
HAL Id: hal-00214309
https://hal.science/hal-00214309

Submitted on 24 Jan 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improved Algorithms for the Range Next Value
Problem and Applications

Maxime Crochemore, Costas Iliopoulos, Marcin Kubica, M. Sohel Rahman,
Tomasz Walen

To cite this version:
Maxime Crochemore, Costas Iliopoulos, Marcin Kubica, M. Sohel Rahman, Tomasz Walen. Improved
Algorithms for the Range Next Value Problem and Applications. STACS 2008, Feb 2008, Bordeaux,
France. pp.205-216. �hal-00214309�

https://hal.science/hal-00214309
https://hal.archives-ouvertes.fr

Symposium on Theoretical Aspects of Computer Science 2008 (Bordeaux), pp. 205-216
www.stacs-conf.org

IMPROVED ALGORITHMS FOR THE RANGE NEXT VALUE

PROBLEM AND APPLICATIONS

MAXIME CROCHEMORE 2, 1, COSTAS S. ILIOPOULOS 2, MARCIN KUBICA 3,

M. SOHEL RAHMAN 2, AND TOMASZ WALEŃ 3

1 Institut Gaspard-Monge, Université de Marne-la-Vallée, France

2 Algorithm Design Group, Department of Computer Science
Kings College London, Strand, London WC2R 2LS, England
E-mail address: Maxime.Crochemore@kcl.ac.uk,{csi,sohel}@dcs.kcl.ac.uk

URL: http://www.dcs.kcl.ac.uk/adg

3 Institute of Informatics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland
E-mail address: {kubica,walen}@mimuw.edu.pl

Abstract. The Range Next Value problem (Problem RNV) is a recent interesting variant
of the range search problems, where the query is for the immediate next (or equal) value
of a given number within a given interval of an array. Problem RNV was introduced and
studied very recently by Crochemore et. al [Finding Patterns In Given Intervals, MFCS
2007]. In this paper, we present improved algorithms for Problem RNV. We also show
how this problem can be used to achieve optimal query time for a number of interesting
variants of the classic pattern matching problems.

1. Introduction

We study the Range Next Value (RNV) problem, which is defined as follows:

Problem 1.1. Range Next Value (Problem RNV). We are given an array A[1..n],
which is a permutation of [1..n]. We need to preprocess A to answer queries of the following
form:
Query: Given an integer K ∈ [1..n], and an interval [`..r], 1 ≤ ` ≤ r ≤ n, the goal is
to return the value A[k] of the immediate higher or equal number (‘next value’) than K
from A[`..r] if there exists one. More formally, we need to return such A[k], that A[k] =
min{A[q] | A[q] ≥ K and ` ≤ q ≤ r}. If there is no such k, then we return −1.

Key words and phrases: Algorithms, Data structures.
Part of this research work was done when the authors were visiting McMaster University, Canada to

attend StringMasters @ McMaster (2007). C.S. Iliopoulos is partially supported by the EPSRC and Royal
Society grants. M. Kubica and T. Waleń are supported by the grant of the Polish Ministry of Science
and Higher Education N206 004 32/0806. M.S. Rahman is supported by the Commonwealth Scholarship
Commission in the UK and is on leave from the Department of CSE, BUET, Dhaka-1000, Bangladesh.

c© M. Crochemore, C. S. Iliopoulos, M. Kubica, M. S. Rahman, and T. Waleń
CC© Creative Commons Attribution-NoDerivs License

206 M. CROCHEMORE, C. S. ILIOPOULOS, M. KUBICA, M. S. RAHMAN, AND T. WALEŃ

We use RNVA([`..r],K) to denote the range next value query on array A[`..r] for the
value K. Problem RNV was introduced, very recently, in [4], to solve an interesting variant
of the classic pattern matching problem, namely Pattern Matching in a Query Interval
(Problem PMQI) [8]. In problem PMQI, we are given a text, which we can preprocess for
subsequent queries and each query has a query interval in addition to a pattern to search
for. The goal is to find only those occurrences of the pattern in the text that start in the
given query interval. This problem is interesting, because, in many text search situations,
one may want to search only in a part of the text, e.g. restricting the search to only parts
of a long DNA sequence. To achieve an optimal query time, in [4], Problem PMQI was
reduced to Problem RNV and the latter was solved with a constant query time against a
data structure requiring O(n2) preprocessing time and space. It was left as an open problem
to devise a better data structure without losing the constant time query capability. The
goal of this paper is to present such a data structure. Notably, Problem RNV turns out to
be useful in a number of other problems as well. As we will show in Section 5, Problem
RNV can be used to get optimal query times for a number interesting problems studied
in [7] and related to string statistics problem [3, 1].

It is worth-mentioning here that, despite extensive results on various range searching
problems, we are not aware of any result from the literature that directly addresses Problem
RNV. It seems to be possible to get a query time of O(log log n) by using an efficient data
structure for the much studied “3-sided Query” problem along with a ‘persistent’ data
structure to ‘select’ the appropriate answer from the answer set of a “3-sided Query” [9].
However, our goal is to facilitate constant time query capability with a data structure
requiring o(n2) time and space. In the rest of this paper, we follow the following convention
adopted from [2]: if an algorithm has preprocessing time f(n) and query time g(n), we will
say that the algorithm has complexity 〈f(n), g(n)〉.

The rest of the paper is organized as follows. In Section 2, we review the 〈O(n2), O(1)〉
algorithm presented in [4]. In Sections 3 and 4, we present two different algorithms to
solve Problem RNV with complexity 〈O(n1.5), O(1)〉 and 〈O(n1+ε), O(1)〉 respectively. In
Section 5, we discuss their possible applications.

2. The 〈O(n2), O(1)〉 Algorithm

In this section, we briefly review the algorithm for Problem RNV (referred to as Algo-

rithm CIR henceforth) presented in [4]. First, we formally define the much studied Range
Minimum Query Problem, which is used by the CIR algorithm.

Problem 2.1. Range Minimum Query (Problem RMQ). We are given an array
A[1..n] of numbers. We need to preprocess A to answer the following form of queries:
Query: Given an interval [`..r], 1 ≤ ` ≤ r ≤ n, the goal is to find the minimum (maximum,
in the case of Range Maximum Query) value A[k] for ` ≤ k ≤ r.

We use RMQA([`..r]) to denote the range minimum query on array A for the inter-
val [`..r]. Problem RMQ has received much attention in the literature and Bender and
Farach-Colton presented an algorithm with complexity 〈O(n), O(1)〉, using O(n log n)-bits
of space [2]1. Recently, Sadakane [10] presented a succinct data structure, which achieves
the same time complexity using O(n) bits of space. Very recently, Fischer and Heun [5]

1The same result was achieved in [6], albeit with a more complex data structure.

IMPROVED ALGORITHMS FOR PROBLEM RNV AND APPLICATIONS 207

presented an algorithm with the same time complexity requiring optimal 2n + o(n) bits of
additional space.

2.1. Algorithm CIR

Algorithm CIR maintains n arrays Bi, 1 ≤ i ≤ n. Each array Bi has n elements. So, B
could be viewed as a two dimensional array. Algorithm CIR fills each array Bi depending
on A as follows. For each 1 ≤ i ≤ n it stores in Bi the difference between i and the
corresponding element of A, and then replace all negative entries of Bi with ∞. More
formally, for each 1 ≤ i ≤ n and for each 1 ≤ j ≤ n, algorithm CIR sets Bi[j] = A[j] − i, if
A[j] ≥ i; otherwise it sets Bi[j] = ∞. Then, each Bi, 1 ≤ i ≤ n, is preprocessed for the RMQ
problem. This completes the construction of the data structure. It is clear that, Algorithm
CIR requires O(n2) preprocessing time. The query processing is as follows. Consider the
query RNVA([`..r],K). Then, we simply need to apply range minimum query in BK for
the interval [`..r], i.e., we need to execute the query: RMQBK

([`..r]). This gives us the
following theorem.

Theorem 2.2. [4]. For Problem RNV, we can construct a data structure in O(n2) time

and space to answer the relevant queries in O(1) time per query.

3. An Improved Algorithm with Complexity 〈O(n1.5), O(1)〉
In this section, we present an algorithm that improves on Algorithm CIR. In what fol-

lows, we use the following notations. Given an array A[1..n], we denote by Â, the underlying

set comprising of all the (distinct) elements of A. In other words, Â = {A[i] | 1 ≤ i ≤ n}. We
define min(A) = A[i], such that A[i] ≤ A[j] for all j in [1..n]. Given a sub-array A[`..r], 1 ≤
` ≤ r ≤ n, of the array A, we further define left(A[`..r]) = ` and right(A[`..r]) = r. We
say that, a range [`..r] is nonexistent, if ` > r; otherwise, [`..r] is said to be existent. Fur-
thermore, given a range [`..r], 1 ≤ ` ≤ r ≤ n, and a sub-array A[i..j], 1 ≤ i ≤ j ≤ n of an
array A[1..n], we say that the range [`..r] is confined in the sub-array A[i..j], if, and only if,
we have i ≤ ` ≤ r ≤ j. Now, recall that, our goal is to construct a data structure requiring
o(n2) time and space without losing the constant time query capability. Below we present
the idea we employ.

In this section, we will assume that, we are looking for the immediate higher value
(instead of ‘equal or higher’) than the given value K in Problem RNV. It is easy to realize
that, it doesn’t really create any problem for the actual case.

In the first phase, we divide the array A[1..n] into dn/℘e = q sub-arrays Dj , 1 ≤ j ≤ q.
Now, we add the number 0 to the beginning of each Dj , 1 ≤ j ≤ q. It is easy to realize that,
each Dj has exactly ℘+1 elements except possibly the last one, which may have less. Now,
we apply a slight variation of Algorithm CIR on each Dj , 1 ≤ j ≤ q as follows. For each

Dj , we maintain |Dj | arrays, B`
j [1..|Dj |], ` ∈ Dj . Notably, the naming convention followed

for the B`
j arrays are for better exposition. For example, if Dj = 〈0, 1, 9, 2, 6〉, then we have

B0
j , B1

j , B9
j , B2

j and B6
j . Now, we fill each such B`

j [1..|Dj |] as follows:

B`
j [i] =

{
Dj [i] If Dj [i] > `

∞ Otherwise
(3.1)

208 M. CROCHEMORE, C. S. ILIOPOULOS, M. KUBICA, M. S. RAHMAN, AND T. WALEŃ

In the second phase, we construct q arrays Ei[0..n], 1 ≤ i ≤ q. Ei is filled up as follows:

Ei[j] =

{
j If j ∈ Di

Ei[j − 1] Otherwisea
(3.2)

aRecall that 0 ∈ Di for all 1 ≤ i ≤ q.

In the third phase, we construct n arrays Fk[1..q], 1 ≤ k ≤ n, where we fill:

Fk[i] = min{Di[j] : Di[j] > k and 1 ≤ j ≤ |Di|} = RNVDi
([1..|Di|], k)

Please note, that all the Fk arrays can be computed in O(nq) time. Finally, we prepro-
cess each Fk (1 ≤ k ≤ n) and all B`

j arrays for the RMQ problem. This completes the
construction of our data structure. In what follows, we use RNV DS1 to refer to this data
structure.

Algorithm 1 Function RNV Query(A[`..r],K))

1: let `′ = (i1 − 1) · ℘ < ` ≤ i1 · ℘
2: let r′ = (i2 − 1) · ℘ < r ≤ i2 · ℘
3: if i1 = i2 then

4: {` and r are in the same block}
5: Set j = i1, u = Ei1 [K]
6: return RMQBu

j
([(` − `′)..(r − r′)])

7: else

8: Set val1 = val2 = val3 = ∞.
9: Set u1 = Ei1 [K], u2 = Ei2 [K].
10: Set val1 = RMQ

B
u1
i1

([(` − `′)..|Du|]){Executing RNVDi1
([(` − `′)..|Di1 |],K}

11: Set val3 = RMQ
B

u2
i2

([1..(r − r′)]){Executing RNVDi2
([1..(r − r′)],K}

12: if i2 − i1 > 1 then

13: Set val2 = RMQFK
([(i1 + 1)..(i2 − 1)])

14: end if

15: return min{val1 , val2 , val3}
16: end if

3.1. Query Processing

In this section, we discuss the query processing. Suppose, we are considering the follow-
ing query: RNVA([`..r],K). We compute, `′, r′, i1 and i2, such that, `′ = (i1−1)·℘ < ` ≤ i1·℘
and r′ = (i2 − 1) · ℘ < r ≤ i2 · ℘. Then, we can divide the range [`..r] into 3 consecutive
ranges, namely [`..i1 × ℘], [i1 × ℘ + 1..(i2 − 1) × ℘] and [(i2 − 1) × ℘ + 1..r] (See Figure 1).
Now, we proceed with the query processing as follows. We have the following cases.

A 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16{ { { {

D1 D2 D3 D4

l r

{ { {

val1 val2 val3

Figure 1: The situation of an RNV query

IMPROVED ALGORITHMS FOR PROBLEM RNV AND APPLICATIONS 209

Case 1: i1 = i2: In this case, the range [`..r] is in the same sub-array Di1 . So, we only
perform the following RMQ query, the answer of which is returned as the desired
result: RNVDi1

([(` − `′)..(r − r′)],K) = RMQ
B

Ei1
[K]

i1

([(` − `′)..(r − r′)]).

Case 2: i2 > i1: In this case, we first initialize val1, val2 and val3 to ∞ and then we
proceed with the query processing as follows. We first perform the following RMQ
queries:

val1 = RNVDi1
([(` − `′)..|Di1 |],K) = RMQ

B
Ei1

[K]

i1

([(` − `′)..|Di1 |]) (3.3)

val3 = RNVDi2
([1..(r − r′)],K) = RMQ

B
Ei2

[K]

i1

([1..(r − r′)]) (3.4)

Then, if we have i2 − i1 > 1, then we perform the following RMQ query:

val2 = RMQFK
([(i1 + 1)..(i2 − 1)]) (3.5)

Finally, we return the minimum of val1, val3 and val2 as the final result.

3.2. Correctness and Running Time

In this section, we discuss the correctness of the above algorithm and its running time.

Lemma 3.1. With the data structure RNV DS1, we can correctly answer any queries of

the form RNVDi
([`..r],K), 1 ≤ ` ≤ r ≤ |Di|, 1 ≤ K ≤ n, 1 ≤ i ≤ q.

Proof. Recall that, RNVDi
([`..r],K) is executed by calculating RNVDi

([`..r], Ei[K]), which
in turn, is executed by performing the query RMQ

B
Ei[K]
i

([`..r]). From the correctness of

Algorithm CIR, it is clear that, RNVDi
([`..r], Ei[K]) ≡ RMQ

B
Ei[K]
i

([`..r]). So it remains

to show that RNVDi
([`..r],K) ≡ RNVDi

([`..r], Ei[K]). This is shown as follows. Recall
that, by definition, if K ∈ Di then Ei[K] = K. So, if K ∈ Di, we are done. Therefore,
assume otherwise. Now, in this case, Ei[K] is the nearest smaller value of K in Di. For

the values v < min(D̂i \ 0), this is ensured by the addition of 0 in each Di. Therefore,
it is easy to realize that, RNVDi

([`..r], Ei[K]) would return the same value as returned by
RNVDi

([`..r],K) and hence, the lemma follows.

Theorem 3.2 (Correctness). With the data structure RNV DS1, we can correctly answer

any query of the form RNVA([`..r],K), 1 ≤ ` ≤ r ≤ n, 1 ≤ K ≤ n.

Proof. Recall that, the range [`..r] is transformed into (up to) 3 consecutive ranges, namely
r1 ≡ [`..i1 × ℘], r2 ≡ [i1 × ℘ + 1..(i2 − 1) × ℘] and r3 ≡ [(i2 − 1) × ℘ + 1..r]. Now,
the range r1 (resp. r3) is confined within the sub-array Di1 (resp. Di2). On the other
hand, if r2 is existent, then it can span over one or more sub-arrays, Di1+1, . . . , Di2−1

and, in that case, it completely contains those sub-arrays, i.e. i1 ×℘ + 1 = left(Di1+1) and
(i2−1)×℘ = right(Di2−1). It is clear that, the minimum of the results of the corresponding
RNV queries in the three ranges, namely, r1, r2 and r3, is the final result. Now, recall that,
we have the following two cases.

case 1: i1 = i2: It is easy to verify that, this case arises when the range [`..r] is con-
fined in the sub-array Di1 . Therefore, it is easy to verify that, we have RNVA([`..r],K) ≡
RNVDi1

([(` − `′)..(r − r′)],K), and by Lemma 3.1, we get the correct result.

210 M. CROCHEMORE, C. S. ILIOPOULOS, M. KUBICA, M. S. RAHMAN, AND T. WALEŃ

case 2: i2 > i1: It is easy to see that, if we have i2 − i1 > 1, then all 3 intervals are
existent; otherwise, r2 is non-existent. Now, recall that, we initialize val1, val3 and
val2 to ∞. Since, both the ranges r1 and r3 are confined in the sub-arrays Di1 and
Di2 respectively, by Lemma 3.1, the two corresponding queries, namely, Queries 3.3
and 3.4 are correctly executed and the results are stored in val1 and val3.

Now, assume that the range r3 is existent and that, vi = RNVDi
([1..|Di|],K), i ∈

[i1 + 1..i2 − 1]. Then, it is easy to verify that:

RNVA([`..r],K) = min(val1, val3, min
i∈[i1+1..i2−1]

(vi)).

Now, we return min(val1, val3, val2) as the answer. Hence, it suffices to show that
val2 = mini∈[i1+1..i2−1](vi). Recall that, val2 is evaluated according to Equation 3.5.
By definition, each entry of FK correctly (Lemma 3.1) stores the result of the RNV
query for the value K and for the whole range for the corresponding sub-array.
Therefore, the range minimum query does provide us with the desired value.

Finally, if r2 is nonexistent, then val2 remains assigned to ∞. Therefore, the
result returned, i.e., the minimum of val1, val3 and val2, is correct.

Theorem 3.3. The data structure RNV DS1 can be constructed in O(n℘ + n2/℘) time.

Proof. We deduce the construction time of RNV DS1 phase by phase as follows.

Phase 1: Each sub-array Dj, 1 ≤ j ≤ q = dn/℘e has at most ℘+1 elements. It is easy
to see that, the application of the (slight variation of) Algorithm CIR requires O(℘2)
time per sub array. Therefore, in total, time required by Phase 1 is O(℘2) × q =
O(℘2) × dn/℘e = O(n℘) in the worst case.

Phase 2: Initializing and filling up the arrays Ei[0..n], 1 ≤ i ≤ q requires O(n) × q =
O(n2/℘) time.

Phase 3: In this phase, we construct the arrays Fk[1..q], for 1 ≤ k ≤ n. This can
easily be done in O(nq) = O(n2/℘) time. We also preprocess arrays Fk and Bl

j for

the RMQ queries, what requires also O(nq) = O(n2/℘) time.

Therefore, in total, the time required for the construction of RNV DS1 is O(n℘)+O(n2/℘)+
O(n2/℘) = O(n℘ + n2/℘).

Corollary 3.4. The data structure RNV DS1 can be constructed in O(n1.5) time.

Proof. This can be achieved if we assume that ℘ =
√

n.

Theorem 3.5. Given the data structure RNV DS1, we can answer the RNV queries in

O(1) time per query.

Proof. It is clear that, given RNV DS1, an RNV query is answered by executing up to 2
RNV queries on the sub-arrays and possibly 1 RMQ queries on the appropriate F array.
Each of these queries requires O(1) time. Therefore, the theorem follows.

IMPROVED ALGORITHMS FOR PROBLEM RNV AND APPLICATIONS 211

4. An Improved Algorithm with Complexity 〈O(n1+ε), O(1)〉
In this section, we present a different algorithm for problem RNV by taking a slightly

different approach. We start with a slightly different 〈O(n2), O(1)〉 algorithm and present
a new algorithm built on top it. This algorithm follows a similar strategy as algorithm CIR
and is referred to as the base algorithm henceforth.

4.1. The Base Algorithm:

We define arrays Bj, 1 ≤ j ≤ n as follows:

Bj [i] =

{
A[i] if A[i] ≥ j

∞ if A[i] < j

Now, the preprocessing is done as follows.

1: for j = 1, . . . , n do
2: Preprocess sequence Bj for Problem RMQ
3: end for

After the above data structure is constructed, we can perform the queries as follows.
Similar to what was done in algorithm CIR, given the query RNVA([`..r],K), we just return
RMQBK

([l..r]). It is easy to see that the base algorithm is correct and its running time is
〈O(n2), O(1)〉. In the rest of this section, we present an improved algorithm based on the
base algorithm.

4.2. Improved algorithm

In this section we describe a method for improving preprocessing time of any RNV
algorithm, the cost paid for the improvement is slight (namely O(1)) increase of the RNV
query time. Suppose, we are given the array A of length n, the parameter ℘, and an
algorithm RNVALG for Problem RNV with complexity 〈f(n), g(n)〉. We will show how to
improve the preprocessing time of RNVALG.

In the first phase we divide possible values of parameter K, into dn/℘e = q interval sets
Kj , where Kj = {i : (j − 1) · ℘ < i ≤ j · ℘}. For each j (1 ≤ j ≤ q) we compute following
arrays:

• array B′
j (|B′

j | = n) — containing information about elements of array A strictly

larger than (j − 1) · ℘

B′
j[i] =

{
A[i] if A[i] > (j − 1) · ℘
∞ otherwise

• set Cj = {i : A[i] ∈ Kj} — containing indices of the elements of array A with values
from the range Kj ; by Cj we will denote the array consisting of elements of Cj sorted
in the ascending order, |Cj | ≤ ℘,

• array Dj (|Dj | ≤ ℘) — contains the elements of array A from the range Kj , in the
order as they appear in A; each element is decreased by (j − 1) · ℘, to ensure that
the array Dj is a permutation of {1..|Dj |}:

Dj [i] = A[Cj [i]] − (j − 1) · ℘, for 1 ≤ i ≤ |Cj|

212 M. CROCHEMORE, C. S. ILIOPOULOS, M. KUBICA, M. S. RAHMAN, AND T. WALEŃ

• array Ej (|Ej | = n+1) — containing indices used for translating queries from array
Aj to array Dj ; Ej [i] denotes the number of elements from A[1..i] from the range
Kj:

Ej [i] =





Ej [i − 1] + 1 if A[i] ∈ Kj and i > 0

Ej [i − 1] if A[i] 6∈ Kj and i > 0

0 if i = 0

A 4 1 2 7 10 3 5 15 8 13 14 11 6 9 12

D2 3 1 4 2

E2 0 0 0 0 1 1 1 2 2 3 3 3 3 4 4 4
{ { { {

Figure 2: Example of computing arrays Dj and Ej , for n = 15, ℘ = 4, j = 2, Kj = [5..8]

Then the algorithm preprocesses each array B ′
j for range minimum queries, and each array

Dj for range next value queries (using RNVALG).

Algorithm 2 Construction of RNV DS2(℘,RNVALG)

1: for j = 1, . . . , dn/℘e do

2: compute arrays B′
j , Cj , Dj , Ej ,

3: preprocess sequence B′
j for RMQ (Range Minimum Queries)

4: preprocess sequence Dj for RNV (Range Next Value Queries) using RNVALG
5: end for

The B′
j arrays will be used for answering the range next value queries if the answer is

outside of the range Kj. The Dj will be used if the answer is within the range Kj . Since
we do not know in the advance which case is valid, the algorithm tries both cases, and then
chooses the smaller result.

Algorithm 3 Query Processing of RNV DS2(℘,RNVALG)

1: Set a1 = a2 = ∞
2: Set j, such that: x = (j − 1) · ℘ < K ≤ j · ℘
3: if j < q then

4: a1 = RMQB′
j+1

([`..r])

5: end if

6: Set `′ = Ej [` − 1] + 1; r′ = Ej [r]
7: if `′ ≤ r′ then

8: a2 = RNVDj
([`′..r′]],K− x) + x {using algorithm RNVALG}

9: end if

10: return min(a1, a2)

Theorem 4.1. If we are given the 〈f(n), g(n)〉 RNV algorithm, then using the RNV DS2,

we can construct 〈O((n2 + nf(℘))/℘), g(℘) + O(1)〉 algorithm for RNV.

Proof. The preprocessing of the RNV DS2 requires:

• computing n/℘ arrays B ′
j (each of length n), this step requires O(n2/℘) time,

IMPROVED ALGORITHMS FOR PROBLEM RNV AND APPLICATIONS 213

A 4 1 2 7 10 3 5 15 8 13 14 11 6 9 12

{RNV (5, 12, 6) = min(a1, a2) = 8

B′

3
∞ ∞ ∞ ∞ 10 ∞ ∞ 15 ∞ 13 14 11 ∞ ∞ 12

{a1 = RMQ(5, 12) = 10

E2 0 0 0 0 1 1 1 2 2 3 3 3 3 4 4 4

{ {

l′ = E2[5] + 1 = 2 r′ = E2[12] = 3

D2 3 1 4 2{

a2 = RNV (2, 3, 2) + 4 = 8

Figure 3: RNV DS2 processing query RNV (5, 12, 6) (assuming ℘ = 4)

• preprocessing n/℘ arrays B ′
j for the Range Minimum Queries, this step also requires

O(n2/℘) time,
• computing n/℘ arrays Dj (each of length ℘), clearly this step requires O(n) time,
• preprocessing n/℘ arrays Dj for the Range Next Value Queries using 〈f(n), g(n)〉

algorithm, this step requires O(f(℘) · n/℘) time,
• computing n/℘ arrays Ej (each of length n + 1), this step requires O(n2/℘) time.

The total preprocessing time is O((n2 + nf(℘))/℘).

Answering the Range Next Value queries requires:

• one range minimum query on the B ′
j array, what can be done in O(1) time,

• one recursive call of the range next value query for Dj array using 〈f(n), g(n)〉 RNV
algorithm, requiring g(℘) time,

• constant number of additional operations (i.e. accessing arrays Ej)

Clearly the total query time is g(℘) + O(1).

Corollary 4.2. RNV DS2 can be constructed in O(n1.5) running time and space.

Proof. This can be achieved if we use the RNV DS2 construction method, with ℘ =
√

n,
and using as RNVALG, the base algorithm (with complexity 〈O(n2), O(1)〉).
We can obtain even more efficient algorithm, carefully iterating RNV DS2 construction.

Theorem 4.3. For any given positive constant ε > 0, we can construct 〈O(n1+ε, O(1)〉
algorithm form RNV using the RNV DS2.

Proof. Let RNV DS2(0) denote the base algorithm for RNV (with the complexity 〈O(n2), O(1)〉).
For any i > 0, let RNV DS2(i) denote the algorithm obtained using RNV DS2 with

RNVALG = RNV DS2(i−1) and ℘ = n
i

i+1 . From the theorem 4.1 the RNV DS2(1) has the

complexity 〈O(n1.5), O(1)〉, the RNV DS2(2) has the complexity 〈O(n1+ 1
3), O(1)〉. By sim-

ple induction, one can easily prove, that the RNV DS2(i) has the complexity 〈O(n1+ 1
i), O(i)〉.

5. Applications

In this section, we discuss possible applications of Problem RNV. As has already been
mentioned in Section 1, the study of the RNV problem in [4] was motivated by Problem

214 M. CROCHEMORE, C. S. ILIOPOULOS, M. KUBICA, M. S. RAHMAN, AND T. WALEŃ

PMQI, a variant of the classic pattern matching problem. Problem PMQI is formally defined
as follows (We use OccPT to denote the occurrence set for the classic pattern matching
problem):

Problem 5.1. Pattern Matching in a Query Interval (Problem PMQI). Suppose
we are given a text T of length n. Preprocess T to answer queries of the following form.
Query: We are given a pattern P of length m and a query interval [`..r], with 1 ≤ ` ≤ r ≤ n.
Let us denote by OccPT the set of all occurrences of P in T . We are to construct the set:

OccPT [`..r] = {i | i ∈ OccPT and i ∈ [`..r]}

Using the reduction of [4] from Problem PMQI to Problem RNV, we obtain the following
theorem.

Theorem 5.2. We can construct a data structure for Problem PMQI in O(max(n1+ε, n log σ))
time and O(n1+ε) space, and we can answer the relevant queries in the optimal O(m +
|OccPT [`..r]|) time per query.

A more general problem called PMI was also handled in [4].

Problem 5.3. Generalized Pattern Matching with Intervals (Problem PMI). Sup-
pose we are given a text T of length n and a set of intervals π = {[s1..f1], [s2..f2],
. . . , [s|π|..f|π|]}, such that si, fi ∈ [1..n] and si ≤ fi, for all 1 ≤ i ≤ |π|. Preprocess T to
answer queries of the following form.
Query: Given a pattern P and a query interval [`..r], such that `, r ∈ [1..n] and ` ≤ r,
construct the set

OccPT [`..r],π = {i | i ∈ OccPT and i ∈ [`, r] ∩ $ for some $ ∈ π}

To solve Problem PMI, a data structure with O(n log3 n) time, O(n log2 n) space was
constructed in [4]; the query time achieved was O(m+log log n+ |OccPT [`..r],π|). It was left as

an open problem to achieve the optimal query time for Problem PMI [4]. Interestingly, using
Problem RNV, we can get the optimal query time for Problem PMI as well. The details
are left for the journal version; but we report the new result in the following theorem.

Theorem 5.4. For problem PMI, we can construct a data structure in O(max(n1+ε, n log σ))
time and O(n1+ε) space, and we can answer the relevant queries in the optimal O(m +
|OccPT [`..r],π|) time per query.

In the rest of this section, we consider three recent variants of the classic pattern
matching problem, which we define below after defining some related concepts. Given two
occurrences i, j ∈ [1..n − m + 1], j > i of a pattern P[1..m] in a text T [1..n], we say that
j is minimal with respect to i, if, and only if, there exists no occurrence of P in T in the
range [i + 1..j − 1]. And, two occurrences i, j ∈ [1..n − m + 1] of P in T are said to be
non-overlapping, if, and only if, |j − i| ≥ m. Otherwise, they are said to be overlapping.

Problem 5.5. Suppose we are given a text T of length n. Preprocess T to answer the
following form of queries:
Query: Given a pattern P of length m, and an index i, we want to find out an occurrence
i′ ≥ i of P in T , such that i′ is minimal with respect to i.

Problem 5.6. Suppose we are given a text T of length n. Preprocess T to answer the
following form of queries:

IMPROVED ALGORITHMS FOR PROBLEM RNV AND APPLICATIONS 215

Query: Given a pattern P of length m, and a list of indices U = 〈i1, . . . , i`〉, our goal is to
construct the list V = 〈j1, . . . , j`〉, such that, for all k ∈ [1..`], jk is an occurrence of P in
T and jk ∈ V is, either minimal with respect to ik ∈ U or equal to Nill. The latter case
means that there doesn’t exist any occurrence to the right of ik.

Problem 5.7. Suppose we are given a text T of length n. Preprocess T to answer the
following form of queries:
Query: Given a pattern P of length m, and an interval [i..j], we want to find an ascending
sequence U = 〈i1, . . . , i`〉 of non-overlapping occurrences of P in T , such that i ≤ i1 ≤ i` ≤ j
and ` is maximal.

Problems 5.5 to 5.7 were handled very recently in [7]. The corresponding data structures
presented in [7] for the above problems requires O(n log n) storage and O(n log n log log n)
expected preprocessing time each. The query time achieved in [7], for Problem 5.6 and 5.7 is
O(m+ ` log log n) and for Problem 5.5 is O(m+log log n). Notably, none of the query times
achieved in [7] are optimal. In the rest of this section, we briefly show, how Problem RNV
can be used to achieve optimal query times for the above problems. We remark however
that, we omit many of the details for space constraint and left them for the journal version.

5.1. Problems 5.5 and 5.6

It is clear that, Problem 5.5 is a simpler version of the Problem 5.6. Interestingly, we
can use Problem RNV to solve both the problems efficiently. We first consider Problem 5.5.
Following the techniques of [4], we construct a suffix tree and do some preprocessing on it
to get OccPT implicitly in the form of an array L and an interval [a..b]. More specifically,

using the techniques of [4], after the preprocessing, we can implicitly have OccPT in L[a..b]
in O(m) time. Now, it is easy to see that to solve the query of problem 5.5, we simply need
to get the answer of the following query:

RNVL([a..b], i) (5.1)

Therefore, we have the following result.

Theorem 5.8. For Problem 5.5, we can construct a data structure in O(max(n1+ε, n log σ))
time and O(n1+ε) space, and we can answer the relevant queries in the optimal O(m) time

per query.

Proof. For the preprocessing, we first construct the suffix tree and do the preprocessing
of [4], requiring O(n log σ) time, where σ = min(n, |Σ|). Then we preprocess L for Problem
RNV. Total construction time and space complexity is, O(max(n1+ε, n log σ)) and O(n1+ε)
respectively. As for the query, we require O(m) time to get OccPT implicitly [4]. Then, we
just need to perform the Query 5.1 requiring constant time. Hence, the result follows.

We can easily extend the above result for Problem 5.6, simply by executing RNV
queries, RNVL([a..b], i) for all i ∈ U . Therefore, we get the following theorem.

Theorem 5.9. For Problem 5.6, we can construct a data structure in O(max(n1+ε, n log σ))
time and O(n1+ε) space, and we can answer the relevant queries in the optimal O(m + `)
time per query.

216 M. CROCHEMORE, C. S. ILIOPOULOS, M. KUBICA, M. S. RAHMAN, AND T. WALEŃ

5.2. Problem 5.7

To solve Problem 5.7, we follow the greedy strategy of [7] as follows. Suppose, we have
the set OccPT in the list W = 〈i1, . . . , i|OccP

T
|〉 in ascending order. Now, we construct another

list Y as follows. We first put i1 in Y. We use last(Y) to denote the most recently put
index in Y. Now we scan the list W from left to right and put ik ∈ W in Y, only if ik and
last(Y) are non-overlapping. It was proved in [7] that, |Y| is maximal. Therefore, we have
the following theorem.

Theorem 5.10. For Problem 5.7, we can construct a data structure in O(max(n1+ε, n log σ))
time and O(n1+ε) space, and we can answer the relevant queries in the optimal O(m + `)
time per query.

Proof. We do the same preprocessing as we did for Problems 5.5 and 5.6 and hence achieve
the same preprocessing time and space complexity. Now, we consider the query. We start
with the query RNVL([a..b], i + 1). Now suppose, the query returns q. Now, if q ≤ j, then
we put q in U and perform the query RNVL([a..b], q + m) and continue as before. We stop
when we get a query result q′ such that q′ > j. It is easy to verify that this would correctly
construct a maximal list U . Finally, since each of the queries require constant time, the
result follows.

References

[1] A. Apostolico and F. P. Preparata. Data structures and algorithms for the string statistics problem.
Algorithmica, 15(5):481–494, 1996.

[2] M. A. Bender and M. Farach-Colton. The lca problem revisited. In G. H. Gonnet, D. Panario, and
A. Viola, editors, Latin American Theoretical INformatics (LATIN), volume 1776 of Lecture Notes in
Computer Science, pages 88–94. Springer, 2000.

[3] G. S. Brodal, R. B. Lyngsø, A. Östlin, and C. N. S. Pedersen. Solving the string statistics problem in
time O(n log n). In P. Widmayer, F. T. Ruiz, R. M. Bueno, M. Hennessy, S. Eidenbenz, and R. Conejo,
editors, ICALP, volume 2380 of Lecture Notes in Computer Science, pages 728–739. Springer, 2002.

[4] M. Crochemore, C. S. Iliopoulos, and M. S. Rahman. Finding patterns in given intervals. In A. Kucera
and L. Kucera, editors, MFCS, volume 4708 of Lecture Notes in Computer Science, pages 645–656.
Springer, 2007.

[5] J. Fischer and V. Heun. A new succinct representation of rmq-information and improvements in the
enhanced suffix array. In B. Chen, M. Paterson, and G. Zhang, editors, ESCAPE, volume 4614 of
Lecture Notes in Computer Science, pages 459–470. Springer, 2007.

[6] H. Gabow, J. Bentley, and R. Tarjan. Scaling and related techniques for geometry problems. In Sym-
posium on the Theory of Computing (STOC), pages 135–143, 1984.

[7] O. Keller, T. Kopelowitz, and M. Lewenstein. Range non-overlapping indexing and successive list in-
dexing. In F. K. H. A. Dehne, J.-R. Sack, and N. Zeh, editors, WADS, volume 4619 of Lecture Notes
in Computer Science, pages 625–636. Springer, 2007.

[8] V. Mäkinen and G. Navarro. Position-restricted substring searching. In J. R. Correa, A. Hevia, and M. A.
Kiwi, editors, LATIN, volume 3887 of Lecture Notes in Computer Science, pages 703–714. Springer,
2006.

[9] E. Porat. Private communication.
[10] K. Sadakane. Succinct data structures for flexible text retrieval systems. Journal of Discrete Algorithms,

5(1):12–22, 2007.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

