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Application of a Nonlinear Modal Instability Approach to Brake Systems

A method, called the Complex NonLinear Modal Analysis (CNLMA), is proposed for the calculation of the periodic solutions of nonlinear 
mechanical systems with continued nonlinearities. The equivalent linearization concept and the notion of nonlinear complex modes are 
applied in order to analyze the steady-state responses of autonomous nonlinear systems. The CNLM-Analysis appears very interesting in 
regard to computational time; it also necessitates very few computer resources. This method was applied to study insta-bility phenomena in 
a nonlinear model with a constant brake friction coefficient.
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1 Introduction
In recent years, nonlinear vibration phenomena have been

ceiving increasing attention. Parametric and nonparametric t
niques have been intensively studied by many authors. Gene
speaking, the nonlinear problem can be solved by techniques
as the harmonic balance method~Pierre, Ferri and Dowell@1#,
Cameron and Griffin@2#!, the perturbation methods~Nayfeh and
Mook @3#!, the Galerkin’s method, or numerical integration. R
cently, the reduction and simplification of nonlinear systems h
been studied by different strategies: the center manifold appro
and normal form approach~Nayfeh and Balachandran@4#, Guck-
henheimer and Holmes@5#, Jézéquel and Lamarque@6#, Yu @7#,
and Sinou, Thouverez and Je´zéquel @8#!, the Pade´ approximants
~Baker and Graves-Morris@9# and Brezinski@10#, and Sinou,
Thouverez and Je´zéquel @8#! have been used as simplificatio
methods in many studies. These techniques allow to obtain a
plified system, without loosing the dynamics of the original sy
tem, as well as the contributions of non-linear terms. Using th
techniques, one has a reduction, simplification, or approxima
of the original non-linear system. However, if these techniq
have been applied in scientific areas such as engineering,
procedures may have problems of mathematical complexity, s
age requirements, and extreme computation time.

In order to avoid these difficulties, a new method for the cal
lation of the periodic solutions of nonlinear systems is propo
~Boudot@11–12#, and Sinou@13#!. It is based on the notion of th
equivalent linearization concept, and it introduces the notion
nonlinear complex modes. In recent years, many studies des
the notion of the nonlinear normal mode and the nonlinear nat
frequencies associated~Rosenberg @14–15#, Szemplinska-
Stupnicka@16–17#, Shaw and Pierre@18#!.

The equivalent linearization concept, as proposed by Iwan@19#,
can be applied to nonlinear autonomous systems in order to ob
nonlinear modal parameters. This method is based on the min
zation of the difference between the nonlinear dynamic sys
and its equivalent linear dynamic system. The procedure of
CNLM-Analysis has been tested in the case of autonomous
tem that may exhibit dynamic as well as static instabilities.

This paper presents the application of the CNLM-Analysis fo
brake noise vibration. Firstly, some basic concepts of friction w
be introduced, and a model for the analysis of grabbing in a
mobile braking systems will be presented. Then, results from
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bility analysis will be presented. The stability analysis will b
performed by determining the eigenvalues of the jacobian ma
of the linearized system at the equilibrium point. A paramet
study with linear stability theory will be conducted in order
determine the effect of system parameters on stability. Next,
Complex Nonlinear Modal Analysis~CNLMA! will be described.
This method will be used in order to obtain the limit cycle of th
non-linear system and to study the behavior of the system in
unstable region. Results from the Complex Nonlinear Mo
Analysis will be compared with results obtained by integrating
full original system in order to validate the CNLM-Analysis. F
nally, parametric studies using the CNLM-Analysis will be co
ducted in order to determine the effect of system parameters
the evolution of the limit cycle oscillations.

2 Background
Brake systems are often susceptible to friction-induced s

excited vibrations. Under certain conditions, the steady state s
ing motion becomes unstable and small perturbations grow w
time. Due to the non-linearities, the perturbation growth is limit
and the limit cycle oscillations appear. It is desirable to underst
the mechanisms that cause friction-induced self-excited vibrat
in order to prevent their occurrence. A greater concentration
work on the brake noise and vibrations appeared during the
years and different types of self-excited vibrations have been
ported in the literature. There is no unique mathematical mo
and theory in order to explain the mechanisms and dynamic p
nomena associated with friction. Effectively, there are differe
mechanisms that can excite these vibrations. According to Ibra
@20#, Oden and Martins@21#, Crolla and Lang@22#, the different
mechanisms proposed in the literature as responsible for frict
induced vibrations fall into four classes: stick-slip, variable d
namic friction coefficient, sprag-slip~Spurr @23#!, and coupling
mechanism. The first two approaches rely on changes in the
tion coefficient with relative sliding speed affecting the syste
stability. The last two approaches use kinematic constraints
modal coupling in order to develop the instability; in these cas
instability can occur with a constant brake friction coefficient.

3 Analytical Model
In a previous work@8#, one presented heavy trucks grabbing.

order to find design recommendations for brakes avoiding gr
bing vibration, it is necessary to work with mechanical mod
displaying design features of a brake.

According to experimental investigations, the dynamic char
teristics of the whole front axle assembly is concerned, even if
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source of grabbing is located in the braking system. Moreo
there is only a very small variation of the brake friction coefficie
during a grabbing vibration event, as described by Boudot@12#.
So the variation of the brake friction coefficient can be assume
be negligible in this case, although this is not always the case
modelling brake systems. This context is selected because
complex, both in order to be qualitatively predictive, and sim
in order to allow sensitivity analysis. In this study, the mechani
used in order to explain the grabbing is a classical mechan
brake judder is modelled as a flutter instability due to the n
conservative aspect of Coulomb’s friction. The dynamic system
defined in Fig. 1. One assumes that the brake friction coefficienm
is constant, and that the tangential forceT is generated by the
brake friction coefficientm, considering the Coulomb’s friction
law T5m.N.

Grabbing vibration results from coupling between the torsio
mode (k2 ,m2) of the front axle and the normal mode (k1 ,m1) of
the brake control. An important feature of this mechanism is
angleu between the resulting force at the friction contact and
normal direction of the sliding surface. This angle can be defi
by geometrical means and can also appear due to geome
faults. In order to simulate braking system placed crosswise du
overhanging caused by static force effect, one has to conside
moving belt slopes with an angleu. This mechanism is based o
dynamic coupling due to buttressing motion. This slope coup
the normal and tangential degree-of-freedom induced by the b
friction coefficient: effectively, the direction of motion of the ma
m2 is indicated by this angle to the disk surface, and the t
components are constraint to remain in contact and are cou
together by reaction forceN and friction forceT5mN, wherem is
the friction coefficient.

The braking forceFbraketransits through the braking comman
that has a nonlinear behavior. Therefore, we consider the poss
ity of having a nonlinear contribution. Then, one can express
nonlinear stiffness as a quadratic and cubic polynomial in
relative displacement:

k15k111k12.D1k13.D2

(1)
k25k211k22.d1k23.d2

whereD is the relative displacement between the normal displa
ment in the y-direction of the massm1 and the massm2 ~one has
D5y2Y), and d the transnational displacement defined by t
frictional x-direction of the massm2 ~one hasd5X). The nonlin-
ear dynamic behavior of the brake command of the sys

Fig. 1 Dynamic model of braking system
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(k1 ,m1), and the non-linear dynamic behavior of the front ax
assembly and the suspension (k2 ,m2) are concerned, respectively

The three equations of motion can be expressed as:

5
m1Ÿ1c1~Ẏ2 ẏ!1k11~Y2y!1k12~Y2y!21k13~Y2y!3

52Fbrake

m2Ẍ1c2Ẋ1k21X1k22X
21k23X

352N sinu1T cosu

m2ÿ1c1~ ẏ2Ẏ!1k11~y2Y!1k12~y2Y!21k13~y2Y!3

5N cosu1T sinu
(2)

Using the transformationsy5X tanu andx5$X Y%T, and consid-
ering the Coulomb’s friction law T5m.N, the nonlinear
2-degrees-of-freedom system has the form

M.ẍ1C.ẋ1K.x5 F1FNL (3)

whereẍ, ẋ andx are the acceleration, velocity, and displaceme
response 2-dimensional vectors of the degrees-of-freedom
spectively.M is the mass matrix,C is the damping matrix andK
is the stiffness matrix.F is the vector force due to brake comman
and FNL contains moreover the non-linear stiffness terms. T
values of the parameters are given in Appendix A. The values
these matrices and vectors are given Appendix B.

The general form of the equations can be expressed in the
lowing way:

M.ẍ1C.ẋ1K.x5 F1(
i 51

2

(
j 51

2

f
„2…
ij .xi .xj

1(
i 51

2

(
j 51

2

(
k51

2

f ~3!
ijk .xi .xj .xk (4)

where f
„2…
ij and f

„3…
ijk are the vectors of quadratic and cubic no

linear terms ofFNL , respectively.M, C andK are 232 matrices.

4 Stability Analysis
The study can be divided in two parts. The first one conce

the static problem: the steady state operating point for the full
of nonlinear equations is obtained by solving them at the equi
rium point. Stability is investigated by calculating the Jacobian
the system at the equilibrium point. The second step is the e
mation of the limit cycle. The nonlinear dynamic equations can
integrated numerically in order to obtain a time-history respo
and the limit cycle. However this procedure is too much tim
consuming. So one proposes a new approach, called the Com
Nonlinear Modal Analysis~CNLMA! in order to obtain the limit
cycle ~Boudot @11–12#, Sinou@13#!.

The equilibrium pointx0 of Eq. ~4! is obtained by solving the
nonlinear static equations for a given net brake hydraulic press
This equilibrium point satisfies the following conditions:

K.x05F1FNL~x0! (5)

One notes that there can be more than one steady-state ope
point at a given net brake hydraulic pressure, since the sprag
equations are nonlinear.

The stability is investigated by calculating the Jacobian of
system at the equilibrium points. The eigenvalues of the cons
matrix J provide information about the local stability of the equ
librium point x0 . If all eigenvalues of the Jacobian matrix have
negative real part, the system is stable and one does not
vibration. If one root has a positive real part, one has an unst
root and vibration. The imaginary part of this root represents
frequency of the unstable mode.

Using the base parameters defined previously, the computa
are conducted with respect to the brake friction coefficient. T
Hopf bifurcation point is detected form050,204.

A representation of the evolution of frequencies and the as
ciated real parts against brake friction coefficient are plotted



Fig. 2 Coupling of two eigenvalues

Fig. 3 Evolution of the real part of two coupling modes

Fig. 4 Stability analysis as a function of the brake friction co-
efficient and the sprag-slip angle
3

Fig. 5 Stability analysis as a function of the brake friction co-
efficient and the stiffness k 11

Fig. 6 Stability analysis as a function of the stiffness k 11 and
the sprag-slip angle

Fig. 7 Stability analysis as a function of the braking force
Fbrake and the stiffness k 11
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Fig. 2 and in Fig. 3, respectively. The system is unstable fom
.m0 and stable form,m0 . Moreover, the frequencyv0 of the
unstable mode obtained form5m0 is near 50 Hz. There is a
perfect correlation with experiment tests where grabbing vibra
is in the 40–70 Hz range.

Moreover, it is possible to perform a stability analysis usi
two parameters. The evolutions of stable and unstable reg
versus two specific parameters are shown in Figs. 4–9. It is
served that stability is a complex problem. Parametric design s
ies show that stability can be altered by changes in the br
friction, stiffness, angle and mass. The most important design
rameters are the brake friction coefficient, the linear stiffnessk11
and the angleu. To put it more precisely, decreasing brake frictio
coefficient reduces the unstable region, as illustrated in Figs. 4
5. This is one way to stabilize the brake system. The angleu is
also important in the stabilization of the system, as shown in F
4 and in Fig. 6. Moreover, increasing or decreasing stiffness
mass have some effect on the stable region, as illustrated in
4–7 and Fig. 9; decreasing both linear stiffnessk11 and massm1
reduces the unstable region, as indicated in Fig. 9. Therefore,

Fig. 8 Stability analysis as a function of the mass m 1 and the
stiffness k 11

Fig.  9 Stability analysis as a function of the braking force 
Fbrake and the stiffness k12
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notes that the nonlinear stiffnessk12 and the brake forceFbrake
have only small influences on the stability of the brake system
shown in Figs. 7 and 8.

5 Complex Nonlinear Problem
The linear stability analysis of the preceding section gives

condition of stability. In the unstable region, any small distu
bance will cause the motion to diverge from steady state equ
rium. In order to conduct a complex nonlinear analysis and
study the behavior in the unstable region, it is necessary to c
sider complete expressions of the nonlinear forces. The comp
nonlinear expressions of the nonlinear forces are expressed a
equilibrium point x0 for small perturbationsx̄. One hasx5x0
1 x̄. The complete non-linear equations can be written as follo

M.xJ1C.xG1K.x̄5PNL„x̄… (6)

wherexJ , xG and x̄ are the acceleration, velocity, and displaceme
response two-dimensional vectors of the degrees-of-freedom
spectively.M is the mass matrix,C is the damping matrix andK
is the stiffness matrix.PNL is the nonlinear force due to net brak
hydraulic pressure and nonlinear stiffness. It contains the lin
and nonlinear terms about the equilibrium point for small pert
bations.

The nonlinear sprag-slip equation about the equilibrium po
x05$X0 Y0%

T for small perturbationsx̄5$X̄ Ȳ%T can be expressed
as

M.xJ1C.xG1K̃ .x̄5(
i 51

2

(
j 51

2

f
„2…
ij .x̄ j .x̄ j1(

i 51

2

(
j 51

2

(
k51

2

f
„3…
ijk .x̄i .x̄ j .x̄k

(7)

One notes thatK̃ is the stiffness matrix containing the terms of th
first stiffness matrixK and the linear terms ofPNL at the equilib-
rium point. The vectorsf

„2…
ij and f

„3…
ijk are the coefficients of the

quadratic and cubic terms, respectively, due to the non-linear s
ness about the equilibrium point. In order to obtain time-histo
responses, the complete set of nonlinear dynamic equations h
be integrated numerically. However this procedure is time c
suming, when parametric design studies are needed. So the C
plex Nonlinear Modal Analysis will be presented in order to o
tain the limit cycle.

In order to use this new approach, the nonlinear equations
written with the state variables

ẏ5A.y1(
i 51

4

(
j 51

4

h
„2…
ij .yi .yj1(

i 51

4

(
j 51

4

(
k51

4

h
„3…
ijk .yi .yj .yk (8)

where y5$x̄xG%T, A52 FC M

I 0 G21

"F K̃ 0

0 I
G ,

h
„2…5FC M

I 0 G21

"F f„2…0 G , and h
„3…5FC M

I 0 G21

"F f„3…0 G .
h
„2…
ij andh

„3…
ijk are quadratic and cubic non-linear terms of the st

variables, respectively.
Finally, the problem can be put into Jordan normal form

means of the eigenbasis. Since, one considers here the phys
interesting case of the stable equilibrium losing stability; the p
vious system can be written in the form

ż5J.z1FNL„z… (9)

whereJ is the linear matrix andFNL„z… defined the vector of the
non-linear terms. It may be observed that the steps involved
transforming the nonlinear second order equations as express
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physical coordinates into a first-order Jordan form can be com
tationally demanding, especially if many degrees of freedom
involved ~Sridhar and Jordan@24#!.

6 The Method of Equivalent Linearization
In order to obtain the one-periodic response of a nonlinear

tem, it is possible to replace the nonlinear system by an equiva
linear system. This method is based on the well-known techni
of equivalent linearization of Kryloff and Bogoliubov@25#. The
principle of this method to substitute the nonlinear system b
linear system. This associated linear system is sought such tha
difference between the two systems is minimized. Then, the s
tion of the associated linear system is taken as an approxima
of the original problem. Iwan@19# extended the method of equiva
lent linearization to apply to multi-degree-of-freedom system
Several questions, pertaining to the existence and uniquen
have been examined by Spanos and Iwan@26–28#.

One considers the nonlinear differential equation~9! with the
non-linear vector functionFNL„z…. The equivalent linear system
may be expressed in the form

zP5Jz̃1J8z̃ (10)

J8 is the equivalent linear matrix. It is obtained by minimizing th
difference« between the nonlinear equation~9! and the equivalent
linear equation~10! for every z̃„t…, where« is the difference

«5FNL„z̃…2J8„z̃… (11)

The minimization of« is performed according to the criterio
Min( *0

2p/v«T«). The method used to solve the optimization pro
lem is the least-square method. In place of the mean square c
rion specified previously, other criterion can be used as w
However, a comparative study of the most commonly used crit
has shown that there is no significant superiority in terms of
proximate solution accuracy of any specific criterion over the o
ers ~Iwan @27#!.

7 The Complex Nonlinear Modal Analysis
One has to consider a unstable nonlinear autonomous sys

One supposes that the eigenvalues of the linearized system a
equilibrium point are complex, one having a positive real part, a
the other a negative one. One can consider that all the m
participations of the modes are then negligible in front of t
unstable mode. The unstable solution curve of the system ca
simply written while utilizing only this unstable mode:z̃(t)
5Z0e

lt1Z0e
2lt. l is the eigenvalue having a positive real pa

andZ0 is the eigenvector corresponding to the eigenvaluel. The
real part of the eigenvaluel then characterizes the stability of th
system and the imaginary part corresponds to the frequency o
associated instability.

Next, one considers the stable periodic solution of the equ
lent linearized system; the modal participations of the sta
modes are considered negligible compared to the modal partic
tion of the unstable mode. So this stable periodic solution can
written as follow

z̃~ t !5p~Z0~p!eiv~p!t1Z0~p!e2 iv~p!t! (12)

wherep defines the amplitude of the stationary periodic solut
of the system,v(p) and Z0(p) the associated frequency and e
genvector, respectively.

Now, in order to obtain the value ofp, v(p) and Z0(p), one
considers the eigenvaluel and the eigenvectorZ0 of the unstable
mode for p50. This eigenvalue and this eigenvector are de
mined by considering the linearized system at the equilibri
point. One notices that forp50, the eigenvaluel has a positive
real part. The objective is to be able to follow the evolution of t
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eigenvaluel(p) and the associated deformationZ0(p) that lead
to the stationary periodic solution of the system; these values
be obtained when Re@l(p)#50.

By incrementing the valuep5p1dp and by considering the
equivalente linearized system~29! of the nonlinear system~28!
for every z̃(t)5p(Z0(p)eiv(p)t1Z0(p)e2 iv(p)t), obtained by us-
ing the concept of equivalent linearization, one obtains a n
linearized system. The previous eigenvaluel(p) becomesl(p
1dp) and the associated eigenvectorZ0(p1dp). The real part of
the eigenvaluel(p) determined the stability of the equivalen
linearized system for the amplitudep. If the eigenvalues of the
linearized system at the equilibrium point are complex, one h
ing null real part and the other negative real part, the system,
amplitudep corresponds to the amplitude of the stationary pe
odic solution of the non-linear system, and Im@l(p)# is the fre-
quency of the nonlinear system.

This method, called the Complex Nonlinear Modal Analys
~Boudot@11–12#, Sinou@13#! is applied to obtain the limit cycles
of the nonlinear equation~10!. The evolution of the real part and
the evolution of the nonlinear associated frequency are given
Figs. 10 and 11.

The stationary periodic solution of the system and the lim
cycles are given Figs. 12 and 13. The limit cycles obtained by

Fig. 10 Evolution of the real part of the unstable eigenvalue

Fig. 11 Evolution of the imaginary part of the unstable
eigenvalue
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CNLM-Analysis are compared with those obtained via the in
gration of the full nonlinear system.

Then, some indications have been observed by varying
parameter for the base values defined previously. It may be n
that the limit cycle is defined near the Hopf bifurcation point
using the brake friction coefficient as an unfolding parameter.
observed that the level amplitude is a very complex proble
Indeed, the evolution of limit cycle amplitude is not linear wi
the evolution of specific parameter. Increasing or decreasing l
amplitude versus linear evolution of a specific parameter can
observed. This is further reflected Figs. 14 and 15. Limit cyc
increase and decrease with constant increasing of the angu.
Parametric studies of the evolution of limit cycles are a comp
problem.

8 Summary and Conclusion
A nonlinear model for the analysis of mode heavy truck gra

bing has been developed. The stability analysis indicates that
tem instability can occur with a constant friction coefficient.
further understanding of the effects of varying the paramet
stability analysis using two parameter evolutions has been

Fig. 12 X-limit cycle for m̄Äm0Õ100

Fig.  13 Y-limit cycle for m¯ Äm 0Õ100 
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lised. Changes in stiffness, brake friction coefficient, and angle
the sprag-slip phenomena may be significant on stability.

Moreover, this paper presents the Complex Nonlinear Mo
Analysis in order to the limit cycle amplitudes. Excellent agre
ments are found between the results obtained by the CNL
Analysis and the complete solution of the nonlinear system. Ho
ever, the CNLM-Analysis is very simple and requires fe
computer resources. The CNLM-Analysis is very interesting wh
time history response solutions of the full set of nonlinear eq
tions are time consuming to perform when extensive parame
design studies are needed.
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Nomenclature

x 5 scalar
x 5 vector
ẋ 5 vector of velocity
ẍ 5 vector of acceleration

x0 5 equilibrium point

Fig. 14 X-limit cycle m̄Äm0Õ100 as a function of angle u

Fig. 15 Y-limit cycle m̄Äm0Õ100 as a function of angle u
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x̄ 5 small perturbation
C 5 damping matrix
K 5 stiffness matrix
M 5 mass matrix
J 5 Jacobian matrix of the system
F 5 vector force

PNL 5 vector of linear and nonlinear terms
u 5 sprag-slip angle
m 5 brake friction coefficient

m0 5 brake friction coefficient at the Hopf bifurcation poin
f
„2…
ij 5 coefficients of quadratic nonlinear terms

f
„3…
ijk 5 coefficients of cubic nonlinear terms

h
„2…
ij 5 coefficients of quadratic nonlinear terms in state va

ables
h
„3…
ijk 5 coefficients of cubic nonlinear terms in state variab

Appendix A: Parameter Values

Fbrake51 N 5 brake force
m151 kg 5 equivalent mass of first mode
m251 kg 5 equivalent mass of second mode

c155 N/m/sec5 equivalent damping of first mode
c255 N/m/sec5 equivalent damping of second mode

k1151.105 N/m 5 coefficient of linear term of stiffnessk1

k1251.106 N/m2 5 coefficient of quadratic term of
stiffnessk1

k1351.106 N/m3 5 coefficient of cubic term of stiffnessk1

k2151.105 N/m 5 coefficient of linear term of stiffnessk2

k2251.105 N/m2 5 coefficient of quadratic term of
stiffnessk2

k2351.105 N/m3 5 coefficient of cubic term of stiffnessk2
u50,2 rad 5 sprag-slip angle

Appendix B: Values of M, C, K, F and FNL

The expressions of the matricesM, C, K, F andFNL are

M5 Fm2~ tan2 u11! 0

0 m1
G ,

C5Fc1~ tan2 u2m tanu!1c2~11m tanu! c1~2tanu1m!

2c1 tanu c1
G

K5 Fk21~11m tanu!1k11~ tan2 u2m tanu! k11~2tanu1m!

2k11 tanu k11
G ,

F5 H 0
2Fbrake

J
FNL5H (2tanu1m)(k12(X tanu2Y)21k13(X tanu2Y)3)

1k22(11m tanu)X21k23(11m tanu)X3

2k12(Y2X tanu)22k13(Y2X tanu)3
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