2 2 2 2 2 2

11 2

sin ( )
( 1) 1 ( ) sin( ) 1 1 cos( ) sin( ) tan

cos 2j j j j

j
stat stat r r r r j j j j

j jj stat

n hK K n n M n n k m n k m n n n n n n
R

φ
µ φ φ φ α

α
⎛ ⎞⎧ ⎫

= − − Ω + + − Ω + − Ω + − −⎜ ⎟⎨ ⎬⎜ ⎟⎩ ⎭⎝ ⎠
∑ ∑  

( ) ( )2 2 2 2
12 2

sin( ) cos( )
( ) cos( ) 1 1 cos( ) sin( ) tan

cos 2j j j j

j j
r r r r j j j j

j jj stat

n n hK k m n k m n n n n n n
R

φ φ
µ φ φ φ α

α
⎛ ⎞⎧ ⎫

= − − Ω − − Ω + − −⎜ ⎟⎨ ⎬⎜ ⎟⎩ ⎭⎝ ⎠
∑ ∑  

( ) ( )2 2 2 2
21 2

sin( )cos( )
( ) sin( ) 1 1 sin( ) cos( ) tan

cos 2j j j j

j j
r r r r j j j j

j jj stat

n n hK k m n k m n n n n n n
R

φ φ
µ φ φ φ α

α
⎛ ⎞⎧ ⎫

= − − Ω + − Ω + − +⎜ ⎟⎨ ⎬⎜ ⎟⎩ ⎭⎝ ⎠
∑ ∑

( ) ( ) ( )
2

2 2 2 2 2 2 2 2 2 2
22 2

cos ( )
( 1) 1 ( ) cos( ) 1 1 sin( ) cos( ) tan

cos 2j j j j

j
stat stat r r r r j j j j

j jj stat

n hK K n n M n n k m n k m n n n n n n
R

φ
µ φ φ φ α

α
⎛ ⎞⎧ ⎫

= − − Ω + + − Ω − − Ω + − +⎜ ⎟⎨ ⎬⎜ ⎟⎩ ⎭⎝ ⎠
∑ ∑

( ) ( ) ( )1 1 1 1 1 1 1 1

2
2 2 2 21

13 1 1 1 1 1
1

tansin( ) 1 1 cos( ) sin( ) tan sin
cos 2 8r r r r t t b b

stat stat

hK k m n n n n n n k m k m I
R R

α πφ µ φ φ α ρ α
α

⎡ ⎤⎛ ⎞ ⎛ ⎞⎧ ⎫ ⎛ ⎞
= − Ω + + − − − Ω − − − Ω⎢ ⎥⎜ ⎟ ⎜ ⎟⎨ ⎬ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎩ ⎭ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦

( ) ( ) ( )
2

2 2 2 2
1( 2)

tan
sin( ) 1 1 cos( ) sin( ) tan sin

cos 2 8j j j j j j j j

j
j r r j j j j r r t t b b j

j stat stat

hK k m n n n n n n k m k m I
R R

α πφ µ φ φ α ρ α
α+

⎡ ⎤⎛ ⎞ ⎛ ⎞⎧ ⎫ ⎛ ⎞
= − Ω + + − − − Ω − − − Ω⎢ ⎥⎜ ⎟ ⎜ ⎟⎨ ⎬ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎩ ⎭ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦

( ) ( ) ( )1 1 1 1 1 1 1 1

2
2 2 2 21

23 1 1 1 1 1
1

tancos( ) 1 1 sin( ) cos( ) tan sin
cos 2 8r r r r t t b b

stat stat

hK k m n n n n n n k m k m I
R R

α πφ µ φ φ α ρ α
α

⎡ ⎤⎛ ⎞ ⎛ ⎞⎧ ⎫ ⎛ ⎞
= − − Ω + + − + − Ω − − − Ω⎢ ⎥⎜ ⎟ ⎜ ⎟⎨ ⎬ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎩ ⎭ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦

( ) ( ) ( )
2

2 2 2 2
2( 2)

tan
cos( ) 1 1 sin( ) cos( ) tan sin

cos 2 8j j j j j j j j

j
j r r j j j j r r t t b b j

j stat stat

hK k m n n n n n n k m k m I
R R

α πφ µ φ φ α ρ α
α+

⎡ ⎤⎛ ⎞ ⎛ ⎞⎧ ⎫ ⎛ ⎞
= − − Ω + + − + − Ω − − − Ω⎢ ⎥⎜ ⎟ ⎜ ⎟⎨ ⎬ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎩ ⎭ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦

( ) ( )1 1 1 1 1 1 1 1 1 1 1 1

2 2
2 2 2 2 2

33 1 1 1 1 1 1tan tan cos sin tan sin
8 8r t r t b b r r t t b b

stat stat

K k k m m I k m k m I
R R
π πα α ρ µ α α α ρ α

⎡ ⎤⎡ ⎤ ⎛ ⎞⎛ ⎞ ⎛ ⎞
⎡ ⎤= + − + − Ω − + − Ω − − − Ω⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎝ ⎠⎣ ⎦

( ) ( )
2 2

2 2 2 2 2
( 2)( 2) tan tan cos sin tan sin

8 8j j j j j j j j j j j jj j r j t r j t b b j j j r r t t b b j
stat stat

K k k m m I k m k m I
R R
π πα α ρ µ α α α ρ α+ +

⎡ ⎤⎡ ⎤ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎡ ⎤= + − + − Ω − + − Ω − − − Ω⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟⎣ ⎦ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎝ ⎠⎣ ⎦
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( )

( )

2 2
2 2 2

2 2

2
2 2

2

sin( )
4 1 1 cos( ) sin( ) tan 4

cos 2

cos( )
4 1 1 sin(

cos 2

F

j j j j

j j

jstat stat
b b U j j j b b U

j jj stat

jstat
b b U

j j stat

nR h RS N n n n n n S N
R

nR hS N n n
R

φ
ρ µ φ φ α ρ

π α π

φ
ρ µ

π α

⎡ ⎤⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪Ω + + + − − Ω +⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟
⎪ ⎪⎢ ⎥⎝ ⎠ ⎝ ⎠⎩ ⎭⎣ ⎦

⎧ ⎫⎛ ⎞ ⎪ ⎪− Ω + + + −⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠ ⎩ ⎭

=

∑ ∑

∑

[ ]
1 1 1 1

2
2

2

2 2
2 2

1 1 1 12 2

2 2
2

2

) cos( ) tan 4

4 tan cos sin tan 4

4 tan cos sin tan 4

j j

j j j j

stat
j j j b b U

j

stat stat
b b U b b U

stat stat
b b U j j j j b b

Rn n n S N

R RS N S N

R RS N S

φ φ α ρ
π

ρ α µ α α α ρ
π π

ρ α µ α α α ρ
π π

⎡ ⎤⎛ ⎞
+ Ω +⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
⎛ ⎞ ⎛ ⎞

Ω + − + Ω +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎡ ⎤Ω + − +⎜ ⎟ ⎣ ⎦

⎝ ⎠

∑

2
2 UN

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪

⎛ ⎞⎪ ⎪Ω +⎜ ⎟⎪ ⎪⎪ ⎪⎝ ⎠⎩ ⎭

 

 

In these expressions, 
2j j j

stat
r b b

Rm Sρ=  and 
23 4

2 8j j j j jt b b stat b b
stat

m S R I
R
πρ ρ

π
⎛ ⎞= − +⎜ ⎟
⎝ ⎠

 are the modal mass of 

traction/compression and flexure, respectively. 
2

8j j jr b b
stat

k E S
R
π

=  and 
4

332j j jt b b
stat

k E I
R
π

=  are the modal 

stiffness of traction/compression and flexure, respectively. 
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APPENDIX B 
 
 Expressions of the kinetic energy and potential energy, as well as of the work of the rubbing strength 
associated with the simplified model of rotating spring-masses featuring two degrees of freedom rubbing 
on the flexible inextensible ring. 
 
The expression of system kinetic energy is given by: 

( ) ( )
2 22

22 21 1( , ) ( , ) ( , ) ( , ) ( , ) ( , )
2 2

t
s

stat stat s stat j s stat s j
jt

u wT S u t t w t t R d m u t R u t
π

ρ φ φ φ φ φ φ φ δ φ φ
φ φ

−Ω

−Ω

⎧ ⎫∂⎡ ⎤ ⎡ ⎤∂⎪ ⎪ ⎡ ⎤= −Ω + −Ω + +Ω − −⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎣ ⎦∂ ∂⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭
∑∫

( ) ( ) ( )2 2 21 ( , ) ( , ) ( , ) ( , ) ( , )
2 j j j s stat s j

j j
m x t x m u t x t x t R u tφ δ φ φ φ φ φ φ δ φ φ⎡ ⎤+ +Ω − + Ω⎡ + − ⎤ −⎣ ⎦⎣ ⎦∑ ∑  

 
The expression of system potential energy is given by: 

( ) ( )
22

2 2
3

²1 1 1( , ) ( , ) ( , ) ( , )
2 ² 2 2j j

t
stat stat s

s r s j t j j
j jstatt

E I u t u t d k u t k x t
R

π

γ φ φ φ φ δ φ φ φ δ φ φ
φ

−Ω

−Ω

∂⎧ ⎫
= + + − + −⎨ ⎬∂⎩ ⎭

∑ ∑∫  

 
The expression of the rubbing work can now be given by: 

( , )( , ) 1 ( , ) ( )
2 2j

s
ext m stat j j

j stat stat

u th hW T t x t
R R

φ
ω φ φ δ φ φ

φ→

⎡ ⎤⎧ ⎫ ∂
= − − − −⎢ ⎥⎨ ⎬

∂⎢ ⎥⎩ ⎭⎣ ⎦
∑   

with: ( )2 2( , ) ( , ) 2 ( , ) ( , ) ( )
j jm stat U j s s stat j r s jT N m u t u t R x t k u tµ φ φ φ φ δ φ φ→

⎡ ⎤= + −Ω +Ω + Ω + −⎣ ⎦  being the rubbing 

strength of mass jm  on the stator. 
 
The same remarks as those offered in Appendix A can be forwarded here concerning validity conditions 
of the rubbing model. Here again, only one mode shape of the stator has been considered at a time. 
The matrix equation of system dynamic behaviour is as follows:  

( )+ + +MX G R X KX = F . 
with:  { }1

T
n n jA B x x=X  

11 12

21 22

1 1 1 1 1

0 0
0 0

sin( ) cos( ) 0 0
0 0 0M

0
0

sin( ) cos( ) 0 0 0j j j j j

M M
M M

m n n m n n m

m n n m n n m

µ φ µ φ

µ φ µ φ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

 

 

( ) ( )2 2 2 2
11 1 sin ( ) 1 1 sin( ) cos( )

2stat j j j j j
j jstat

hM M n m n n n m n n n
R

φ µ φ φ
⎧ ⎫

= + + + + −⎨ ⎬
⎩ ⎭

∑ ∑  

( )2 2 2
12 sin( ) cos( ) 1 1 cos ( )

2j j j j j
j jstat

hM m n n n n m n n
R

φ φ µ φ
⎧ ⎫

= − − + −⎨ ⎬
⎩ ⎭

∑ ∑  

( )2 2 2
21 sin( ) cos( ) 1 1 sin ( )

2j j j j j
j jstat

hM m n n n n m n n
R

φ φ µ φ
⎧ ⎫

= − + + −⎨ ⎬
⎩ ⎭

∑ ∑  

( ) ( )2 2 2 2
22 1 cos ( ) 1 1 sin( ) cos( )

2stat j j j j j
j jstat

hM M n m n n n m n n n
R

φ µ φ φ
⎧ ⎫

= + + − + −⎨ ⎬
⎩ ⎭

∑ ∑  
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( )
( )

2
1 1

2
1 1

1 1 1 1

0 2 1 2 sin( ) 2 sin( )

2 1 0 2 cos( ) 2 cos( )

2 sin( ) 2 cos( ) 0 0
G

2 sin( ) 2 cos( ) 0 0

stat j j

stat j j

j j j j

M n n m n n m n n

M n n m n n m n n

m n n m n n

m n n m n n

φ φ

φ φ

φ φ

φ φ

⎡ ⎤− Ω + − Ω − Ω
⎢ ⎥
⎢ ⎥Ω + Ω Ω
⎢ ⎥
⎢ ⎥Ω − Ω
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥Ω − Ω⎢ ⎥⎣ ⎦

 

( ) ( )

( ) ( )

2 2
1 1

2 2
1 1

1

0 0 2 cos( ) 1 1 2 cos( ) 1 1
2 2

2 sin( ) 1 1 2 sin( ) 1 1
2 2

R 2 0 0 0
0 0

0 0
0

0 0 0 0 0 2

j j
stat stat

j j
stat stat

h hm n n m n n
R R

h hm n n m n n
R R

m

µ φ µ φ

µ φ µ φ

µ

µ

⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪− Ω + − − Ω + −⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭
⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪− Ω + − − Ω + −⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

= Ω

jm

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥Ω⎢ ⎥⎣ ⎦

 

( ) ( )

( ) ( )

1 1 1

11 12

21 22

2 2 2
1 1 1 1 1

2 2 2

0 0
0 0

sin( ) cos( ) 0 0

0 0K

0

sin( ) cos( ) 0 0 0
j j j

r r t

r j j r j j t j

K K
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Under such conditions, differences between this system and the beam model stem from spin-softening 
terms since those associated with the beam model do not take into account the entire flexural modal 

mass, but instead 
2

8j j jt b b
stat

m I
R
πρ

⎛ ⎞
−⎜ ⎟

⎝ ⎠
. Another difference concerning both the matrix R  and gyroscopic 

terms has also been identified. 
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Angular  position of  second blade 
1
( )X RPMΩ  

2
( )X RPMΩ  

87° 1145 1266 
90° 1060 1139 

110° 955 973 
120° 1060 1139 
123° 1145 1266 

 
Table 1 Coupling rotational speeds between two spring-masses with 100m kg=  and 

6 11.10 .r tk k N m−= = , the first one being at 60° in the rotating frame and the other one, in the first 
coupling angular region (87° - 123°) 
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(a)       (b) 

Figure 1 a) Model of  Euler-Bernoulli beam rubbing on an elastic ring, b) model of ring rubbed by one 
rotating load having two degrees of freedom 

 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 

Figure 2 Model of radial spring-mass rubbing against a ring 
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(a)                                                                       (b) 

 
(c)       (d) 

Figure 3 Stability analysis for a radial stiffness of 6 11.10 .rk N m−=  rubbing on the two nodal diameter 
mode shape of the ring with a) 0.01µ =  , b) being the associated zoom and c) 0.1µ = , d) being the 

associated zoom 
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(a)       (b) 

 
(c)       (d) 

Figure 4 Stability analysis for a mass of 100kg rubbing against the two nodal diameter mode shape of the 
ring with a) 0.01µ =  , b) being the associated zoom and c) 0.1µ = , d) being the associated zoom 
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(a)       (b) 

 
(c)       (d) 

Figure 5 Stability analysis of the two nodal diameter mode shape of the ring excited by a rubbing 
( 0.01µ = ) radial spring-mass with a) 100 /r rad sω = , b) being the associated zoom and c) 

31.6 /r rad sω = , d) being the associated zoom whereas 34.4 /n rad sω =  
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Figure 6 a) Stability analysis of the two nodal diameter mode shape of the ring excited by a rubbing radial 
spring-mass with 100 /r rad sω =  and 0.1µ = , b) being the associated zoom  

 

 
(a)       (b) 

 
(c)       (d) 

Figure 7 Stability analysis of the two nodal diameter mode shape of the ring excited by a) one radial 
spring-mass b) two radial spring-masses separated from 60° from each other, c) three radial spring- 

masses separated from 60° from each other, d)  three radial spring-masses two being at 60° form each 
other and the third one being at 180° from one of the latter two 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 8 Model of rubbing rotating spring-mass tangent to the ring 
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(a)       (b) 

Figure 9 Stability analysis for a tangent spring-mass rubbing against the two nodal diameter mode shape 
of the ring with a) 0.01µ = , and b) 0.1µ =  

 
(a)       (b) 

Figure 10 a) Stability analysis of the two nodal diameter mode shape of the ring rubbed by a spring-mass 
having 100m kg= , 6 11.10 .r tk k N m−= =  and 0.1µ = , b) being the associated zoom  

Sm = Spring-mass, F = Forward, B = Backward 
  

 
(a)       (b) 

Figure 11 Stability analysis of the two nodal diameter mode shape of the ring rubbed by a spring-mass of 
100m kg= , a) 7 11.10 .rk N m−= , 6 11.10 .tk N m−=  b) 6 11.10 .rk N m−= , 7 11.10 .tk N m−= and 0.1µ =  
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(a)       (b) 

Figure 12 Stability analysis of the two nodal diameter mode shape of the ring rubbed by two spring-
masses having 100m kg= , 6 11.10 .r tk k N m−= =  and 0.1µ = , a) separated from 60° from each other b) 

separated from 180° from each other 

Sm = Spring-mass, F = Forward, B = Backward 

 

 

 
(a)      (b) 

Figure 13 Stability analysis of the two nodal diameter mode shape of the ring rubbed by three spring-
masses having 100m kg= , 6 11.10 .r tk k N m−= =  and 0.1µ = , a) separated from 60° from each other b) 

two being at 60° from each other and the third one at 180° from one of the latter two 

Sm = Spring-mass, F = Forward, B = Backward 
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Figure 14 Stability analysis of the two nodal diameter mode shape of the ring rubbed by two spring-
masses separated from 60° from each other having 1 100m kg= , 

1

6 11.10 .rk N m−= , 
1

7 11.10 .tk N m−= ,  

2 200m kg= , 
2

7 11.10 .rk N m−= , 
2

6 11.10 .tk N m−=  and 0.1µ =  

Sm = Spring-mass, F = Forward, B = Backward 

 

 

 

 

 

 

 

 

 

 
Figure 15 Coupling regions for a) the two nodal diameter mode shape of the ring, b) the three nodal 

diameter mode shape of the ring 
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Figure 16 Coupling between two spring-masses rubbing ( 0.1µ = ) on the two nodal diameter mode shape 

of the ring, one being at 60° in the rotating frame and the other, at 120°, with  1 100m kg=  and 
6 11.10 .r tk k N m−= =  

 

 

 

(a)      (b) 

Figure 17 Stability analysis for the two nodal diameter mode shape of the ring rubbed by a) one spring-
mass having two degrees of freedom b) one beam having two degrees of freedom 

Sm = Spring-mass, bt= flexure motion of the beam  F = Forward, B = Backward 
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(a)       (b) 

 
(c)      (d) 

Figure 18 Stability analysis of the two nodal diameter mode shape of the ring (30Hz) rubbed by one beam 
(20Hz) at a) 0α = ° , b) 5α = ° , c) 10α = °  and d) 89α = °  
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(a)       (b) 

 
(c)      (d) 

Figure 19 Zooms associated with Fig. 18 – evolution of the forward mode shape divergence of the ring 
and mode couplings as a function of α , for a) 0α = ° , b) 5α = ° , c) 10α = °  and d) 89α = °
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Figure 20 Campbell diagram of the two nodal diameter mode shape of the ring (30Hz) rubbed by one 
beam (20Hz), as a function of α  - evolution of mcΩ  

 

 

Figure 21 Campbell diagram of the two nodal diameter mode shape of the ring (30Hz) rubbed by one 
beam (20Hz), as a function of α  - position of the mode couplings between the forward mode shape and 
the flexure motion of the beam as well as the evolution of the divergence of this latter degree of freedom 

 

 

 


