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SUMMARY

Nested sampling is a simulation method for approximatingginal likelihoods proposed by
(B00®). We establish that nested sampling has @moxgmation error that vanishes at
the standard Monte Carlo rate(®~'/2), where N is a tuning parameter proportional to the
computational effort, and that this error is asymptotic@aussian. We show that the asymptotic
variance of the nested sampling approximation typicalomgrlinearly with the dimension of the
parameter. We discuss the applicability and efficiency stetw sampling in realistic problems,
and we compare it with two current methods for computing fnaitdikelihood. We propose an
extension that makes it possible to avoid resorting to MCHRIGHtain the simulated points.

Some key word$1CMC, Monte Carlo approximation, mixture of distributigrimportance sampling.

1. INTRODUCTION

Nested sampling was introduced [by Skillidg (2006) as a nigakapproximation method for
integrals of the kind
3= / (y|0)m

when is the prior distribution and.(y|0) is the likelihood. Those integrals are calleddence
in the above papers and they naturally occur as marginalaye$an testing and model choice
(Oeffreyks [ 1939} Robéift, 2401, Chapters 5 and 7), even ththegpairwise nature of those infer-
ential problems, meaning thatis never computeger sebut in relation with another marginal
3/, makes the approximation of the integral ratio (or Bayesofac

Bu = [ Lilm(e)dos | [ Lawlon)malon a6,

amenable to specific approximations (see, €.g., Chen & $18&F;[Gelman & Merjd, 1998).
One important aspect of nested sampling is that it resogsrtalating point®); from the prior

7, constrained t@; having a larger likelihood value than some threshipitie exact principle of
nested sampling is described in the next section. In a bisetidsion [[Chopin & Robérft, 2007),
we raised concerns about the universality and the formadapties of the method. With respect
to the former concern, we pointed out that simulating effitiefrom a constrained distribution
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2

may not always be straightforward, even when the MCMC schemggested by Skillind (20D6)
is used. With respect to the latter one, the convergenceepiep of the method had not been
fully established[ Evahg (2007) showed convergence ingimtity, but called for further work
towards obtaining the rate of convergence and the natuteediniiting distribution.

The purpose of this paper is to investigate both points ptedeabove. Our main contribution
is to establish the convergence properties of the nesteglisanestimates: the approximation
error is dominated by a @V~'/2) stochastic term, which has a limiting Gaussian distributio
and whereN is a tuning parameter proportional to the computationarefiVe also investigate
the impact of the dimensiodh of the problem on the performances of the algorithm. In a Bmp
example, we show that the asymptotic variance of nested|sangstimates grows linearly with
d; this means that the computational cost {8/€)e?), wheree is the selected error bound.

In a second part, we discuss the difficulty to sample from testrained prior. Using MCMC,
as suggested By Skillihg (2G06), could incur a curse of dsiterality, although this pitfall seems
model-dependent in our simulations. Murray’s PhD thes@{2 University College London)
also includes a numerical comparison of nested samplingatliter methods for several models.

Since the ability to simulate from the constrained priorngca@l in the applicability of the
algorithm, we further propose an extension of nested sagptiased on importance sampling,
that introduces enough flexibility so as to perform the c@mséd simulation without resorting to
MCMC. Finally, we examine two alternatives to nested sangpfor computing evidence, both
based on the output of MCMC algorithms. We do not aim at an@sthae comparison with all
existing methods (see, e.g., Chen dtlal., 000, for a braag@w), and restrict our attention
to methods that share the property with nested samplingtiieatame algorithm provides ap-
proximations of both the posterior distribution and the gzl likelihood, at no extra cost. We
provide numerical comparisons between those methods.

2. NESTED SAMPLING A DESCRIPTION
2:1. Principle
We describe briefly here the nested sampling algorithm, agiged in|Skilling (2006). We

useL(0) as a short-hand for the likelihodt(y|6), omitting the dependence gn
Nested sampling is based on the following identity:

1
3= [ e, &)
0
wherep is the inverse of
ol — PT(LO) >1).

Thus,y is the inverse of the survival function of the random vagab{¢), assuming ~ 7 and
1 is a decreasing function, which is the case wliieis a continuous function and has a
connected support. (The representafjos E™[L(6)] holds with no restriction on either or r.)
Formally, this one-dimensional integral could be appratiea by standard quadrature methods,

J
5 = Z(ﬂﬁz‘—1 - ﬂﬁz‘)%‘ 2
i=1

wherep; = ¢(z;),and0 < z; < --- < z1 < zo = 1 is an arbitrary grid ovej0, 1]. (This reduc-
tion in the dimension due to a change of measure can be fouhed earlier numerical literature,
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like Burrow$,[198D.) Functiogp is intractable in most cases however, so ¢his are approxi-
mated by an iterative random mechanism:

— lteration 1: draw independentlyV points 6;; from the prior =, determine 6; =
arg minlgiSN L(Qu), and setp; = L(Hl)

— lteration 2: obtain theV ‘current’ valuest, ;, by reproducing thé, ;'s, except ford; that is
replaced by a draw from the prior distributianconditional uponZ(6) > ¢1; then selects
asf, = arg minlgiSN L(Gg,i), and Setpy = L(92)

— lterate the above step until a given stopping rule is satisfor instance observing very small
changes in the approximaticﬁnor reaching the maximal value @f(¢#) when it is known.

In the above, the value? = »~!(¢;) that should be used in the quadrature approximation
@) is unknown. An interesting property of the generatingoass is however that the random
variables defined by; = ¢! (¢i11) /¢~ (pi) = 27,1/} are independent Betd, 1) variates.
(BO0B®) takes advantage of this property by setting- exp(—i/N), so thatlog z; is the
expectation ofog o1 (ip;). Alternatively to this deterministic schenfe, Skillirfg G§) proposes
arandom schemehere ther;’s are random, by mimicking the law of thgs, i.e.x; .1 = x; - t;,
wheret; ~ Betg N, 1). In both cases the relatiop, = ¢(x;) does not hold; insteads; should
be interpreted as a ‘noisy’ version ofz; ).

We focus on the deterministic scheme in this paper. It seeasonably easy to establish a
central limit theorem and other results for the random sehédmat the random scheme always
produces less precise estimates, as illustrated by tteioly example.

Examplel. Consider the artificial case of a posterior distributiqonad tor (6|y) = exp{—6}
for a specific value of;, derived from the modet () = ¢ exp{—0d60} and L(0) = exp{—(1 —
0)0} /6, so that3 = 1 for every0 < § < 1. Nested sampling can then be implemented with no
MCMC approximation, each netin the running sample being simulated from an exponential
£(0) distribution truncated t¢0, 6, ), 6; being the point with lowest likelihood excluded from the
running sample. A small experiment summarised by Tible fshbat the random scheme is
systematically doing twice as worse than the determinggtieme, both for the variance and for
the mean square error (MSE)(3 — 3)?] criteria. Both quantities decreases(ii1/N).

Table 1. Comparison of the deterministic and random schemes in EbelhiFirst row:
variance,second rowMSE, when using0? replications,s = .1, 5,.9 (left, centre, right)
and a stopping rule chosen asax(L;) < 10733.

N Deterministic  Random N Deterministic  Random N Deterministic  Random
50 325 646 50 46.4 10.5 50 1.81 3.41
327 646 46.5 10.5 1.82 3.41
100 172 307 100 24.7 49.0 100 0.883 0.176
175 308 24.9 50.2 0.249 0.176
500 29.2 57.7 500 5.49 10.1 500 0.180 0.387
29.3 57.7 5.50 11.4 0.181 0.387
10° 17.6 32.7 10° 2.47 4.81 10° 0.090 0.170
17.6 32.9 2.48 4.83 0.091 0.171

All values are multiplied by0~*

2-2. Variations and posterior simulation

Skilling ([2006) points out that nested sampling provideswsations from the posterior dis-
tribution at no extra cost: “the existing sequence of poiitds, 63, - - - already gives a set of
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4

posterior representatives, provided thh is assigned the appropriate importance weight;”.
(The weightw; is equal to the differencer;—; — z;) andL; is equal top;.) This can be justified
as follows. Consider the computation of the posterior etgimn of a given functiory

u(h) = [0 / [ =600 @.

One can then use a single run of nested sampling to obtaimaiss of both the numerator and
the denominator (the latter being the evidecestimated by[[2)). The estimator

> (wioy — x)pif (6:) 3)

=1
of the numerator is a noisy version of

J
> (@i —z)eif (@),
i=1
wheref(1) = E™[f(6)|L(6) = 1], the (prior) expectation of (9) conditional onL(#) = I. This
Riemann sum is, following the principle of nested sampleggestimator of the evidence.

LEMMA 1. Let f(I) = E™[f(0)|L(#) = I] for > 0, then, if f is absolutely continuous,

1 ~
Awmﬂwmm:/ﬂwwﬁ@w- (4)

A proof is provided in Appendix 1. Clearly, the estimateqff) obtained by dividing [{3)
by @) is the estimate obtained by computing the weightedaaee mentioned above. We do
not discuss further this aspect of nested sampling, but oovergence results can be easily
extended to such estimates. In many cases, however, thibwtisin of the weightsv; L; may be
quite skewed, since a certain proportion of points is sitedldrom the prior constrained by a
low likelihood, and such approximations may thus suffenfra large variance.

2-3. Connection with slice sampling

In every situation where simulating independently from toastrained prior is feasible, a
corresponding slice sampler (elg., Robert & Calsglla, [2CGDépter 8) can be implemented with
at most the same computational cost (in the sense that giegethe bound on the likelihood
may induce a diminishing efficiency in computing). Thus, éttings where slice samplers are
slow to converge (e.d. Roberts & Rosenthal, 1998), it idyikkat nested sampling requires a
large computational effort as well. Consider the followieample, adapted from Roberts &
Rosenthal[(1999)L () x exp(—||0]]), andx(8) o |6 ©721(]|0]] < 1), which is rotation
invariant, hencéy = |} exp(—w'/?) dw. Since the maximum afxp(—w'/?) is 1, if we set the
stopping rule for the maximum observed likelihood to be aste99, the numbern of uni-
form simulations that is necessary to get under the litgit= (—log .99)¢ ~ 10~24 is given by
P™(min(6y, . ..,0,) < Bq) ~ 0.95, namelym =~ 3102, Using a sequence of uniforms to reach
the maximum of the likelihood is therefore delicate diox 3 and the slice sampler of Roberts &
Rosenthal[(1999) performs more satisfactorily for suchettisions.
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3. A CENTRAL LIMIT THEOREM FOR NESTED SAMPLING
We establish in the section the convergence rate and thérgrdistribution of nested sam-

pling estimates. To this effect, we decompose the apprdiomarror as follows:

J 1 €
Z(wz‘—l —T)p; — / p(z)dr = —/ p(z) do
i=1 0 0

J

+ ) (@i — ) {i — (i)}

i=1

J 1
> (it —aple) - [ eo)ds

=1

_|_

where

1. The first term is a truncation error, resulting from thetdiea that the algorithm is run for a
finite time. For simplicity’s sake, we assume that the atparmiis stopped at iteratiof =
[(—loge)N1]. so thatr; = exp(—j/N) < e < ;1. (More practical stopping rules will be
discussed igf].) Assumingyp, or equivalentlyL, bounded from above, the errgﬁ(f o(z) dz
is exponentially small with respect to the computationfdref

2. The second term is a (deterministic) numerical integraterror, which, providedy’ is
bounded ovefg, 1], is of order GN 1), sincex; 1 — z; = O(N1).

3. The third term is stochastic and is denoted

where ther?’s are such thap; = L(0;) = ¢(z}), i.e.2f = o ().
The asymptotic behaviour efy is characterised as follows.

THEOREM 1. Provided thaty is twice continuously-differentiable ovgr, 1], and that its first
and second derivatives are bounded ojeil], N'/2¢y converges in distribution to a Gaussian
distribution with mean zero and variance

V=- / s (s)te' (t) log(s V t) ds dt.
s,t€le,1]

The stochastic error is of orderg®N~'/2?) and it dominates both other error terms. The proof
of this theorem relies on the functional central limit theorand is detailed in Appendix 2.

As pointed out by one referee, it usually is more relevantracfice to consider the log-scale
error, log§ — log 3. A straightforward application of the delta-method shohat the log-error
has the same asymptotic behaviour as above, but with astimpaniancel’/32.

4. PROPERTIES OF THE NESTED SAMPLING ALGORITHM
4.1. Simulating from a constrained prior

The main difficulty of nested sampling is to simul&t&om the prior distributiont subject to
the constraintZ(¢) > L(6;); exact simulation from this distribution is an intractapl@blem in
many realistic set-ups. As notedJig-3, it is at least of the same complexity as a one-dimensional
slice sampler, which produces an uniformly ergodic Markbaino when the likelihoodL is
bounded but may be slow to converge in other settihgs (ReBeRosenthal, 1999).
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cated prior as the invariant distribution, and a point chagegandom among th&¥ — 1 survivors

as the starting point. Since the starting value is alreadiridited from the invariant distribu-
tion, a finite numben/ of iterations produces an outcome that is marginally distdad from the
correct distribution. This however introduces correlasidetween simulated points. Our central
limit theorem applies no longer and it is unclear whether stewe sampling estimate based on
MCMC converges a®v — +oo, for a fixed M, or if it should merely be interpreted as an ap-
proximation of an ideal nested sampling output based orpeigent samples. A reason why
such a theoretical result seems difficult to establish is¢hah iteration involves both a different
MCMC kernel and a different invariant distribution.

In addition, there are settings when implementing an MCM@ertbat leaves the truncated
prior invariant is not straightforward. In those cases, mag instead implement an MCMC move
(e.g., random walk Metropolis-Hastings) with respect ®uinconstrained prior, and subsample
only values that satisfy the constraibtd) > L(6;), but this scheme gets increasingly inefficient
as the constraint moves closer to the highest valugs. @bviously, more advanced sampling
schemes can be devised that overcome this difficulty, am&tamce the use of a diminishing
variance factor in the random walk, with the drawback that #uaptive scheme requires more
programming effort, when compared with the basic nestegbagialgorithm.

In §B, we propose an extension of nested sampling based on amgersampling. In some
settings, this may facilitate the design of efficient MCM@ps, or even allow for sampling
independently from the (instrumental) constrained prior.

4.2.  Impact of dimensionality

Although nested sampling is based on the unidimensionegiat (1), this section shows that
its theoretical performance typically depends on the dsiwend of the problem in that the
required number of iterations (for a fixed truncation ereo)l the asymptotic variance both grow
linearly with d. A corollary of this result is that, under the assumptiort the cost of a single
iteration is @d), the computational cost of nested sampling {g0e?), wheree denotes a given
error level, as also stated in Murray’s PhD thesis, using gerheuristic argument. This result
applies to theexactnested algorithm. Resorting to MCMC usually entails sonditamhal curse
of dimensionality, although simulation studies§ff indicate that the severity of this problem is
strongly model-dependent.

Example2. Consider the case where, fér=1,...,d, %) ~ N(0,02), and y*)|9*) ~
N (6% 5?), independently in both cases. Sgt) = 0 and o3 = 0? = 1/47, so that3 = 1
for all d's. Exact simulation from the constrained prior can be penfd as follows: sim-
ulate r> < —v/2log! from a truncatedy?(d) distribution anduy, ...,us ~ N(0,1), then set

0F) = rug/\Jud + ... +ul

Since3 = 1, we assume that the truncation poigtis chosen so thap(0)ey =7 < 1, 7 =
10-% say, wherep(0) = 2%/? is the maximum likelihood value. Thereforg, = 72-%2 and the
number of iterations required to produce a given truncatioor, i.e.j; = [(—loge)N|, grows

linearly ind. To assess the dependence of the asymptotic variance sjitbatetad, we state the
following lemma, established in Appendix 3:

LEMMA 2. Inthe setting of Examplg 2,¥; is the asymptotic variance of the nested sampling
estimator with truncation poird,, there exist constants, ce such thatV;/d < ¢; forall d > 1,
andliminfy . Vy/d > cs.



289
290
201
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336

7

This lemma is easily generalised to setups where the prisudd that the components are
independent and identically distributed, and the liketithdactorises ad.(f) = Hizl L(6®).
We conjecture thal/;/d converges to a finite value in all these situations and tloatpfore
general models, the variance grows linearly with the ‘dtudienensionality of the problem, as
measured for instance jn Spiegelhalter é¢t|al. (R002).

5. NESTED IMPORTANCE SAMPLING

We introduce an extension of nested sampling based on iamm®tsampling. Lek(0) an
instrumental prior with the support afincluded in the support &f, and IetZ(H) an instrumental
likelihood, namely a positive measurable function. We defim importance weight function

w(#) such thatr(0)L(0)w(h) = =(#)L(H). We can approximat@ by nested sampling for the
pair (T, ) that is, by simulating iteratively from constrained t(L(Q) > [, and by computing
the generallsed nested sampling estimator

D (@1 — zi)piw(6;). (5)

=1

The advantage of this extension is that one can ch(qufa) so that simulating fromr under the
constraintL(#) > [ is easier than simulating fromunder the constraint(¢) > I. For instance,
one may choose an instrumental priasuch that MCMC steps wr.t. the instrumental constrained
prior are easier to implement than w.r.t. the actual coimstthprior, as illustrated i§7-3. In a
similar vein, nested importance sampling facilitates eorglating several priors at once, as one
may compute the evidence for each prior by producing the sastd sequence (based on the
same pairT, Z)) and by simply modifying the weight function.

Ultimately, one may choos&,f) so that the constrained simulation is performed exactly.
For instance, ifr is a Gaussiavk/d(é, 2) distribution with arbitrary hyper-parameters, take

L(6) = X ((9 9T e - é)) ,
where) is an arbitrary decreasing function. Then

In this case, the;’s in (B) are error-free: at iteration 6, is sampled uniformly over the ellipsoid
that contains exactlyxp(—i/N) prior mass a¥; = quv/HvH%m, where(C' is the Cholesky
lower triangle of%2, v ~ N,4(0, I;), andg; is theexp(—i/N) quantile of ay?(d) distribution.

The nested ellipsoid strategy seems useful in two scendficd, assume both the posterior
mode and the Hessian at the mode are available numerica]lyumeé and. In this case,
this strategy should outperform standard importance siagw;tnlased on the optimal Gaussian
proposal, because the nested ellipsoid strategy uSé&a ) quadrature rule on the radial axis,
along which the weight function varies the most; @. for an illustration. Second, assume
only the posterior mode is available, so one mayéskt the posterior mode, and s8t= 71,
wherer is an arbitrary, large valuglf-4 indicates that the nested ellipsoid strategy may still
perform reasonably in such a scenario. Models such that #ssibh at the mode is tedious to
compute include in particular Gaussian state space modkbsnissing observations (Brockwell
& Davis, [1996), Markov modulated Poisson procesges @@), or, more generally, models
where the EM algorithm (see, e[g. MacLachlan & Krishrjan,/)99the easiest way to compute




8

337 the posterior mode (although one may use Lopis™ 1982 metnddmputing the information
338 matrix from the EM output).

339

340

341 6. ALTERNATIVE ALGORITHMS

342 6-1. Approximating3 from a posterior sample

343 As shown in§R-3, the output of nested sampling can be “recycled” so as teigecapproxi-
344 mations of posterior quantities. From the opposite petgmeave can recycle the output of an
345 MCMC algorithm so as to estimate the evidence, with no deldadditional programming effort.
346 Several solutions are available in the literature, inclgficelfand & De)y [1994), Meng & Wohg
347 (T996), and Chen & Shhd (1997). We describe below thoseisotutised in the subsequent
348 comparison with nested sampling, but first we stress that evaal pretend at an exhaustive

349 coverage of those techniques ($ee Chenldt al.] 2000 or Hanl&d @001 for deeper coverage)
350 nor at using the most efficient approach (see, E.g.., Meng &lch 2001). In her evaluation of

351 Chib’s (199%) method, Frithwirth-Schndtter (2004) usedshlutions we present below.
352

353 6-2. Approximating3 by a formal reversible jump

354 We first recover Gelfand and Dey’s (1994) solution of revamportance sampling by an
355 integrated reversible jump, as a natural approach to campumarginal likelihood is to use a
356 reversible jump MCMC algorithn{ (Greleh, 1995). Howevers thiay seem wasteful as it involves
357 simulating from several models, while only one is of intér&ut we can in theory contemplate
358 a single modeMt and still implement reversible jump in the following way. i&ider a formal
359 alternative modefJt’, for instance a fixed distribution like th&(0, 1) distribution, with prior
360 weight 1/2 and build a proposal frorﬁﬁ to 90t that moves tad’ with probability (Greg]
361 -)Qgﬁﬂm/ = {1/29(6)}/{1/2m(6)L(6)} A 1 and from’ to M with probability ooy .o =
362 {1/27(0) }/{1/2g )} A1, g() being an arbitrary proposal @h Were we to actually run
363 this reverS|bIe jump MCMC algorlthm, the frequency of \8sib 9t would then converge t3.
364 However, the reversible sampler is not needed since, if wearstandard MCMC algorithm
365 on § and compute the probability of moving #&%’, the expectation of the ratig(9) /= (0) L(6)
366 (under stationarity) is equal to the inverse3of

367

368 _ g9(0) w(O)LO) .,

368 E[o(60)/x0)10)] = [ 5 T = 1/3.

370 no matter whay(6) is, in the spirit of bott Gelfand & Déyl (19P4) ahd Bartoluctad (2006).
371 Obviously, the choice of(#) impacts on the precision of the approxima@d/NVhen using a
372 kernel approximation ta(f|y) based on earlier MCMC simulations and considering the maga
373 of the resulting estimator, the constraint is opposite ®@dhe found in importance sampling,
374 namely thaty(6) must have lighter (not fatter) tails tharid)L(6) for the approximation

375

e YIS Sy

378

379 to have a finite variance. This means that light tails or fisiteport kernels (like an Epanechnikov
380 kernel) are to be preferred to fatter tails kernels (likettkernel).

381 In the comparison if[/-3, we comparé\l with a standard importance sampling approximation
382

383 — Z ODL g(t))/g(g(t)), 00 ~ g(6),

384
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whereg can also be a non-parametric approximationr |y ), this time with heavier tails than
m(0)L(0). Fruhwirth- Schnattbd (20D4) uses the same importancetiumg in both 31 and32,
and obtain similar results thab performs better thaal

6-3. Approximating3 using a mixture representation

Another approach in the approximation $fis to design a specific mixture for simulation
purposes, with density proportional a7 (6)L(6) + g(6) (w1 > 0), whereg(8) is an arbitrary
(fully specified) density. Simulating from this mixture efé the same complexity as simulat-
ing from the posterior, the MCMC code used to simulate froffl|y) can be easily extended
by introducing an auxiliary variablé that indicates whether or not the current simulation is
from = (0|y) or from g(6). Thet-th iteration of this extension is as follows, where MCKCH")
denotes an arbitrary MCMC kernel associated with the piaste(d|y) o« 7(6)L(0):

1. Takes® =1 (andé® = 2 otherwise) with probability
wrm (6 LOUD) / {orm (0 D)LE) +g(6 )]

2. If 6() =1, generated® ~ MCMC(6~1) 9(1), else generatd® ~ ¢(#) independently
from the previous valué(‘~1).

This algorithm is a Gibbs sampler: Step 1 simulai€s conditional ong‘—1), while Step 2
simulates9®) conditional ons(*). While the average of th&")’s converges ta,; 3 /{w,3 + 1},
a natural Rao-Blackwellisation is to take the average okttpectations of thé(®)’s,

Zm 0)LOD)/ {wrm(@)LOV) + 96} .

since its variance should be smaller. A third estimate is teduced from this approximation
by solvingw; 33/{w133 + 1} = £.

The use of mixtures in importance sampling in order to imprihe stability of the estimators
dates back at least fo Hesterlperg (1998) but, as it occisgdticular mixture estimator happens
to be almost identical to the bridge sampling estimatdr ohyl& Wong (199B). In fact,

T
. 1 wlﬂ'(H(t H(t g(6")
38 = w1 t; wim(0®)L( 6(0) Z wim(00)L e(t)) g(6®)

is the Monte Carlo approximation to the raEg a(0)m(0)L(y|0)]/Er(.jy)[a(6)g(0)] when using
the optimal functiona(6) = 1/wim(0)L(0) + g(6) . The only difference wit g
(1996) is that, sincé®’s are simulated from the mixture, they can be recycled fahlsoms.

6-4. Error approximations

Usual confidence intervals can be produced on the aveﬂa(éﬁs,{ﬁ; andwlgg/{w1§3 + 1},
from which confidence intervals on tf3g's and error estimates are easily deduced.

7. NUMERICAL EXPERIMENTS
7-1. A decentred Gaussian example

We modify the Gaussian toy example presentegffi: 0 = (01, ..., 6(®), where the?¥)’s
are i.i.dN(0,1) andy; |8 ~ N'(8%) 1) independently, but setting all thg’s to 3. To simulate
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Fig. 1. Decentred Gaussian example: Box-plots of the log-
relative errorlog 3 — log 3 versus dimensiod for several
values of(V, M), and total number of iterations vs dimen-

sion for (IV, M) = (100, 5)

from the prior truncated td.(6) > L(6o), we perform}M Gibbs iterations with respect to this
truncated distribution, withl/ = 1, 3 or 5: the full conditional distribution of*), given 9,
j # k,is aN(0,1) distribution that is truncated to the intervgl®) — §,4*) + §] with

= (-0 = (g — 09

J J#k

The nested sampling algorithm is r@f times ford = 10, 20, ..., 100, and several combi-
nations of(V, M): (100, 1), (100, 3), (100,5), and (500, 1). The algorithm is stopped when a
new contribution(z;_; — x;)p; to (@) becomes smaller thai®— times the current estimate.
Focussing first oV = 100, Figure[lL exposes the impact of the mixing properties of tIGWC
step: forM = 1, the bias sharply increases with respect to the dimensibile wor M = 3,
it remains small for most dimensions. Results fdr= 3 and M = 5 are quite similar, except
perhaps forl = 100. UsingM = 3 Gibbs steps seems to be sufficient to produce a good approx-
imation of anideal nested sampling algorithm, where points would be simulatddpendently.
Interestingly, if NV increases t¢00, while keepingM = 1, then larger errors occur for the same
computational effort. Thus, a good strategy in this case iadrease firsf\/ until the distribu-
tion of the error stabilises, then to increasdo reduce the Monte Carlo error. As expected, the
number of iterations linearly increases with the dimension

While artificial, this example shows that nested samplindgpms quite well even in large
dimension problems, provided both prior and likelihood @ose to Gaussianity.

7-2.

A stochastic volatility example

We consider a simplified stochastic volatility model=1,...,T):

ho =0, hi=phi_1+oe, e ~N(0,1), ylhi~NA{0,exp(h)} ,
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492 Fig. 2. Stochastic volatility example: box-plots of log-
493 errors for different values ¢f (sample size)N and M
494
495

with a prior p ~ U([—1,1]), o=2 ~ G(1/2,(0.05)2 /2) on the remaining components of the pa-

jgg rameterd = (p, o, hq,...,hy). The data is simulated, using= 0.9 ando = 0.05. We imple-
498 mented a MCMC strategy where realisations from the priorewggmerated using/ steps of
499 a fully conditional Gibbs sampler targeted at the consgmiprior, the full conditionals being
500 reasonably easy to simulate.

501 Figure[R shows that, in contrast to the previous examplegetsebetter results withV, M) =
502 (1000, 1) than with(N, M) = (100, 10), although both scenarios cost the same. However, when
503 we tried to increaséV further to10°, with M/ = 1, we obtained sensibly the same biases as for
504 (N, M) = (1000, 1) (results not shown). So this may a case where nested sanigseg on
505 MCMC should be interpreted as a possibly good, but non nadgsgsonvergent, approxima-
506 tion of the ideal nested sampling algorithm based on inddgeinsamples. On the other hand,
507 stochastic volatility models are notoriously difficult tetienate, see e.g. Kim etjal. (1998), in
508 par.ticular be_cause Gibbs ._c,amplers tend to converge slamgydifficulty may be the best expla-
509 nation fpr this observed bias. F@r = 900 a bias of order-4 may be small enough for model
510 comparison purposes. (The actual Iog eV|dencell297.06:) _ N _
511 _ Kw_n etal. (199B) propose a E}etg prior as a more sensible gﬁor(p. The full gondmonal dls_-
512 tribution of p un_der the con;tramt is difficult to sw_nulate, requiring ax_trae Hastings-Metropolis
513 step. A convenient alternative is to use nested importaaoebng, with7 () set tol/[—1, 1],
514 andL = L, the actual likelihood, in order to recycle the above altponi, including the MCMC
515 strategy, but with the weight function(9) = 7 (0) in the estimate 0p.

516

517 7-3. A mixture example

518 Following|Fruhwirth-Schnattet (2004)'study of severadnginal likelihood estimates, a bench-
519 mark example is the posterior distribution @n o) associated with the normal mixture

520

521 y17---7yanN(07 1)‘*‘(1—]9)/\/(/%0)7 (6)
522

523 whenp is known, for several compelling reasons:

524

525 1. Both the posterior distribution and the marginal likeld are unavailable (unlesss small).
526 2. Wheno converges t® andyu is equal to any of the;'s (1 < i < n), the likelihood diverges,
527 as illustrated on Figurfg 3 by the tiny bursts in the vicinifyach observation whengoes to

528 0. This represents a challenging problem for exploratorgsws such as nested sampling.
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3. Efficient MCMC strategies have been developed and testadikture models since the early

1990's [Diebolt & Robeft] 7994; Richardson & Greén, 1997teGe et al. [ 2000), but Bayes

factors are notoriously difficult to approximate in thistseg.

We designed a Monte Carlo experiment where we simulatedbservations from a
N (2, (3/2)?) distribution, and then computed the estimate3 aftroduced above for the model
(B). The prior distribution was a uniform both ¢a-2, 6) for 1 and on(.001, 16) for log 0. (The
prior square is chosen arbitrarily to allow all possibleueal and still retain a compact parameter
space. Furthermore, a flat prior allows for an easy impleatemt of nested sampling since the
constrained simulation can be implemented via a random mwialke.)

The two-dimensional nature of the parameter space allomasfiamerical integration af (9),
based on a Riemann approximation and a gri@@f x 500 points in the(—2,6) x (.001, 16)
square. This approach leads to a stable evaluatigntioft can be taken as the reference against
which we can test the various methods. (An additional ev@odased on a crude Monte Carlo
integration using0°® terms produced essentially the same numerical values.MIZMC algo-
rithm implemented here is the standard completiof of DiekdRober} (I99}) and it does not
suffer from the usual label switching deficien¢y (Jasra k{24i0b) becausg](6) is identifiable.
As shown by the MCMC sample of siz€ = 10* displayed on the Ihs of Fifj] 3, the exploration
of the modal region by the MCMC chain is satisfactory. ThisMIC sample is used to compute
the non-parametric approximatiopshat appear in the three alternativessfif For the reverse
importance sampling estimagg, ¢ is a product of two Gaussian kernels with a bandwidth equal
to half the default bandwidth of the R function density(),ilhfor both3, and3s, ¢ is a product
of two ¢ kernels with a bandwidth equal to twice the default Gauslsardwidth.

We ran the nested sampling algorithm, with= 103, reproducing the implementation of
(R00§), namely using0 steps of a random walk i(y, log o) constrained by the like-
lihood boundary. based on the contribution of the currehievaf (1, o) to the approximation
of 3. The overall number of points produced by nested samplirgicgiping time is on aver-
age close td 0%, which justifies using the same number of points for the MCNiD@thm. As
shown on the rhs of Fid] 3, the nested sampling sequencs thgitminor modes of the likeli-
hood surface but it ends up in the same central mode as the M&&g@nce. All points visited
by nested sampling are represented without reweightingzhwdxplains for a larger density of
points outside the central modal region.

The analysis of this Monte Carlo experiment in Fig{ife 4 fitstvgs that nested sampling
gives approximately the same numerical value when compaitbdhe three other approaches,
exhibiting a slight upward bias, but that its variabilitynisich higher. The most reliable approach,
besides the numerical and raw Monte Carlo evaluations wd@ahot be used in general settings,
is the importance sampling solution, followed very closgythe mixture approach ¢f-3. The
reverse importance sampling naturally shows a slight upweas for the smaller values afand
a variability that is very close to both other alternativespecially for larger values of.

7-4. A probit example for nested importance sampling

To implement the nested importance sampling algorithm dase nested ellipsoids,
we consider the arsenic dataset and a probit model studieGhapter 5 of Gelman &
Hill (R00F). The observations are independent Bernoulliialdes y; such that Rpy; =
1|z;) = ®(«70), where z; is a vector ofd covariates,d is a vector parameter of size
d, and ® denotes the standard normal distribution function. In thaticular example,
d =7, more details on the data and the covariates are availabléh@rbook's web-page
(http://www.stat.columbia.edu/"gelman/arm/examples/a rsenic ).
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Fig. 3. Mixture example(left) MCMC sample plotted on

the log-likelihood surface in théu, o) space fom = 10

observations from|(6)right) nested sampling sequence
based onV = 10° starting points for the same dataset
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Fig. 4. Mixture model: comparison of the variations of

nested sampling (V1), reverse importance sampling (V2),

importance sampling (V3) and mixture sampling (V4), rel-

ative to a numerical approximation gf(dotted line), based
on 150 samples of size = 10, 50, 100

The probit model we use is model 9a in the R program availalilissaddress: the dependent
variable indicates whether or not the surveyed individir@nged the well she drinks from over
the past three years, and the seven covariates are an pttatistance to the nearest safe well (in
100 meters unit), education level, log of arsenic level, enads-effects for these three variables.
We assign\V;(0, 10%1,) as our prior oré, and denotd,,, the posterior mode, arid,,, the inverse
of minus twice the Hessian at the mode; both quantities a@r@d numerically beforehand.

We run the nested ellipsoid algorithm 50 times, fér= 2, 8, 32, 128, and for two sets of
hyper-parameters corresponding to the two scenariosidedadn §f. In the first scenario, we
set(,3) = (6, 25,,). The bottom row of Figf]5 compares log-errors produced byneethod
(left), with those of importance sampling based on the ogiti@aussian proposal (with mean
0., variancey,,), and the same number of likelihood evaluations (as regartethe x-axis
of the right plot). In the second scenario, we éiéti) = (0yn, 100 I). The top row compares
log-errors produced by our method (left) with those of imipoce sampling, based again on the
optimal proposal, and the same number of likelihood evaloat The variance of importance
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sampling estimates based on a Gaussian proposal with pgpameterd and > = 100, is
higher by several order of magnitudes, and is not reportéiaeimplots.

As expected, the first strategy outperforms standard irapoet sampling, when both meth-
ods are supplied with the same information (mode, Hesséam, the second strategy still does
reasonably well compared to importance sampling basedeopgtimal Gaussian proposal, al-
though only provided with the mode. For too small values\gfhowever, nested importance
sampling is slightly biased.

As pointed out by one referee, results are sufficiently geetihat one can afford to compute
the evidence for the” possible models: the most likely model, with posterior daibity 0.81,
includes the intercept, the three variables mentioned ealjdigtance, arsenic, education) and
one cross-effect between distance and education levelth@nskecond most likely model, with
posterior probability0.18, is the same model but without the cross-effect.

2 2

1,

8 32 128 97 370 1429 5530

2 T T T 2 T T T T

1f - 1f -
Of -+ 1 ob % ....... =R S S
-1t 1 1t -
-2 ‘ ‘ -2

2 8 32 128 62 244 971 3880

Fig. 5. Probit example: Box-plots dfeft column)log-
errors of nested importance sampling estimates Mo«
2, 8, 32, 128, compared with the log-error of importance
sampling estimateright column)based on the optimal
Gaussian proposal, and the same number of likelihood
evaluation (reported on the x axis of the right column
plots). Bottom row corresponds to the first strategy (both
mode and Hessian available), top row corresponds to the
second strategy (only mode available).

8. CONCLUSION

We have shown that nested sampling is a valid Monte Carlo @detlvith convergence rate
O(N—1/2), which enjoys good performance in some applications, fample those where the
posterior is approximately Gaussian, but which may alseigedless satisfactory results in some
difficult situations. Further work on the formal and praatiassessment of nested sampling con-
vergence would be welcomed. The convergence propertieCdfi®tbased nested sampling are
unknown and technically challenging. Methodologicallffpes are required to design efficient
MCMC moves with respect to the constrained prior. In thatather respects, nested importance
sampling may be a useful extension. Ultimately, our congoaribetween nested sampling and
alternatives should be extended to many more examples,tta gearer idea of when nested
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sampling should be the method of choice and when it shouldAtidhe programs implemented
for this paper are available from the authors.
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APPENDIX 1

Proof of Lemm4]1
It is sufficient to prove this result for functiorfsthat are real-valued, positive and increasing. First, the
extension to vector-valued functions is trivial, $~ds assumed to be real-valued from now on. Second,
the class of functions that satisfy properﬂ/ (4) is cleathbte through addition. SincE is absolutely
continuous, there exist functiorfs” andf—, such thatf ™ is increasingf~ is decreasing, anﬁ: fr+
f~, so we can restrict our attention to increasing functiorsrdl absolute continuity implies bounded
variation, so it always possible to add an arbitrary cortﬂtaﬁ to transform it into a positive function.

Letwy : I — [f(1), which is a positive, increasing function and denote iteise by,)~!. One has:

00

EX[p{L(6)}] = /

0

—+o0 1
PTAL()} > 1) di = / T (D)) dl = / b)) do

which concludes the proof.

APPENDIX 2

Proof of Theorem 1

Let t; = a3, /x}, for i =0,1,.... As mentioned by Skillidg [(2006), the;'s are independent
Beta N, 1) variates. Thusy; = tI¥ defines a sequence of independent unifédm] variates. A Taylor
expansion oty gives:

[eNT]

eEN = Z (Tim1 — z:) [p(2]) — ()]
[eNT]

= Z (wim1 — 24) [z//(f logz;) (logz; — logz}) + O (log z; — log zf)z}
=1
wherec = —loge, andy(y) = ¢(e~Y). Note that
i—1

S; = N (logx; —loga}) = Z(—l —loguy)
k=0
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769 is a sum of independent, standard variables, Blfogu;] = —1 and vaflogu;] =1. Thus,
770 (log z; — logz}) = Op(N~1/2), where the implicit constant in @ N ~'/2) does not depend apand
771 [eN] .
772 N2¢y = N~1/2 Z (e=(—D/N _ ¢=i/N)g, [w/(i) + Op(N_l/Q)}
773 P N
774 [eNT  i/N "
775 =23 / et/ (t) B (<) dt [1 + OP(N_l/Q)}
776 i=1 J=D/N ‘
77 since ¢/(t) = ¢/ (i/N) + O(N~1) for t € [(i —1)/N,i/N], where, again, the implicit constant in
778 O(N~1) can be the same for all as«” is bounded, and provide®y (t) is defined asBy(t) =
779 (cN)_l/QS[CNﬂfOI’t € [0, 1]. According to Donsker’s theorer (Kallenberg, 2002, p.2H5) converges
780 to a Brownian motionB on [0, 1], in the sense thaf(By) converges in distribution tg(B) for any
781 measurable and a.s. continuous functfoif hus
782 [eN1/N " 4 c t
783 NY2%ey = 01/2/ e~ (t)By (=) dt + Op(N~Y/2) & 61/2/ et (t)B(=)dt,
784 0 ‘ ° ‘
785 which has the same distribution as the following zero-meandSian variate:
786 < !
e "' (t)B(t dt:/ s¢'(s)B(—log s) ds.
o | evoBnd= [ sB(-10ms
788
789
790 APPENDIX 3
791 Proof of Lemm4]2
792 For the sake of clarity, we make dependencied explicit in this section, e.go, for ¢, 4 for ¢, etc.
793 We will use repeatedly the facts thais nonincreasing and that is nonnegative. One has:
794 1 2
795 7/ sl (s)tpl () log(s vV t) dt < —logeq (/ 5¢0(s) ds) < dlog(V2/7)
796 s,t€leq,1] €d
797 ford > 1, since— [ s/ (s)ds < — [ s¢/,(s) ds = 1. This gives the first result.
798 Loy, o i
299 Letsq = ¢ ' (a?), for 0 < a < 1; sq is the probability that
d

28(])_ (47T/d)z 02 — 1< —2log(a/V2) — 1
802 | o o .
803 assuming that thé,’s are i.i.d A'(0,1/4x) variates. The left-hand side is an empirical average of
804 i.i.d. zero-mean variables. We takeso that the right-hand side is negative, e> v/2 exp(—1/2).
805 Using large deviationg (Kallenbéflg, 2002, Chapter 27), k- log(s4)/d — ~ > 0 asd — +o0, and
806 1 1 , , —log s4 s 2

IV, = —= > —==
807 dVd pi /S,te[gd,u s@g(s)tey(t) log(s Vv t) dsdt > < pi ) (/Ed spy(s) ds>
808 “log s sa 2
809 > ( dg d> </ wd(s)ds + eqpa(eq) — sdgad(sd)>
810 &d )
811 (—10g8d) ( /Ed /1

> 1— pq(s)ds — wa(s)ds + eqpaleq) — sapal(s

812 ¥ ; d(s) 5 a(s) dpd(ed) — sapd(sa)
813 d 1
814 Asd — +oo, —log(sa)/d — 7, 84 — 0, pa(sa) = a® — 0, [ pa(s)ds < pa(sa)(1 — sa) — 0, and
815

816 0< [ puls)ds — capalea) < zulial0) ~ palea)) < 7 < 1,
0



817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
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by the definition o, and the squared factor is in the limit greater than or equél t- 7)2.



