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Abstract

Nested sampling is a novel simulation method for approximating marginal likelihoods, pro-
posed by Skilling (2006, 2007). We establish that nested sampling leads to an error that vanishes
at the standard Monte Carlo rate N−1/2, where N is a tuning parameter that is proportional
to the computational effort, and that this error is asymptotically Gaussian. We show that
the corresponding asymptotic variance typically grows linearly with the dimension of the pa-
rameter. We use these results to discuss the applicability and efficiency of nested sampling in
realistic problems, including posterior distributions for mixtures. We propose an extension of
nested sampling that makes it possible to avoid resorting to MCMC to obtain the simulated
points. We study two alternative methods for computing marginal likelihood, which, in con-
trast with nested sampling, are based on draws from the posterior distribution and we conduct
a comparison with nested sampling on several realistic examples.

Keywords: Convergence rate, MCMC, Monte Carlo approximation, mixtures of distributions,
importance sampling, simulation.

1 Introduction

Nested sampling was introduced by Skilling (2007, 2006) as a numerical approximation method for
integrals of the kind

Z =

∫
L(θ|x)π(θ) d θ ,

when π is the prior distribution and L(θ|x) is the likelihood, called evidence in the above papers.
These quantities naturally occur as marginals in Bayesian testing theory and Bayesian model choice
(Robert, 2001, Chapters 5 and 7), even though the pairwise nature of those inferential problems
—meaning that Z is never computed per se, but in relation with another marginal Z′—makes the
approximation of the integral ratio (or Bayes factor)

B12 =

∫
L1(θ1|x)π1(θ1) d θ1

∫
L2(θ2|x)π2(θ2) d θ2

open specific avenues of approximation (see, e.g., Chen and Shao, 1997; Gelman and Meng, 1998).
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One important aspect of nested sampling is that it resorts to simulating iteratively points θi from
the prior π, constrained to θi having a larger likelihood value than some increasing threshold l; the
exact principle of nested sampling is described in the next section. In a previous discussion (Chopin
and Robert, 2007), we wondered about both the universality and the convergence properties of the
method. With respect to the former, we pointed out that simulating from a constrained distribution
is not always straightforward. With respect to the latter, we noted that Skilling (2007, 2006) does
not provide any formal assessment of the method.

The purpose of this paper is to investigate formally both points presented above. Our main
result is to establish formally the convergence properties of nested sampling estimates: we show that
the approximation error is dominated by a stochastic term, which is O(N−1/2) and has a limiting
Gaussian distribution, where N is a tuning parameter, and is proportional to the computational
effort. In that respect, nested sampling seems to have properties comparable to most Monte Carlo
algorithms.

Then, we show in a simple example that the asymptotic variance of nested sampling estimates
typically grows linearly with the dimension d of the problem, and that the overall computational cost
isO(d3/e2), where e the desired level of accuracy. Note this result assumes that one simulates exactly
from the constrained prior. Unfortunately, they are numerous cases where such a constrained
simulation cannot be performed. Skilling (2007, 2006) advocates using MCMC for obtaining the
simulated points. We discuss this approach and provide numerical evidence that the obtained
estimates then suffer from a more severe curse of dimensionality.

Since the ability to simulate from the constrained prior seems to be determinant in the ap-
plicability of the algorithm, we further propose an extension of nested sampling, based on the
principle of importance sampling, that introduces enough flexibility so as to allow for perform-
ing the constrained simulation without resorting to MCMC. Finally, we discuss two alternatives to
nested sampling for computing evidence, which are both based on the output of MCMC algorithms.
These alternatives are quite comparable with nested sampling in terms of convenience: nested sam-
pling, as shown by Skilling (2007, 2006), provides approximations of posterior quantities at no
extra cost. Conversely, the methods we propose allow for recycling the MCMC output, primarily
used for computing posterior quantities, so as to approximate the evidence. We provide numerical
comparisons of those three methods.

The paper is organised as follows. Section 2 describes the nested sampling algorithm. Section
3 gives a formal analysis of the approximation error of nested sampling estimates, and shows that
this error is dominated by a stochastic term that has a limiting Gaussian distribution and vanishes
at rate N−1/2. Section 4 discusses some practical limitations of the algorithm, and shows that the
variance of produced estimates tends to grow linearly with the dimension of the problem. Section 5
describes the extension of nested sampling called ‘nested importance sampling’. Section 6 describes
the two alternative methods based on MCMC mentioned above.

2 Nested sampling: A description

For the sake of completeness, and in order to set notations, we describe briefly the nested sampling
algorithm; see Skilling (2006, 2007) for more details. We use L(θ) as a short-hand for L(x|θ) from
now on, omitting the dependence on x.
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2.1 Principle

Nested sampling is based on the following generic if formal representation:

Z =

∫ 1

0
ϕ(x) dx (1)

where ϕ is the inverse of
ϕ−1 : l → P π(L(θ) > l)

that is, ϕ is the inverse of the survival function of the random variable L(θ), assuming θ ∼ π and
ϕ−1 is a (strictly) decreasing function, which is the case when L is a continuous function and π has
a connected support. (Note that the representation Z = E

π[L(θ)] holds with no condition on L or
π.) Formally, this integral could be approximated by standard quadrature methods, say

Ẑ =

j∑

i=1

(xi−1 − xi)ϕi (2)

where ϕi = ϕ(xi), and 0 < xj < . . . < x1 < x0 = 1 is an arbitrary grid over [0, 1].
In most cases however, including some simple toy examples, the function ϕ is not tractable.

Instead, the values ϕi are approximated by an iterative random mechanism:

• Iteration 1: draw independently N points θ1,i from π, denote by θ1 the value such that L(θ1,i)
is smallest,

θ1 = arg min
i
L(θ1,i),

and set ϕ1 = L(θ1).

• Iteration 2: obtain the N ‘current’ values θ2,i, by reproducing the N previous points θ1,i,
except for θ1 that is replaced by a draw from the prior distribution π conditional on L(θ) > ϕ1;
then select θ2 as the point such that L(θ2,i) is smallest, and set ϕ2 = L(θ2).

• Iterate the above step until a given stopping iteration j is reached, for instance observing
very small changes in the approximation Ẑ or reaching the maximal value of L(θ) when the
likelihood is bounded and its maximum is known.

The output of the algorithm is then the approximation of Z by the sum (2), when the xi’s are
replaced with xi = exp(−i/N), as detailed below. As stressed out in the introduction, a key
ingredient of this algorithm is the ability to simulate from the prior distribution π under the
constraint L(θ) > l, for l > 0.

Let x⋆
i = ϕ−1(ϕi). An interesting property of this generating process is that the quantities

defined by
ti = ϕ−1(ϕi+1)/ϕ

−1(ϕi) = x⋆
i+1/x

⋆
i

are independent Beta(N, 1) variates. Skilling (2006, 2007) takes advantage of this property by
setting xi = exp(−i/N), so that log xi is the expectation of logϕ−1(ϕi) (we will call this approach
the deterministic scheme). Alternatively, Skilling (2006) also proposes a random scheme where the
xi’s are random, by mimicking the law of the ti’s, i.e. xi+1 = xi ∗ ti, where ti ∼ Beta(N, 1). Note
that in both cases the relation ϕi = ϕ(xi) does not hold; at best, ϕi can be interpreted as a ‘noisy’
version of ϕ(xi). Our discussion concentrates on the deterministic scheme, since it seems to us
that the random scheme only independently creates additional noise and thus does not improve the
precision of the approximation of Z, established in Section 3.
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2.2 Variations and posterior simulation

Skilling (2006, 2007) mentions the possibility of replacing (2) with an higher-order quadrature
approximation:

̂̂
Z =

j∑

i=1

(xi−1 − xi)(ϕi + ϕi−1)/2, (3)

assuming ϕ0 = 0, so as to reduce the deterministic error to O(N−2) in the quadrature (following
results of Yakowitz et al., 1978 and Philippe, 1997b). Since xi = exp(−i/N), one has

̂̂
Z − Ẑ =

(
e1/N − 1

2

)
Ẑ − 1

2
ϕj(e

−j/N − e−(j+1)/N ) = O(N−1).

We shall prove in Section 3 than the approximation error of Ẑ is dominated by a O(N−1/2) stochas-

tic term. Thus, the improvement obtained by replacing Ẑ with
̂̂
Z is negligible relatively to the

approximation error itself.
Skilling (2006, 2007) points out that nested sampling can provide simulations from the posterior

distribution, at no extra cost:

“the existing sequence of points θ1, θ2, θ3, · · · already gives a set of posterior represen-
tatives, provided the i’th is assigned the appropriate importance weight ωiLi (Skilling,
2006).”

(The weight ωi is equal to the difference (xi−1 − xi), and Li is equal to ϕi.) This can be justified
as follows. Consider the computation of the posterior expectation of a given function f

µ(f) =

∫
π(θ)L(θ)f(θ) dθ∫
π(θ)L(θ) dθ

.

One can then use a single run of nested sampling to obtain estimates of both the numerator and the
denominator (the latter being the evidence Z) based on the same random sample. The denominator
is estimated by (2), and the numerator is estimated by

j∑

i=1

(xi−1 − xi)ϕif(θi) (4)

which is a noisy version of
j∑

i=1

(xi−1 − xi)ϕif̃(ϕi) ,

where f̃(l) = E
π[f(θ)|L(θ) = l], that is, the (prior) expectation of f(θ) conditional on L(θ) = l.

This Riemann sum is, following the principle of nested sampling, an estimator of

∫ 1

0
ϕ(x)f̃{ϕ(x)}dx ,

which is shown to be equal to the numerator in the following lemma.
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Lemma 2.1. Let f̃(l) = E
π[f(θ)|L(θ) = l] for l > 0, then, if f̃ is absolutely continuous,

∫ 1

0
ϕ(x)f̃{ϕ(x)} dx =

∫
π(θ)L(θ)f(θ) dθ. (5)

A proof is provided in Appendix A. Clearly, the estimate of µ(f) obtained by dividing (4) with
(3) is equal to the estimate obtained by computing the weighted average mentioned above. We
do not discuss further the extension of nested sampling to posterior inference, but mention that
it seems reasonably easy to extend our convergence results to such approximations of posterior
estimators. We also note that, in practice, the distribution of the weights wiLi may often be highly
asymmetric, with a few weights dominating the others; thus such approximations may often have
a large variance.

3 A central limit theorem for nested sampling

Using the (deterministic) nested sampling scheme detailed in the previous section, we now undertake
a rigorous study of its convergence properties, with the outcome that nested sampling gives an error
that vanishes at rate N−1/2 and is asymptotically Gaussian.

To this effect, we decompose the approximation error as follows:

j∑

i=1

(xi−1 − xi)ϕi −
∫ 1

0
ϕ(x) dx = −

∫ ε

0
ϕ(x) dx

+

[
j∑

i=1

(xi−1 − xi)ϕ(xi) −
∫ 1

ε
ϕ(x) dx

]

+

[
j∑

i=1

(xi−1 − xi) {ϕi − ϕ(xi)}
]

where

1. The first term is a truncation error, resulting from the feature that the algorithm is run for a
finite time. For simplicity’s sake, we assume that the algorithm is stopped at the first iteration
j such that xj = e−j/N ≤ ε, i.e. j = ⌈(− log ε)N⌉. (More practical stopping rules will be
discussed in Section 7). Assuming ϕ is bounded from above, or equivalently L is bounded
from above, the error

∫ ε
0 ϕ(x) dx is exponentially small with respect to the computational

effort.

2. The second term is a (deterministic) numerical integration error, which, provided ϕ′ is
bounded over [ε, 1], is of order O(N−1), since xi−1 − xi = O(N−1).

3. The third term is stochastic, and is denoted

eN =

⌈(− log ε)N⌉∑

i=1

(xi−1 − xi) [ϕ(x⋆
i ) − ϕ(xi)] .

where the x⋆
i are such that ϕi = L(θi) = ϕ(x⋆

i ), i.e. x⋆
i = ϕ−1(ϕi).
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The asymptotic behaviour of eN is given by the following theorem.

Theorem 3.1. Provided ϕ is twice continuously-differentiable over [ε, 1],

N1/2eN
d
;

∫ 1

ε
sϕ′(s)B(− log s) ds

where
d
; denotes convergence in distribution, and B(·) is a standard Brownian motion over the

positive real line. The right term above defines a zero-mean Gaussian random variable, with vari-
ance:

−
∫

s,t∈[ε,1]
sϕ′(s)tϕ′(t) log(s ∨ t) ds dt.

The stochastic error is of order OP (N−1/2) and it dominates both other error terms. The proof
of this theorem relies on the functional central limit theorem (also known as Donsker’s theorem),
and is detailed in Appendix B.

In conclusion, the nested sampling approximation enjoys the same convergence properties as
standard Monte Carlo methods, rather than potentially higher convergence rates deduced from the
formal application of numerical approximations, because the approximation error due to random
sampling is the dominating term.

4 Properties of the nested sampling algorithm

4.1 Simulating from a constrained prior

It seems to us that, despite its satisfactory convergence properties, the main drawback of nested
sampling is that it requires simulating θ from the prior distribution π(θ) subject to the constraint
L(θ) > L(θi); this is an intractable problem in many realistic set-ups. It is actually of the same
complexity as a one-dimensional slice sampler (see, e.g., Robert and Casella, 2004, Chapter 8),
which produces an uniformly ergodic Markov chain when the likelihood L is bounded.

To overcome this difficulty, Skilling (2006, 2007) proposes to sample values of θ by iterating,
say, k MCMC steps, using the truncated prior as the invariant distribution and the point selected
at the previous iteration as the starting value. While this implementation is formally possible, it
raises several concerns. First, this introduces an awkward bias in the procedure, depending on the
choice of k, since the k-th iterate of a MCMC chain is not distributed according to the constrained
prior. In fact, the convergence result established above cannot be extended in full generality to
the case where the algorithm resorts to k MCMC steps for sampling θ. In Section 7.1, we report
simulation results that expose this ‘MCMC bias’.

Second, there are settings when implementing an MCMC move that leaves the truncated prior
invariant is far from straightforward. In that case, one may instead implement a regular MCMC
move (e.g., a random walk Metropolis-Hastings proposal) with respect to the unconstrained prior
and subsample only values that satisfy the constraint L(θ) > L(θi), but this scheme gets increasingly
inefficient as the constraint moves closer and closer to the highest values of L, given the diminishing
weight under the prior π. Obviously, more advanced sampling schemes can be devised that overcome
this difficulty, as for instance the use of a diminishing variance factor in the random walk, with the
drawback that this adaptive scheme requires more programming effort, when compared with the
basic nested sampling algorithm.
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In Section 5, we propose an extension of nested sampling, based on the principle of importance
sampling, which makes it easier to avoid MCMC in this hard-constrained prior simulation step.

4.2 Impact of dimensionality

Although nested sampling focusses on the integral (1) that is always unidimensional, we show in
this section that its theoretical performance typically depends on the dimension of the problem
in the following way: the required number of iterations (for a fixed truncation error), and the
asymptotic variance both grow linearly with the dimension d of θ.

A corollary of this result is that, under the assumption that the cost of a single iteration is O(d),
which should be the best possible case, the computational cost of nested sampling is O(d3/e2),
where e denotes a given error level. Note this discussion applies to the exact nested algorithm. For
MCMC-based nested sampling, performances seem to deteriorate exponentially with the dimension
in our simulation experiments; see §7.1.

Consider the following toy example: for k = 1, . . . , d,

θ(k) ∼ N (0, σ2
0) and y(k)|θ(k) ∼ N (θ(k), σ2

1) ,

independently in both cases. Set y(k) = 0 and σ2
0 = σ2

1 = 1/4π, in order that

Z =

d∏

i=1

ϕ(y(k); 0, σ2
0 + σ2

1) = 1

for all values of d. (This simplifies comparisons across dimensions.)
In this toy example, exact simulation from the constrained prior can be performed as follows:

simulate r2 from a χ2(d) distribution truncated to r2 ≤ −
√

2 log l (using, e.g. inverse method or

Philippe, 1997a), then simulate u1, . . . , ud ∼ N (0, 1), and set θ(k) = r uk/
√
u2

1 + . . . + u2
d.

Since Z =
∫ 1
0 ϕ(x) dx = 1, we assume that the truncation point εd is chosen so that ϕ(0)εd =

τ ≪ 1, τ = 10−6 say, where ϕ(0) = (2πσ2
1)

−d/2 = 2d/2 is the maximum likelihood value. Therefore,
εd = τ2−d/2 and the number of iterations required to produce a given truncation error, i.e. j =
⌈(− log ǫ)N⌉, grows linearly in d. To assess the dependence of the asymptotic variance with respect
to d, we state the following lemma:

Lemma 4.1. For the toy example introduced above, denoting by Vd the asymptotic variance of the
nested sampling estimator (with truncation point set to εd = τ2−d/2), there exist constants c1, c2
such that

Vd/d ≤ c1

for all d ≥ 1, and
lim inf
d→+∞

Vd/d ≥ c2.

This lemma is proven in Appendix C. It is easy to generalise these results to any toy example
where the prior is such that the components are independent and identically distributed, and the
likelihood factorises as L(θ) =

∏d
k=1 L(θ(k)). We conjecture that Vd/d converges to a finite value

in all these situations and that, for more general models, the variance grows at least linearly
with the ’actual’ dimensionality of the problem, as measured for instance by the DIC criterion of
Spiegelhalter et al. (2002).
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5 Nested importance sampling

In this section, we show how to extend nested sampling so as to provide enough flexibility to
avoid resorting to MCMC. This extension is very close in spirit to importance sampling, and we
therefore call it ’nested importance sampling’. Let π̃(θ) denote an instrumental prior, and L̃(θ) an
instrumental ’likelihood’ (that can in fact be any positive and measurable function). Define the
weight function w(θ) so that:

π̃(θ)L̃(θ)w(θ) = π(θ)L(θ)

(We assume that the support of π is included in the support of π̃.)
We can then approximate Z by applying nested sampling to the pair (π̃, L̃), that is, simulating

iteratively from π̃ constrained to L̃(θ) > l, and computing the following generalised nested sampling
estimator, which we introduced in (4):

j∑

i=1

(xi−1 − xi)ϕiw(θi). (6)

The advantage of this extension is that one can choose (π̃, L̃) in such a way that simulating from
π̃ constrained to L̃(θ) > l does not require MCMC steps. As an example, consider the following
strategy. Take π̃ as Gaussian, say, Nd(θ̂, τ

2Id), where d is the dimension of θ, and take L̃ as

L̃(θ) = λ(‖θ − θ̂‖2),

where θ̂ is an arbitrary centre and λ(·) is a decreasing function, so that the constraint L(θ) < l =
L(θi) defines a ball centred at θ̂. We have already explained in Section 4.2 how to simulate such a
constrained Gaussian distribution.

Interestingly, we do not need to specify the exact expression of λ, since the estimator (6) does
not depend on this function:

ϕiw(θi) = L̃(θi)w(θi) =
π(θi)L(θi)

π̃(θi)
,

and the only tuning parameters of the algorithm are the hyper-parameters θ̂ and τ of the instru-
mental prior π̃. In our simulations, we found out that if θ̂ was set to the (true) posterior mode,
and τ to some large value, the obtained estimator showed good performance, as illustrated in §7.3.
Therefore, in situations where one can obtain a good approximation of the (true) posterior mode,
but not necessarily of the exact shape of the posterior distribution, the extended algorithm seems
an interesting alternative to simple methods like importance sampling, which requires more tuning.
Note however that nested importance sampling should suffer from the same curse of dimensionality
as standard importance sampling: the weight function w(θ) should get more and more skewed as
the dimension d of θ increases.

6 Alternative algorithms

We have seen in Section 2.2 that the output of nested sampling can be “recycled” so as to provide
(at no extra cost and in addition to the evidence) approximations of posterior quantities. The
aim of this section is to show that, contrary to common belief, this can also be achieved with
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MCMC. More precisely, it is possible to recycle the output of an MCMC algorithm, which was used
first for computing posterior quantities, so as to estimate the evidence, with no or little additional
programming effort. (Earlier works pointing out this possibility include Gelfand and Dey, 1994 and
Chen and Shao, 1997. See also Bartolucci et al., 2006 for a more recent perspective.)

6.1 Approximating Z from a posterior sample

A first simple solution is to use a reversible jump MCMC algorithm (Green, 1995). However, it
may be argued that this is due to the simultaneous simulation of parameters from several models
and thus that the approximation of Z uses this extra amount of simulation. But this is not the
case: we can in theory contemplate a single model M and still implement reversible jump in the
following way. Consider a formal alternative model M′—for instance, a single fixed distribution
like the N (0, 1) distribution—with prior weight 1/2 and build a proposal from M to M′ that moves
to M′ with probability (Green, 1995)

̺M→M′ =
1/2ϕ(θ)

1/2π(θ)L(θ)
∧ 1

and from M′ to M with probability

̺M′→M =
1/2π(θ)L(θ)

1/2ϕ(θ)
∧ 1 ,

ϕ(θ) being an arbitrary proposal on θ that corresponds to the move from M′ to M. Were we to
actually run this reversible jump MCMC algorithm, the frequency of visits to M would then be
proportional to Z.

Now, an interesting remark is that we do not need to run this formal reversible sampler to get
an estimate of Z: indeed, if we run a standard MCMC algorithm on θ and compute the probability
of moving to M′, the expectation of the ratio ϕ(θ)/π(θ)L(θ) (under stationarity) is equal to the
inverse of Z:

E

[
ϕ(θ)

π(θ)L(θ)

]
=

∫
ϕ(θ)

π(θ)L(θ)

π(θ)L(θ)

Z
dθ =

1

Z
.

no matter what the proposal ϕ(θ) is, in the spirit of Bartolucci et al. (2006). Obviously, the choice of
ϕ(θ) matters in the precision of the approximation to Z and we suggest using a kernel approximation
to π(θ|x) based on earlier MCMC simulations. Note that, from an importance sampling point of
view, we are faced with a constraint opposite to the usual one, namely that ϕ(θ) must have lighter
(rather than fatter) tails than π(θ)L(θ) for the approximation

Ẑ1 = 1

/
1

T

T∑

t=1

ϕ(θ(t))

π(θ(t))L(θ(t))

to have a finite variance. This means that light tails or finite support kernels (like the Epanechnikov
kernel) are to be preferred to fatter tails kernels.

In the comparison below (§7.2), we run a comparison of Ẑ1 with a more standard importance
sampling approximation

Ẑ2 =
1

T

T∑

t=1

π(θ(t))L(θ(t))

ϕ(θ(t))

9



where the θ(t)’s are now generated from the density ϕ(θ), which can also be a non-parametric
approximation of π(θ|x), this time with heavier tails than π(θ)L(θ).

6.2 Approximating Z using a mixture representation

Another (related) approach in the approximation of Z is to design a specific mixture for simulation
purposes, with density (up to a normalising constant):

ω1π(θ)L(θ) + ϕ(θ) ,

where again ϕ(θ) is an arbitrary (fully specified) density. Since simulating from this mixture offers
the same complexity as simulating from the posterior, an extension of the MCMC code used to
simulate from π(θ|x) can be used to simulate from the mixture, based on the introduction of an
auxiliary variable δ that indicates whether or not the current simulation is from π(θ|x) or from
ϕ(θ). The basic MCMC steps are as follows:
At iteration t

1. Take δ(t) = 1 with probability

ω1π(θ(t−1))L(θ(t−1))

/(
ω1π(θ(t−1))L(θ(t−1)) + ϕ(θ(t−1))

)

and δ(t) = 2 otherwise;

2. If δ(t) = 1, generate θ(t) ∼ MCMC(θ(t−1), θ(t)) where MCMC(θ, θ′) denotes an arbitrary MCMC

kernel associated with the posterior π(θ|x) ∝ π(θ)L(θ);

3. If δ(t) = 1, generate θ(t) ∼ ϕ(θ) independently from the previous value θ(t−1)

Note this algorithm is a Gibbs sampler: Step 1 simulates δ(t) conditional on θ(t−1), while Steps
2 and 3 simulate θ(t) conditional on δ(t). It is immediate to check that the average of the δ(t)’s
converges to ω1Z/{ω1Z + 1}. A natural Rao-Blackwell improvement is to take the average of the
expectations of the δ(t)’s, i.e.

ξ̂ =
1

T

T∑

t=1

ω1π(θ(t))L(θ(t))

/
ω1π(θ(t))L(θ(t)) + ϕ(θ(t)) ,

since its variance should be smaller. A third estimate Ẑ3 is then deduced from this approximation,
i.e. by solving ω1Ẑ3/{ω1Ẑ3 + 1} = ξ̂.

Note also that, while this is not the primary concern of this study, simulation from the above
algorithm induces a natural regeneration scheme that can improve convergence assessment for the
overall MCMC scheme (Robert and Casella, 2004).

6.3 Error approximations

Usual confidence intervals can be produced on the empirical averages 1/Ẑ1, Ẑ2 and ω1Ẑ3/{ω1Ẑ3+1}.
One-to-one transforms then produce confidence intervals on the Ẑi’s and therefore error estimates
on the approximations.
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Figure 1: Box-plots of the log-relative error for different dimensions d (left), and scatter-plot
of average number of iterations versus dimension (right), for the decentred Gaussian example.

7 Numerical experiments

7.1 A decentred Gaussian example

We slightly modify the Gaussian toy example presented in §4.2: θ = (θ(1), . . . , θ(d)), where the θ(k)’s
are i.i.d. N (0, 1) and yk|θ(k) ∼ N (θ(k), 1) independently, but we now set all the yk’s equal to 3. To
simulate from the prior truncated to L(θ) > l = L(θ0), we perform T = 10 iterations of a Gibbs
sampler with respect to this truncated distribution: the full conditional distribution of θ(k), given
θ(j), j 6= k, is an univariate N (0, 1) distribution that is truncated to the interval [y(k) − δ, y(k) + δ]
with

δ =

√∑

j

(yj − θ
(j)
0 )2 −

∑

j 6=k

(yj − θ(j))2.

(Note that the difference inside the squared root is always positive, due to the successive conditional
simulations.)

The nested sampling algorithm is run 20 times for d = 5, 10, ..., 50, and N = 100. The
algorithm is stopped when a new contribution (xi−1 − xi)ϕi to (2) becomes smaller than 10−8

times the current estimate. Figure 1 reports, for different values of d, the numbers of iterations
and the box-plots corresponding to the log-relative error, i.e. log Ẑ− log Z, where Ẑ is the estimate
produced by the algorithm (since Z is known in this case). Note that the variability of the number
of iterations for a given d is very small, so we only report averages over the 20 runs.

The box-plots exhibit evidence of the bias introduced by MCMC sampling, which seems to
increase exponentially with the dimension. Thus, for large dimensions, the efficiency of nested
sampling seems to critically depend on the forgetting properties of its MCMC updating strategy.
In practice, a way to detect such a bias would be to implement trial-and-error runs, increasing
progressively the value of k, the number of MCMC steps performed at each iteration, but this may
quickly prove cumbersome.
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7.2 A mixture example

The study of the posterior distribution on (µ, σ) associated with the mixture

pN (0, 1) + (1 − p)N (µ, σ) , (7)

when p is known, has several distinctive features that make this example worthwhile considering
for a comparison of nested sampling with the more conventional alternatives we recalled above:

◮ this is a moderately complex if realistic model in that the posterior distribution is not available
for computing Bayes estimates but the likelihood associated with a sample x1, . . . , xn from
(7) and a value (µ, σ) of the parameter can be computed in linear (i.e. O(n)) time;

◮ the likelihood is unbounded: when σ converges to 0 and µ converges to any of the xi’s (1 ≤
i ≤ n), the likelihood diverges. This thus represents a challenging problem for exploratory
schemes and in particular for nested sampling;

◮ efficient MCMC strategies have been developed and tested for mixture models since the early
1990’s (Diebolt and Robert, 1990, 1994; Richardson and Green, 1997; Celeux et al., 2000;
Marin et al., 2004), but Bayes factors are notoriously difficult to approximate in this setting
and their dependence on the prior modelling also is noteworthy;

◮ the two-dimensional nature of the parameter space allows for graphical representations of the
posterior surface and for numerical approximations of the marginal Z, as described below.

We thus designed a numerical experiment where we simulated n observations from (7) with
µ = −2 and σ = 3/2, and then computed the various estimates of Z described in the previous
sections. Our prior distribution was a uniform both on (−2, 6) for µ and on (.001, 16) for σ2. (The
prior square is chosen arbitrarily to allow all possible values and still retain a compact parameter
space.) As described on Figure 3, the likelihood/posterior surface shows tiny bursts in the vicinity
of each one of the n observations when σ goes to 0. These unbounded modes are attractors for a
method like nested sampling which considers increasing values of the likelihood, but they do not
necessarily have a large posterior mass. (The more observations the less relevant those modes are,
as shown by Figure 2.) The difference between the MCMC and the nested sampling coverages of
the likelihood is clear when comparing Figures 6 and 7, obtained for n = 6. The MCMC sample
does not visit the six boundary modes corresponding to the six observations in the sample, while
the nested sampling sequence accumulates in one of those modes.

As pointed out above, the two-dimensional nature of the parameter space allows for a numerical
integration of L(θ), based on a Riemann approximation and a grid of 850 × 950 points in the
(−2, 6) × (.001, 16) square. This approach leads to a stable evaluation of Z that can be taken as
the reference against which we can test the various methods. The MCMC algorithm we use is
the standard completion of Diebolt and Robert (1994) and it does not suffer from the usual label
switching deficiency because (7) is an identifiable model. As shown by the MCMC sample displayed
on Figure 3, the exploration of the modal regions by the MCMC chain is satisfactory. We also use
this MCMC sampler to simulate from the prior truncated by the likelihood level within the nested
sampling algorithm: starting at the current value of (µ, σ), we then ran 50 MCMC steps above the
corresponding likelihood value and then weighted those 50 points by the inverse of their likelihood
to compensate for a simulation from the posterior (rather than from the prior). While this stage

12



Figure 2: Comparison of log-likelihood surfaces for different values of the sample size n, for
the mixture example.
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Table 1: Comparison of five approximations of Z for a sample of 3 observations from the normal
mixture (7) simulated with µ = −2 and σ = 3/2. All Monte Carlo and MCMC algorithms are
based on T = 104 simulations, while the numerical integration is based on a 850 × 950 grid in
the (µ, σ) parameter space that is also used for the graphical representations, and the nested
sampling approximation is based on a starting sample of M = 1000 points followed by at least
103 further simulations from the constrained prior and a stopping rule at 95% of the observed
maximum likelihood. The constrained prior simulation is based on 50 values simulated from
the MCMC kernel by starting from the current value of (µ, σ) and accepting only MCMC steps
that lead to a likelihood higher than the bound; the 50 values are then weighted by the inverse
likelihood to compensate for the simulation from the posterior. The error evaluations are given
between parentheses and are described above, with the nested sampling error being derived
from the approximate standard deviation

√
H/M on log Z and H being estimated the same

way as Z.

Experiment Numerical Nested MCMC MC Mixed

1 0.02638185 0.7994272 0.02631638 0.06540345 0.02868031
(0.009371732) (0.0260898) (0.02863879) (0.0004610243)

2 0.002720217 0.02069206 0.002714722 0.002990156 0.002809786
(0.00393269) (0.00264507) (9.172314e − 05) (3.857435e − 05)

3 0.005917445 0.07945572 0.0060799 0.006434044 0.006052107
(0.002041785) (0.006063258) (0.0001077968) (2.834609e − 05)

4 0.002649868 0.09996364 0.002575131 0.003753396 0.002926395
(0.002708107) (0.002552974) (0.0003436786) (6.014119e − 05)

5 0.01604548 0.7359017 0.01561999 0.03075327 0.01739375
(0.01846696) (0.01548540) (0.01243047) (0.0003401821)

(moderately) increased the computing time for the nested sampler, it seemed to us this was the
most feasible approach. We then ran the nested sampling algorithm till the current value of (µ, σ)
neither contributed significantly to the approximation of Z, not was far from the maximum value
of the likelihood observed during the first MCMC round (see Figure 5).

The analysis of this experiment in Tables 1–3 first shows that nested sampling often gives
very different evaluations of Z when compared with the four other approaches. The most reliable
approach—besides the numerical evaluation which cannot be used in general settings—is the mix-
ture approach of Section 6.2, which provides estimates of Z that are quite similar to the numerical
evaluation on a stable basis. The nested sampling evaluation is on many occurrences quite above
the numerical value and this may be attributed to a fatal attraction of the tiny modes correspond-
ing to the mean close to one of the observations and the variance close to zero. Note also that the
Monte Carlo method leading to Ẑ2 is second in producing poor approximations to Z. (The kernel
φ used in Ẑ2 is a t non-parametric kernel estimate with standard bandwidth estimation.)

7.3 A probit example for nested importance sampling

To illustrate the extended algorithm described in Section 5 we consider the arsenic dataset and one
of the probit models studied in Chapter 5 of Gelman and Hill (2006). The observations are inde-
pendent Bernoulli variables yi such that Pr(yi = 1) = Φ(xT

i θ), where xi is a vector of d covariates

14



Figure 3: MCMC sample of 104 simulations plotted on the log-likelihood surface in the (µ, σ)
space for n = 63 observations from (7), for the mixture example.

Table 2: Same caption as Table 1 for n = 6 observations (T = 105 simulations).

Experiment Numerical Nested MCMC MC Mixed

1 0.003000692 0.005226228 0.003113305 0.003065143 0.002994274
(0.001367028) (0.003104752) (8.89131e − 05) (1.241009e − 05)

2 2.311333e − 05 1.784006e − 05 2.37307e − 05 2.366789e − 05 2.342896e − 05
(1.052050e − 05) (2.366576e − 05) (1.236103e − 07) (7.743941e − 08)

3 0.0001575844 0.0001809647 0.0001590132 0.0001577876 0.0001576939
(8.071656e − 0) (0.0001585772) (7.622973e − 07) (5.967563e − 07)
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Figure 4: Nested sampling sequence based on M = 1000 starting points for the same dataset
as Figure 3, for the mixture example.

Table 3: Same caption as Table 1 for n = 12 observations (T = 105 simulations).

Experiment Numerical Nested MCMC MC Mixed

1 5.06238e − 08 4.275614e − 08 5.056614e − 08 5.066061e − 08 5.07019e − 08
(7.697119e − 08) (5.042801e − 08) (1.433309e − 10) (1.321545e − 10)

2 1.917207e − 08 4.759043e − 07 1.925406e − 08 1.916241e − 08 1.917270e − 08
(3.735215e − 08) (1.920146e − 08) (5.052397e − 11) (5.060781e − 11)
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Figure 5: Likelihood evaluations of the sequence plotted on Fig. 4, for the mixture example.
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Figure 6: MCMC sample of 104 simulations plotted on the log-likelihood surface in the (µ, σ)
space for n = 6 observations from the mixture (7).
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Figure 7: Nested sampling sequence based on M = 1000 starting points for the same dataset
as Figure 6.
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associated with yi, θ is a vector parameter of size d, and Φ denotes the standard normal distribution
function. In this particular example, d = 7; more details on the data and the covariates are available
on the book’s web-page, at http://www.stat.columbia.edu/~gelman/arm/examples/arsenic.

The probit model we use is model 9a in the R program available at this address: the dependent
variable indicates whether or not the surveyed individual changed the well he or she drinks from
in the past three years, and the seven covariates are an intercept, distance to nearest safe well (in
100 meters unit), education level, log of arsenic level, and cross-effects for these three variables.

The likelihood reads:

L(θ) =
n∏

i=1

= Φ(xT
i θ)

yi{1 − Φ(xT
i θ)}1−yi

and, for illustration’s purpose, we assign Nd(0, 10
2Id) as prior on θ.

We ran 10 times the nested importance sampling algorithm, based on the nested ball strategy
described in §5, for N = 10, 100, 1000. The tuning parameters θ̂, τ are respectively set to the
posterior mode (as obtained numerically), and 100. Figure 8 compares box-plots of the obtained es-
timates to the true value of the evidence on the logarithmic scale. The average number of simulated
points was respectively, 645, 6628 and 65, 926, for N = 10, 100, 1000. The precision of estimates
seems quite satisfactory, given the small computational effort, and the relatively straightforward
tuning (based on the posterior mode only). We note however a small bias, which may due to some
numerical artifact. As a matter of comparison, a basic importance sampling estimator, based on
only 645 simulated points, and a Gaussian proposal fitted with the same hyper-parameters (mean
set to posterior mode, variance set to 100 times the identity matrix), has a variance which is larger
by several orders of magnitude.

Thus, this example shows that nested importance sampling is generally more convenient that
standard importance sampling for evaluating the evidence, in that it exhibits good performance
even if it is supplied only with an approximation of the posterior mode (at least in a problem
of reasonable dimension). This may be particularly helpful in situations where the shape of the
posterior support is difficult to determine: say when the posterior mode (or maximum likelihood
estimator) must be obtained by the EM algorithm, which does not allow for calculating the Hessian
of the posterior log density at the mode.
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A Proof of Lemma 2.1

We first note that it is sufficient to prove this result for functions f̃ that are real-valued, positive
and increasing. First, the extension to vector-valued functions is trivial, so f̃ is assumed to be
real-valued from now on. Second, the class of functions that satisfy property (5) is clearly stable
through addition. Since f̃ is absolutely continuous, there exist functions f+ and f−, such that f+

is increasing, f− is decreasing, and f̃ = f+ + f−, so we can restrict our attention to increasing
functions. Third, absolute continuity implies bounded variation, so it always possible to add an
arbitrary constant to f̃ to transform it into a positive function.

Let ψ : l → lf̃(l), which is a positive, increasing function and denote its inverse by ψ−1. One
has:

∫
π(θ)L(θ)f(θ) dθ = E

π[ψ{L(θ)}]

=

∫ +∞

0
P π(ψ{L(θ)} > l) dl

=

∫ +∞

0
ϕ−1{ψ−1(l)} dl

=

∫ 1

0
ψ{ϕ(x)} dx.

which concludes the proof.

B Proof of Theorem 1

Let ti = x⋆
i+1/x

⋆
i , for i = 1, 2, . . . We first prove the following lemma. (This result is mentioned by

Skilling (2006, 2007).)

Lemma B.1. The ti’s are independent Beta(n, 1) variates.
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Proof. For i = 1, . . . , N , let t̂i = ϕ−1(L(θ1,i)), where the θ1,i’s denote the N initial draws from the
prior, and let t̂(i) denote the elements of the corresponding ordered vector. The t̂i are i.i.d. [0, 1]

uniform variates, so t1 = t̂(N) is Beta(n, 1). The density of the t̂i’s for i = 1, . . . , N − 1, conditional

on t̂(N) is computed as

p(t̂(1), . . . , t̂(N−1)|t̂(N)) =
(N − 1)!

t̂N−1
(N)

I[t̂(1) < . . . < t̂(N)] .

Hence, by a simple symmetry argument, if the largest element t1 = t̂(N) is removed from the vector

(t̂1, . . . , t̂N ), the remaining components divided by t1 are independent [0, 1] uniform variates. The
result follows by induction.

A direct consequence of the above lemma is that ui = tNi defines a sequence of independent
uniform [0, 1] variates. A Taylor expansion of eN then leads to:

eN =

⌈cN⌉∑

i=1

(xi−1 − xi) [ϕ(x⋆
i ) − ϕ(xi)]

=

⌈cN⌉∑

i=1

(xi−1 − xi)
[
ψ′(− log xi) (log xi − log x⋆

i ) +O (log xi − log x⋆
i )

2
]

where c = − log ε, and ψ(y) = ϕ(e−y). Note that

Si = N (log xi − log x⋆
i ) =

i−1∑

k=0

(−1 − log uk)

is a sum of independent, standard variables, as E[log ui] = −1 and var[log ui] = 1. Thus, (log xi − log x⋆
i ) =

OP (N−1/2) and

N1/2eN = N−1/2

⌈cN⌉∑

i=1

(e−(i−1)/N − e−i/N )Si

[
ψ′(

i

N
) +OP (N−1/2)

]

= c1/2

⌈cN⌉∑

i=1

∫ i/N

(i−1)/N
e−tψ′(t)BN (

t

c
+

1

N
) dt

[
1 +OP (N−1/2)

]

since ψ′(t) = ψ′(i/N) +O(N−1) for t ∈ [(i− 1)/N, i/N ], and provided BN (t) is defined as:

BN (t) = (cN)−1/2S⌊cNt⌋

for t ∈ [0, 1]. According to Donsker’s theorem (e.g. Kallenberg, 2002, p.275), BN converges to

a Brownian motion B on [0, 1], in the sense that f(BN)
d
; f(B) for any measurable and a.s.

continuous function f . Thus

N1/2eN = c1/2

∫ ⌈cN⌉/N

0
e−tψ′(t)BN (

t

c
+

1

N
) dt+OP (N−1/2)

d
; c1/2

∫ c

0
e−tψ′(t)B(

t

c
) dt ,
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which has the same distribution as
∫ c

0
e−tψ′(t)B(t) dt =

∫ 1

ε
sϕ′(s)B(− log s) ds,

that is, a zero-mean Gaussian variate.

C Proof of Lemma 4.1

For the sake of clarity, we make explicit dependences on d in this section, e.g. ϕd for ϕ, εd for ε,
etc. We will use repeatedly the fact that ϕ is nonincreasing, and that ϕ′ is nonnegative. One has:

−
∫

s,t∈[εd,1]
sϕ′

d(s)tϕ
′
d(t) log(s ∨ t) dt ≤ − log εd

(∫ 1

εd

sϕ′
d(s) ds

)2

≤
(
− log τ + d log

√
2
)

≤ d log(
√

2/τ)

for d ≥ 1, since −
∫ 1
εd

sϕ′
d(s) ds ≤ −

∫ 1
0 sϕ

′
d(s) ds =

∫ 1
0 ϕd(s) ds = 1. This gives the first result, with

c1 = log(
√

2/τ).
Let sd = ϕ−1

d (αd), for 0 < α < 1; sd is the probability that

4π

∑d
i=1 θ

2
i

d
− 1 ≤ −2 log(α/

√
2) − 1

assuming that the θi’s are i.i.d N (0, 1/4π) variates. The left-hand side is an empirical average of
i.i.d. zero-mean variables. Take α so that the right-hand side is negative, i.e. α >

√
2 exp(−1/2).

Using large deviations calculations, e.g. (Kallenberg, 2002, Chap. 27), one gets that − log(sd)/d
converges to some γ > 0 as d→ +∞. Then

1

d
Vd = −1

d

∫

s,t∈[εd,1]
sϕ′

d(s)tϕ
′
d(t) log(s ∨ t) dsdt

≥
(− log sd

d

)(∫ sd

εd

sϕ′
d(s) ds

)2

≥
(− log sd

d

)(∫ sd

εd

ϕd(s) ds+ εdϕd(εd) − sdϕd(sd)

)2

≥
(− log sd

d

)(
1 −

∫ εd

0
ϕd(s) ds −

∫ 1

sd

ϕd(s) ds + εdϕd(εd) − sdϕd(sd)

)2

as
∫ 1
0 ϕd(s) ds = 1. As d → +∞, − log(sd)/d → γ, sd → 0, ϕd(sd) = αd → 0,

∫ 1
sd

ϕd(s) ds ≤
ϕd(sd)(1 − sd) → 0, and

0 ≤
∫ εd

0
ϕd(s) ds− εdϕd(εd) ≤ εd[ϕd(0) − ϕd(εd)] ≤ τ < 1,

by the definition of εd, and the squared factor is in the limit greater than or equal to (1 − τ)2.
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