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Application of a Nonlinear Modal Instability Approach to Brake Systems

Jean-Jacques Sinou , Fabrice Thouverez and Louis Jézéquel

Laboratoire de Tribologie et Dynamique des Systemes, Equipe Dynamique des Structures et des
Systemes, Ecole Centrale de Lyon, 69134 Ecully Cedex, France

A method, called the Complex NonLinear Modal Analysis (CNLMA), is proposed for the calculation of the periodic solutions of nonlinear
mechanical systems with continued nonlinearities. The equivalent linearization concept and the notion of nonlinear complex modes are
applied in order to analyze the steady-state responses of autonomous nonlinear systems. The CNLM-Analysis appears very interesting in
regard to computational time; it also necessitates very few computer resources. This method was applied to study insta-bility phenomena in
a nonlinear model with a constant brake friction coefficient.

1 Introduction bility analysis will be presented. The stability analysis will be
erformed by determining the eigenvalues of the jacobian matrix

ceiving increasing attention. Parametric and nonparametric te ?:the linearized system at the equilibrium point. A parametric
9 9 . P udy with linear stability theory will be conducted in order to

niques have been_lntenswely studied by many authors._Gener termine the effect of system parameters on stability. Next, the
speaking, the nonlinear problem can be solved by techniques s plex Nonlinear Modal Analysi€€CNLMA) will be described.
as the harmonic balance methd@lierre, Ferri and Dowell1], = tis method will be used in order to obtain the limit cycle of the

Cameron and Griffi2]), the perturbation method&layfeh and non-linear system and to study the behavior of the system in the

Mook [3]), the Galerkin's method, or numerical integration. Reyngtape region. Results from the Complex Nonlinear Modal

cently, the reduction and simplification of nonlinear systems hayg,a|ysis will be compared with results obtained by integrating the
been studied by different strategies: the center manifold approggl] griginal system in order to validate the CNLM-Analysis. Fi-
and normal form approactNayfeh and Balachandrd#], Guck- naly, parametric studies using the CNLM-Analysis will be con-
henheimer and Holme$], Jezequel and Lamarqué], Yu [7],  gucted in order to determine the effect of system parameters on
and Sinou, Thouverez andzéguel [8]), the Padeapproximants the evolution of the limit cycle oscillations.

(Baker and Graves-Morri§9] and Brezinski[10], and Sinou,

Thouverez and "¥equel [8]) have been used as simplificationy Background

methods in many studies. These techniques allow to obtain a sim- . S

plified system, without loosing the dynamics of the original sys- Brake systems are often susceptible to friction-induced self-
tem, as well as the contributions of non-linear terms. Using thegéc'ted y|brat|ons. Under certain conditions, the stgady state Sl.'d'
techniques, one has a reduction, simplification, or approximatidi motion becomes unstable and small perturbations grow with

of the original non-linear system. However, if these techniqu ne. Dug to the non-Ii.nea.\rities, the pertgrbatiqn growth is limited
' gg the limit cycle oscillations appear. It is desirable to understand

have been applied in scientific areas such as engineering, th . SRREC ; S 2
procedures may have problems of mathematical complexity sty mechanisms that cause friction-induced self-excited vibrations

age requirements, and extreme computation time in order to prevent their occurrence. A greater concentration of
! g ’ work on the brake noise and vibrations appeared during the last
In order to avoid these difficulties, a new method for the calc%- ars and different types of self-excited vibrations have been re-

lation of the periodic solutions of nonlinear systems is propos : : : : ;
. ) ; rted in the literature. There is no uniqgue mathematical model

(Bongt[llfla’ .and.SIHOL[l3]). Itis bgsgd on the notion Of.thea d theory in order to explain the mechanisms and dynamic phe-
equalent linearization concept, and it introduces thg notion @k ena associated with friction. Effectively, there are different
nonllne_ar complex m.OdeS' In recent years, many Stu.d'es descy chanisms that can excite these vibrations. According to Ibrahim
the notion of the nonlinear normal mode and the nonlinear natua 1, Oden and Martinf21], Crolla and Lang22], the different
frequencies associatedRosenberg [14-15], Szemplinska- echanisms proposed in the literature as responsible for friction-
Stupnicka[16—17], Shaw and Pierfa8]). induced vibrations fall into four classes: stick-slip, variable dy-

The equivalent linearization concept, as proposed by M&h hamic friction coefficient, sprag-sligSpurr [23]), and coupling
can be applied to nonlinear autonomous systems in order to obtg{Bchanism. The first two approaches rely on changes in the fric-
nonlinear modal parameters. This method is based on the minifgs, coefficient with relative sliding speed affecting the system
zation of the difference between the nonlinear dynamic systeghpility. The last two approaches use kinematic constraints and
and its equivalent linear dynamic system. The procedure of thgydal coupling in order to develop the instability; in these cases,

CNLM-Analysis has been tested in the case of autonomous sygstability can occur with a constant brake friction coefficient.
tem that may exhibit dynamic as well as static instabilities.

This paper presents the application of the CNLM-Analysis forg = Analytical Model

brake noise vibration. Firstly, some basic concepts of friction will . .
4 P In a previous worK8], one presented heavy trucks grabbing. In

be introduced, and a model for the analysis of grabbing in auto- i . X “
mobile braking systems will be presented. Then, results from sy der to find design recommendations for brakes avoiding grab-
' Ing vibration, it is necessary to work with mechanical model

Contributed by the Technical Committee on Vibration and Sound for pubIi(:atio(rj1ISpla‘ylng deSIQn features of a brake.

in the JDURNAL OF VIBRATION AND ACOUSTICS Manuscript received July 2002;  According to experimental investigations, the dynamic charac-
Revised January 2003. Associate Editor: A. F. Vakakis. teristics of the whole front axle assembly is concerned, even if the

In recent years, nonlinear vibration phenomena have been



(k1,m,), and the non-linear dynamic behavior of the front axle
assembly and the suspensidg (m,) are concerned, respectively.
The three equations of motion can be expressed as:

MY +cy(Y =) + k(Y= Y) +Kao Y= ¥) 2+ k(Y= y)°
=~ Fprake
M X+ Co X+ Koy X+ KpoX2+ KpeX3= — N sin 6+ T cosé
Moy +C1(Y—Y) +Ka(Y— V) + kel y = Y)?+kysy = Y)?
=Ncosf6+Tsind
@
g Using the transformationg= X tan# andx={X Y}', and consid-

ering the Coulomb’s friction lawT=x.N, the nonlinear
2-degrees-of-freedom system has the form

M.X+ C.X+K.x=F+Fy, ©)

whereX, X andx are the acceleration, velocity, and displacement
response 2-dimensional vectors of the degrees-of-freedom, re-
spectively.M is the mass matrixC is the damping matrix an
is the stiffness matrix is the vector force due to brake command
Fig. 1 Dynamic model of braking system and Fy_ contains moreover the non-linear stiffness terms. The
values of the parameters are given in Appendix A. The values of
these matrices and vectors are given Appendix B.

The general form of the equations can be expressed in the fol-

source of grabbing is located in the braking system. Moreovl=9rWing way:

there is only a very small variation of the brake friction coefficient 2 i

during a grabbing vibration event, as described by Bolidaf. M.X+ C.X+K.x= |:+2 E f )X .X;

So the variation of the brake friction coefficient can be assumed to i=1j=1

be negligible in this case, although this is not always the case for 2 2 o

modelling brake systems. This context is selected because it is

complex, both in order to be qualitatively predictive, and simple +Z‘l ,21 2 (3) XX X “)

in order to allow sensitivity analysis. In this study, the mechanism
used in order to explain the grabbing is a classical mechaniswheref, and f§ are the vectors of quadratic and cubic non-
brake judder is modelled as a flutter instability due to the nofinear terms OFNLr respectivelyM, C andK are 2<2 matrices.
conservative aspect of Coulomb’s friction. The dynamic system is
defined in Fig. 1. One assumes that the brake friction coeffigient - .
is constant, and that the tangential fortes generated by the 4 Stability Analysis
brake friction coefficientu, considering the Coulomb’s friction The study can be divided in two parts. The first one concerns
law T=w.N. the static problem: the steady state operating point for the full set
Grabbing vibration results from coupling between the torsionaf nonlinear equations is obtained by solving them at the equilib-
mode k,,m,) of the front axle and the normal modk,(m,) of rium point. Stability is investigated by calculating the Jacobian of
the brake control. An important feature of this mechanism is thibe system at the equilibrium point. The second step is the esti-
angle 0 between the resulting force at the friction contact and thmation of the limit cycle. The nonlinear dynamic equations can be
normal direction of the sliding surface. This angle can be definéntegrated numerically in order to obtain a time-history response
by geometrical means and can also appear due to geometriaadl the limit cycle. However this procedure is too much time
faults. In order to simulate braking system placed crosswise duecmnsuming. So one proposes a hew approach, called the Complex
overhanging caused by static force effect, one has to consider Nenlinear Modal AnalysiSCNLMA) in order to obtain the limit
moving belt slopes with an angl¢ This mechanism is based oncycle (Boudot[11-12, Sinou[13]).
dynamic coupling due to buttressing motion. This slope couplesThe equilibrium pointx, of Eg. (4) is obtained by solving the
the normal and tangential degree-of-freedom induced by the brakenlinear static equations for a given net brake hydraulic pressure.
friction coefficient: effectively, the direction of motion of the massThis equilibrium point satisfies the following conditions:
m, is indicated by this angle to the disk surface, and the two K x— F+F 5
components are constraint to remain in contact and are coupled Xo=F+Fyi(Xo) ®)
together by reaction fordd and friction forceT=uN, whereuis  One notes that there can be more than one steady-state operating
the friction coefficient. point at a given net brake hydraulic pressure, since the sprag-slip
The braking forcer 4 transits through the braking commandgequations are nonlinear.
that has a nonlinear behavior. Therefore, we consider the possibilThe stability is investigated by calculating the Jacobian of the
ity of having a nonlinear contribution. Then, one can express thégstem at the equilibrium points. The eigenvalues of the constant
nonlinear stiffness as a quadratic and cubic polynomial in thmatrix J provide information about the local stability of the equi-
relative displacement: librium point x,. If all eigenvalues of the Jacobian matrix have a
B 2 negative real part, the system is stable and one does not have
Ki=kutkip A+kis.A (1) vibration. If one root has a positive real part, one has an unstable
Ko =Koy + Kop. 0+ Koz 62 root and vibration. The imaginary part of this root represents the
frequency of the unstable mode.
whereA is the relative displacement between the normal displace-Using the base parameters defined previously, the computations
ment in the y-direction of the mass, and the mass, (one has are conducted with respect to the brake friction coefficient. The
A=y-Y), and é the transnational displacement defined by thelopf bifurcation point is detected fqi,=0,204.
frictional x-direction of the masm, (one hass=X). The nonlin- A representation of the evolution of frequencies and the asso-
ear dynamic behavior of the brake command of the systeciated real parts against brake friction coefficient are plotted in

ijk
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Fig. 7 Stability analysis as a function of the braking force
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notes that the nonlinear stiffnegs, and the brake forcé& e
have only small influences on the stability of the brake system, as
shown in Figs. 7 and 8.

15 STABLE UNSTABLE

5 Complex Nonlinear Problem

The linear stability analysis of the preceding section gives the
condition of stability. In the unstable region, any small distur-
bance will cause the motion to diverge from steady state equilib-
rium. In order to conduct a complex nonlinear analysis and to
study the behavior in the unstable region, it is necessary to con-
_ g - sider complete expressions of the nonlinear forces. The complete
STABLE nonlinear expressions of the nonlinear forces are expressed at the

equilibrium pointx, for small perturbations<. One hasx=x,
+X. The complete non-linear equations can be written as follow:
00 05 1 15 5 M.X+ C.x+K.x=Py X) (6)
k11 (N/m) x10°  WwhereX, x andX are the acceleration, velocity, and displacement
response two-dimensional vectors of the degrees-of-freedom, re-
Fig. 8 Stability analysis as a function of the mass m, and the  spectively.M is the mass matrixC is the damping matrix ani
stiffness ki, is the stiffness matrixPy, is the nonlinear force due to net brake
hydraulic pressure and nonlinear stiffness. It contains the linear
and nonlinear terms about the equilibrium point for small pertur-
bations.
Fig. 2 and in Fig. 3, respectively. The system is unstableufor  The nonlinear sprag-slip equation about the equilibrium point
>uo and stable foru<uo. Moreover, the frequency, of the  x,={X, Y,}T for small perturbationg={X Y}T can be expressed
unstable mode obtained fqi=u, is near 50 Hz. There is a as
perfect correlation with experiment tests where grabbing vibration

m1 (kg)

0.5r

is in the 40—70 Hz range. 2 2 2 2

Moreover, it is possible to perform a stability analysis usingy s+ C x+K x= I3 X+ ik 3 3 X
two parameters. The evolutions of stable and unstable regions .21 121 @77 .21 ,21 kgl @ =77k
versus two specific parameters are shown in Figs. 4-9. It is ob- @)

iséesrvser? Otvr\}atthsgiitg,:gﬁilli; (C:ng Fé)lgxaﬁ)trggsngypggiwgérslcigetsk:gnbsrt gé_we notes thak is.the stif‘fness.matrix containing the terms qf the
friction, stiffness, angle and mass. The most important design st stn‘fness matrix a”"i'j the “n?jfr terms @y, at_ the equilib-
rameters are the brake friction coefficient, the linear stiffiggs UM Point. The vectord, andf are the coefficients of the
and the angl®. To put it more precisely, decreasing brake frictioffluadratic and cubic terms, respectively, due to the non-linear stiff-
coefficient reduces the unstable region, as illustrated in Figs. 4 di¢FS about the equilibrium point. In order to obtain time-history
5. This is one way to stabilize the brake system. The afdgle €SPONses, the comp!ete set of nonllnegr dynamic equations has to
also important in the stabilization of the system, as shown in Fig‘.9 integrated numerically. However this procedure is time con-
4 and in Fig. 6. Moreover, increasing or decreasing stiffness animing, when parametric design studies are needed. So the Com-
mass have some effect on the stable region, as illustrated in Fig$X Nonlinear Modal Analysis will be presented in order to ob-
4-7 and Fig. 9; decreasing both linear stiffnégsand massn, in the limit cycle.

reduces the unstable region, as indicated in Fig. 9. Therefore, ond Order to use this new approach, the nonlinear equations are
written with the state variables

4 4 4
y:A-Y"‘El 21 ne)-Yi -Yj+2 > 78 Yy Yk (8)
i=1 j=

100 y 4
i=1 j=1 k=1
 UNSTABLE _
80r N E N - A C M -1 K 0
where y={xx} ', =— . '
y={xx} - o 1
= 60 _ _
< [ Mg, g [ Mg
2 = o lo] &M of ol
8 STABILE i i i i i
L 400 o ABLE 1, andnl; are quadratic and cubic non-linear terms of the state
variables, respectively.
, Finally, the problem can be put into Jordan normal form by
20+ » - means of the eigenbasis. Since, one considers here the physically
interesting case of the stable equilibrium losing stability; the pre-
vious system can be written in the form

0 i 1 i L
1 15 2 25 o
K12 (N/m?) 10 z=J.z+FNL(2) 9)
wherel is the linear matrix andFNL(z) defined the vector of the

Fig. 9 Stability analysis as a function of the braking force non-linear terms. It may be observed that the steps involved in

i transforming the nonlinear second order equations as expressed in
Forake @nd the stiffness kj,



physical coordinates into a first-order Jordan form can be compt 1.6
tationally demanding, especially if many degrees of freedom ar
involved (Sridhar and Jordaf24]). 141

1.2t
6 The Method of Equivalent Linearization

In order to obtain the one-periodic response of a nonlinear sy
tem, it is possible to replace the nonlinear system by an equivale 8l
linear system. This method is based on the well-known technique ™
of equivalent linearization of Kryloff and Bogoliubo\25]. The
principle of this method to substitute the nonlinear system by i
linear system. This associated linear system is sought such that t*
difference between the two systems is minimized. Then, the solt 0.4 \
tion of the associated linear system is taken as an approximatic
of the original problem. lwaf19] extended the method of equiva-  0-2]
lent linearization to apply to multi-degree-of-freedom systems .
Several question_s, pertaining to the existence and uniquene: 00 0.5 1 15 2 25 3 35 4
have been examined by Spanos and h26+—28]. Iterations of p

One considers the nonlinear differential equat{®n with the
non-linear vector functiorrNL(z). The equivalent linear system Fig. 10 Evolution of the real part of the unstable eigenvalue
may be expressed in the form

part

1+

lution of re:

0.6

{'/¢]

2=J72+1"% (10) eigenvaluex(p) and the associated deformati@g(p) that lead

J' is the equivalent linear matrix. It is obtained by minimizing th%oetggtztiﬁgznv%yegngg(dF;%i%llutlon of the system; these values wil

differencee between the nonlinear equati@) and the equivalent

. - ; . By i ting th lup=p+ db idering th
linear equation(10) for everyZ(t), where ¢ is the difference y Incrementing e valug= pr op and by considering the

equivalente linearized systef@9) of the nonlinear systeni28)

- for everyZ(t) = p(Zy(p)e'“Pt+Z(p)e (™Y, obtained by us-
e=FNL(Z)-J' () (11) ing the concept of equivalent linearization, one obtains a new

The minimization ofe is performed according to the criterionlinearized system. The previous eigenvalugp) becomesk(p

Min(f2™“€T€). The method used to solve the optimization prob+ 9P) and the associated eigenveci(p+ op). The real part of

lem is the least-square method. In place of the mean square crifi€ €igenvalue\(p) determined the stability of the equivalent

rion specified previously, other criterion can be used as welil€arized system for the amplitude If the eigenvalues of the

However, a comparative study of the most commonly used critef|3&@rized system at the equilibrium point are complex, one hav-

has shown that there is no significant superiority in terms of afftd Null real part and the other negative real part, the system, the

proximate solution accuracy of any specific criterion over the otiMPlitudep corresponds to the amplitude of the stationary peri-
ers(lwan [27]). odic solution of the non-linear system, and[N{p)] is the fre-

quency of the nonlinear system.
This method, called the Complex Nonlinear Modal Analysis

7 The Complex Nonlinear Modal Analysis (Boudot[11-12, Sinou[13])is applied to obtain the limit cycles

One has to consider a unstable nonlinear autonomous systOf the nonlinear equatioiL0). The evolution of the real part and

One supposes that the eigenvalues of the linearized system at evl%lu;fg lolf the nonlinear associated frequency are given in
equilibrium point are complex, one having a positive real part, an THe stationar.y periodic solution of the system and the limit
the _o?her_ a negative one. One can consm_ie_r th"’.‘t all the mo@%les are given Figs. 12 and 13. The limit cycles obtained by the
participations of the modes are then negligible in front of the
unstable mode. The unstable solution curve of the system can be
simply written while utilizing only this unstable modé&t)
=Z,eM+Ze M \ is the eigenvalue having a positive real par
andZ, is the eigenvector corresponding to the eigenvalu€he
real part of the eigenvalue then characterizes the stability of the 319
system and the imaginary part corresponds to the frequency of
associated instability.

Next, one considers the stable periodic solution of the equiv
lent linearized system; the modal participations of the stab@
modes are considered negligible compared to the modal particig 318
tion of the unstable mode. So this stable periodic solution can &

319.5¢

written as follow §317.5-
A(t)=p(Zo(p) € *P+ Zo(p)e1(PY) 12 © -

wherep defines the amplitude of the stationary periodic solutio

of the systemw(p) andZy(p) the associated frequency and ei-
genvector, respectively. 316.5F

Now, in order to obtain the value ¢f, w(p) andZy(p), one
considers the eigenvalueand the eigenvect of the unstable 316 i ‘ :
_ i - 0.5 1 1.5 2 25 3 35 4
mode forp=0. This eigenvalue and this eigenvector are dete Iterations of p
mined by considering the linearized system at the equilibrium
point. One notices that fgp=0, the eigenvalua has a positive Fig. 11 Evolution of the imaginary part of the unstable
real part. The objective is to be able to follow the evolution of theigenvalue




CNLM-Analysis are compared with those obtained via the inte 151

gration of the full nonlinear system.

Then, some indications have been observed by varying o
parameter for the base values defined previously. It may be no
that the limit cycle is defined near the Hopf bifurcation point b

using the brake friction coefficient as an unfolding parameter. It 5l

observed that the level amplitude is a very complex probler_
Indeed, the evolution of limit cycle amplitude is not linear witF'g
the evolution of specific parameter. Increasing or decreasing le'=
amplitude versus linear evolution of a specific parameter can
observed. This is further reflected Figs. 14 and 15. Limit cycle
increase and decrease with constant increasing of the ahgle
Parametric studies of the evolution of limit cycles are a comple

problem.

dx/d

8 Summary and Conclusion

A nonlinear model for the analysis of mode heavy truck grat
bing has been developed. The stability analysis indicates that sys-

——

aa

tem instability can occur with a constant friction coefficient. To Fig. 14 X-limit cycle = u,/100 as a function of angle @

further understanding of the effects of varying the parameters,
stability analysis using two parameter evolutions has been rea-

127
1 -
8_
0 =0.3rad
0.5 4r = 0.4rad
e
— £
R = 0f
E S
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X 4t
T
-05} Ml
160a 20.02 0 0.02 0.04
Y (m)
_14 4
i s Fig. 15 Y-limit cycle g=pu/100 as a function of angle @
X
Fig. 12 X-limit cycle for p= uo/100 . . . - -
g y p=po lised. Changes in stiffness, brake friction coefficient, and angle of
the sprag-slip phenomena may be significant on stability.
Moreover, this paper presents the Complex Nonlinear Modal
8- Analysis in order to the limit cycle amplitudes. Excellent agree-
P .. ments are found between the results obtained by the CNLM-
6h /” = Analysis and the complete solution of the nonlinear system. How-
NS ever, the CNLM-Analysis is very simple and requires few
al / > computer resources. The CNLM-Analysis is very interesting when
/ \ time history response solutions of the full set of nonlinear equa-
| f tions are time consuming to perform when extensive parametric
@ 2 i h design studies are needed.
£ i |
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6F o Nomenclature
s ; x = scalar
B0z 002 001 0 0.01 0.02 0.03 X = vector ,
Y (m) x = vector of velocity
X = vector of acceleration
Fig. 13 Y-limit cycle for u~ =mu 4/100 Xo = equilibrium point



small perturbation

Jacobian matrix of the system
vector of linear and nonlinear terms

= brake friction coefficient
= brake friction coefficient at the Hopf bifurcation point

X =
C = damping matrix
K = stiffness matrix
M = mass matrix
J =
F = vector force
Pne =
0 = sprag-slip angle
w=
Mo
fd)

= coefficients of quadratic nonlinear terms

f('g = coefficients of cubic nonlinear terms

1122) = coefficients of quadratic nonlinear terms in state vari-

ables
ijk
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0
my

Koy(1+ u tan@) +ky (tarf 6— ptand)  kyy(—tand+ u)
- klltan0 kll

(—tanf+ u) (kX tand—Y)2+k 5(X tans—Y)?3)
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