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The Range Next Value problem (Problem RNV) is a recent interesting variant of the range search problems, where the query is for the immediate next (or equal) value of a given number within a given interval of an array. Problem RNV was introduced and studied very recently by Crochemore et. al [Finding Patterns In Given Intervals, MFCS 2007]. In this paper, we present improved algorithms for Problem RNV. We also show how this problem can be used to achieve optimal query time for a number of interesting variants of the classic pattern matching problems.

Introduction

We study the Range Next Value (RNV) problem, which is defined as follows: Problem 1.1. Range Next Value (Problem RNV). We are given an array A [1..n], which is a permutation of [1..n]. We need to preprocess A to answer queries of the following form: Query: Given an integer K ∈ [1..n], and an interval [ ..r], 1 ≤ ≤ r ≤ n, the goal is to return the value A[k] of the immediate higher or equal number ('next value') than K from A[ ..r] if there exists one. More formally, we need to return such A[k], that A[k] = min{A[q] | A[q] ≥ K and ≤ q ≤ r}. If there is no such k, then we return -1.

We use RN V A ([ ..r], K) to denote the range next value query on array A[ ..r] for the value K. Problem RNV was introduced, very recently, in [START_REF] Crochemore | Finding patterns in given intervals[END_REF], to solve an interesting variant of the classic pattern matching problem, namely Pattern Matching in a Query Interval (Problem PMQI) [START_REF] Mäkinen | Position-restricted substring searching[END_REF]. In problem PMQI, we are given a text, which we can preprocess for subsequent queries and each query has a query interval in addition to a pattern to search for. The goal is to find only those occurrences of the pattern in the text that start in the given query interval. This problem is interesting, because, in many text search situations, one may want to search only in a part of the text, e.g. restricting the search to only parts of a long DNA sequence. To achieve an optimal query time, in [START_REF] Crochemore | Finding patterns in given intervals[END_REF], Problem PMQI was reduced to Problem RNV and the latter was solved with a constant query time against a data structure requiring O(n 2 ) preprocessing time and space. It was left as an open problem to devise a better data structure without losing the constant time query capability. The goal of this paper is to present such a data structure. Notably, Problem RNV turns out to be useful in a number of other problems as well. As we will show in Section 5, Problem RNV can be used to get optimal query times for a number interesting problems studied in [START_REF] Keller | Range non-overlapping indexing and successive list indexing[END_REF] and related to string statistics problem [START_REF] Brodal | Solving the string statistics problem in time O(n log n)[END_REF][START_REF] Apostolico | Data structures and algorithms for the string statistics problem[END_REF].

It is worth-mentioning here that, despite extensive results on various range searching problems, we are not aware of any result from the literature that directly addresses Problem RNV. It seems to be possible to get a query time of O(log log n) by using an efficient data structure for the much studied "3-sided Query" problem along with a 'persistent' data structure to 'select' the appropriate answer from the answer set of a "3-sided Query" [9]. However, our goal is to facilitate constant time query capability with a data structure requiring o(n 2 ) time and space. In the rest of this paper, we follow the following convention adopted from [START_REF] Bender | The lca problem revisited[END_REF]: if an algorithm has preprocessing time f (n) and query time g(n), we will say that the algorithm has complexity f (n), g(n) .

The rest of the paper is organized as follows. In Section 2, we review the O(n 2 ), O(1) algorithm presented in [START_REF] Crochemore | Finding patterns in given intervals[END_REF]. In Sections 3 and 4, we present two different algorithms to solve Problem RNV with complexity O(n 1.5 ), O(1) and O(n 1+ ), O(1) respectively. In Section 5, we discuss their possible applications.

The O(n 2 ), O(1) Algorithm

In this section, we briefly review the algorithm for Problem RNV (referred to as Algorithm CIR henceforth) presented in [START_REF] Crochemore | Finding patterns in given intervals[END_REF]. First, we formally define the much studied Range Minimum Query Problem, which is used by the CIR algorithm.

Problem 2.1. Range Minimum Query (Problem RMQ). We are given an array A[1..n] of numbers. We need to preprocess A to answer the following form of queries: Query: Given an interval [ ..r], 1 ≤ ≤ r ≤ n, the goal is to find the minimum (maximum, in the case of Range Maximum Query) value A[k] for ≤ k ≤ r.

We use RM Q A ([ ..r]) to denote the range minimum query on array A for the interval [ ..r]. Problem RMQ has received much attention in the literature and Bender and Farach-Colton presented an algorithm with complexity O(n), O(1) , using O(n log n)-bits of space [START_REF] Bender | The lca problem revisited[END_REF] 1 . Recently, Sadakane [START_REF] Sadakane | Succinct data structures for flexible text retrieval systems[END_REF] presented a succinct data structure, which achieves the same time complexity using O(n) bits of space. Very recently, Fischer and Heun [START_REF] Fischer | A new succinct representation of rmq-information and improvements in the enhanced suffix array[END_REF] presented an algorithm with the same time complexity requiring optimal 2n + o(n) bits of additional space.

Algorithm CIR

Algorithm CIR maintains n arrays B i , 1 ≤ i ≤ n. Each array B i has n elements. So, B could be viewed as a two dimensional array. Algorithm CIR fills each array B i depending on A as follows. For each 1 ≤ i ≤ n it stores in B i the difference between i and the corresponding element of A, and then replace all negative entries of B i with ∞. More formally, for each 1 ≤ i ≤ n and for each 1 

≤ j ≤ n, algorithm CIR sets B i [j] = A[j] -i, if A[j] ≥ i; otherwise it sets B i [j] = ∞. Then, each B i , 1 ≤ i ≤ n,

An Improved Algorithm with Complexity

O(n 1.5 ), O (1) 
In this section, we present an algorithm that improves on Algorithm CIR. In what follows, we use the following notations. Given an array A[1.

.n], we denote by A, the underlying set comprising of all the (distinct) elements of A. In other words,

A = {A[i] | 1 ≤ i ≤ n}. We define min(A) = A[i], such that A[i] ≤ A[j] for all j in [1.
.n]. Given a sub-array A[ ..r], 1 ≤ ≤ r ≤ n, of the array A, we further define lef t(A[ ..r]) = and right(A[ ..r]) = r. We say that, a range [ ..r] is nonexistent, if > r; otherwise, [ ..r] is said to be existent. Furthermore, given a range [ ..r], 1 ≤ ≤ r ≤ n, and a sub-array A[i..j], 1 ≤ i ≤ j ≤ n of an array A [1..n], we say that the range [ ..r] is confined in the sub-array A[i..j], if, and only if, we have i ≤ ≤ r ≤ j. Now, recall that, our goal is to construct a data structure requiring o(n 2 ) time and space without losing the constant time query capability. Below we present the idea we employ.

In this section, we will assume that, we are looking for the immediate higher value (instead of 'equal or higher') than the given value K in Problem RNV. It is easy to realize that, it doesn't really create any problem for the actual case.

In the first phase, we divide the array A[1.

.n] into n/℘ = q sub-arrays D j , 1 ≤ j ≤ q. Now, we add the number 0 to the beginning of each D j , 1 ≤ j ≤ q. It is easy to realize that, each D j has exactly ℘ + 1 elements except possibly the last one, which may have less. Now, we apply a slight variation of Algorithm CIR on each D j , 1 ≤ j ≤ q as follows. For each D j , we maintain |D j | arrays, B j [1..|D j |], ∈ D j . Notably, the naming convention followed for the B j arrays are for better exposition. For example, if D j = 0, 1, 9, 2, 6 , then we have B 0 j , B 1 j , B 9 j , B 2 j and B 6 j . Now, we fill each such B j [1..|D j |] as follows:

B j [i] = D j [i] If D j [i] > ∞ Otherwise (3.1)
In the second phase, we construct q arrays E i [0.

.n], 1 ≤ i ≤ q. E i is filled up as follows:

E i [j] = j If j ∈ D i E i [j -1] Otherwise a (3.2)
a Recall that 0 ∈ Di for all 1 ≤ i ≤ q.

In the third phase, we construct n arrays F k [1.

.q], 1 ≤ k ≤ n, where we fill:

F k [i] = min{D i [j] : D i [j] > k and 1 ≤ j ≤ |D i |} = RN V D i ([1..|D i |], k)
Please note, that all the F k arrays can be computed in O(nq) time. Finally, we preprocess each F k (1 ≤ k ≤ n) and all B j arrays for the RMQ problem. This completes the construction of our data structure. In what follows, we use RNV DS1 to refer to this data structure.

Algorithm 1 Function RN V Query(A[ ..r], K))

1: let = (i 1 -1) • ℘ < ≤ i 1 • ℘ 2: let r = (i 2 -1) • ℘ < r ≤ i 2 • ℘ 3: if i 1 = i 2 then 4:
{ and r are in the same block} 5:

Set j = i 1 , u = E i 1 [K]
6:

return RM Q B u j ([( -)..(r -r )])
7: else 8:

Set val 1 = val 2 = val 3 = ∞.

9:

Set u 1 = E i 1 [K], u 2 = E i 2 [K].
10:

Set val 1 = RM Q B u 1 i 1 ([( -)..|Du|]){Executing RN V D i 1 ([( -)..|D i 1 |], K}
11:

Set val 3 = RM Q B u 2 i 2 ([1..(r -r )]){Executing RN V D i 2 ([1..(r -r )], K} 12: if i 2 -i 1 > 1 then
13:

Set val 2 = RM Q F K ([(i 1 + 1)..(i 2 -1)])
14:

end if

15:

return min{val 1 , val 2 , val 3 } 16: end if

Query Processing

In this section, we discuss the query processing. Suppose, we are considering the following query: 1). Now, we proceed with the query processing as follows. We have the following cases. 

RN V A ([ ..r], K). We compute, , r , i 1 and i 2 , such that, = (i 1 -1)•℘ < ≤ i 1 •℘ and r = (i 2 -1) • ℘ < r ≤ i 2 • ℘. Then, we can divide the range [ ..r] into 3 consecutive ranges, namely [ ..i 1 × ℘], [i 1 × ℘ + 1..(i 2 -1) × ℘] and [(i 2 -1) × ℘ + 1..r] (See Figure
{ { { { D 1 D 2 D 3 D 4 l r { { { val 1 val 2 val 3
i 1 = i 2 :
In this case, the range [ ..r] is in the same sub-array D i 1 . So, we only perform the following RMQ query, the answer of which is returned as the desired result:

RN V D i 1 ([( -)..(r -r )], K) = RM Q B E i 1 [K] i 1 ([( -)..(r -r )]).
Case 2: i 2 > i 1 : In this case, we first initialize val 1 , val 2 and val 3 to ∞ and then we proceed with the query processing as follows. We first perform the following RMQ queries:

val 1 = RN V D i 1 ([( -)..|D i 1 |], K) = RM Q B E i 1 [K] i 1 ([( -)..|D i 1 |]) (3.3 
)

val 3 = RN V D i 2 ([1..(r -r )], K) = RM Q B E i 2 [K] i 1 ([1..(r -r )]) (3.4)
Then, if we have i 2 -i 1 > 1, then we perform the following RMQ query:

val 2 = RM Q F K ([(i 1 + 1)..(i 2 -1)]) (3.5)
Finally, we return the minimum of val 1 , val 3 and val 2 as the final result.

Correctness and Running Time

In this section, we discuss the correctness of the above algorithm and its running time.

Lemma 3.1. With the data structure RNV DS1, we can correctly answer any queries of the form

RN V D i ([ ..r], K), 1 ≤ ≤ r ≤ |D i |, 1 ≤ K ≤ n, 1 ≤ i ≤ q. Proof. Recall that, RN V D i ([ ..r], K) is executed by calculating RN V D i ([ ..r], E i [K]
), which in turn, is executed by performing the query RM Q

B E i [K] i ([ ..r]). From the correctness of Algorithm CIR, it is clear that, RN V D i ([ ..r], E i [K]) ≡ RM Q B E i [K] i ([ ..r]). So it remains to show that RN V D i ([ ..r], K) ≡ RN V D i ([ ..r], E i [K]
). This is shown as follows. Recall that, by definition, if 

K ∈ D i then E i [K] = K. So, if K ∈ D i ,
V A ([ ..r], K), 1 ≤ ≤ r ≤ n, 1 ≤ K ≤ n.
Proof. Recall that, the range [ ..r] is transformed into (up to) 3 consecutive ranges, namely

r 1 ≡ [ ..i 1 × ℘], r 2 ≡ [i 1 × ℘ + 1..(i 2 -1) × ℘] and r 3 ≡ [(i 2 -1) × ℘ + 1..r]
. Now, the range r 1 (resp. r 3 ) is confined within the sub-array D i 1 (resp. D i 2 ). On the other hand, if r 2 is existent, then it can span over one or more sub-arrays, D i 1 +1 , . . . , D i 2 -1 and, in that case, it completely contains those sub-arrays, i.e.

i 1 × ℘ + 1 = lef t(D i 1 +1
) and (i 2 -1)×℘ = right(D i 2 -1 ). It is clear that, the minimum of the results of the corresponding RNV queries in the three ranges, namely, r 1 , r 2 and r 3 , is the final result. Now, recall that, we have the following two cases. case 1: i 1 = i 2 : It is easy to verify that, this case arises when the range [ ..r] is confined in the sub-array D i 1 . Therefore, it is easy to verify that, we have

RN V A ([ ..r], K) ≡ RN V D i 1 ([( -)..(r -r )]
, K), and by Lemma 3.1, we get the correct result.

case 2: i 2 > i 1 : It is easy to see that, if we have i 2 -i 1 > 1, then all 3 intervals are existent; otherwise, r 2 is non-existent. Now, recall that, we initialize val 1 , val 3 and val 2 to ∞. Since, both the ranges r 1 and r 3 are confined in the sub-arrays D i 1 and D i 2 respectively, by Lemma 3.1, the two corresponding queries, namely, Queries 3.3 and 3.4 are correctly executed and the results are stored in val 1 and val 3 . Now, assume that the range r 3 is existent and that,

v i = RN V D i ([1..|D i |], K), i ∈ [i 1 + 1..i 2 -1]
. Then, it is easy to verify that:

RN V A ([ ..r], K) = min(val 1 , val 3 , min i∈[i 1 +1..i 2 -1] (v i )).
Now, we return min(val 1 , val 3 , val 2 ) as the answer. Hence, it suffices to show that

val 2 = min i∈[i 1 +1..i 2 -1] (v i ).
Recall that, val 2 is evaluated according to Equation 3.5. By definition, each entry of F K correctly (Lemma 3.1) stores the result of the RNV query for the value K and for the whole range for the corresponding sub-array. Therefore, the range minimum query does provide us with the desired value. Finally, if r 2 is nonexistent, then val 2 remains assigned to ∞. Therefore, the result returned, i.e., the minimum of val 1 , val 3 and val 2 , is correct.

Theorem 3.3. The data structure RNV DS1 can be constructed in O(n℘ + n 2 /℘) time.

Proof. We deduce the construction time of RNV DS1 phase by phase as follows.

Phase 1: Each sub-array D j , 1 ≤ j ≤ q = n/℘ has at most ℘+1 elements. It is easy to see that, the application of the (slight variation of) Algorithm CIR requires O(℘ 2 ) time per sub array. Therefore, in total, time required by Phase 1 is O(℘ 2 ) × q = O(℘ 2 ) × n/℘ = O(n℘) in the worst case. Phase 2: Initializing and filling up the arrays E i [0..n], 1 ≤ i ≤ q requires O(n) × q = O(n 2 /℘) time. Phase 3: In this phase, we construct the arrays F k [1..q], for 1 ≤ k ≤ n. This can easily be done in O(nq) = O(n 2 /℘) time. We also preprocess arrays F k and B l j for the RMQ queries, what requires also O(nq) = O(n 2 /℘) time. Therefore, in total, the time required for the construction of RNV DS1 is O(n℘)+O(n 2 /℘)+ O(n 2 /℘) = O(n℘ + n 2 /℘).

Corollary 3.4. The data structure RNV DS1 can be constructed in O(n 1.5 ) time.

Proof. This can be achieved if we assume that ℘ = √ n.

Theorem 3.5. Given the data structure RNV DS1, we can answer the RNV queries in O(1) time per query.

Proof. It is clear that, given RNV DS1, an RNV query is answered by executing up to 2 RNV queries on the sub-arrays and possibly 1 RMQ queries on the appropriate F array. Each of these queries requires O(1) time. Therefore, the theorem follows.

An Improved Algorithm with Complexity

O(n 1+ ), O (1) 
In this section, we present a different algorithm for problem RNV by taking a slightly different approach. We start with a slightly different O(n 2 ), O(1) algorithm and present a new algorithm built on top it. This algorithm follows a similar strategy as algorithm CIR and is referred to as the base algorithm henceforth.

The Base Algorithm:

We define arrays B j , 1 ≤ j ≤ n as follows:

B j [i] = A[i] if A[i] ≥ j ∞ if A[i] < j
Now, the preprocessing is done as follows.

1: for j = 1, . . . , n do

2:

Preprocess sequence B j for Problem RMQ 3: end for After the above data structure is constructed, we can perform the queries as follows. Similar to what was done in algorithm CIR, given the query RN V A ([ ..r], K), we just return RM Q B K ([l..r]). It is easy to see that the base algorithm is correct and its running time is O(n 2 ), O(1) . In the rest of this section, we present an improved algorithm based on the base algorithm.

Improved algorithm

In this section we describe a method for improving preprocessing time of any RNV algorithm, the cost paid for the improvement is slight (namely O(1)) increase of the RNV query time. Suppose, we are given the array A of length n, the parameter ℘, and an algorithm RNVALG for Problem RNV with complexity f (n), g(n) . We will show how to improve the preprocessing time of RNVALG.

In the first phase we divide possible values of parameter K, into n/℘ = q interval sets K j , where K j = {i : (j -1) • ℘ < i ≤ j • ℘}. For each j (1 ≤ j ≤ q) we compute following arrays:

• array B j (|B j | = n) -containing information about elements of array A strictly larger than (j -1)

• ℘ B j [i] = A[i] if A[i] > (j -1) • ℘ ∞ otherwise • set C j = {i : A[i] ∈ K j } -containing

indices of the elements of array

A with values from the range K j ; by C j we will denote the array consisting of elements of C j sorted in the ascending order, |C j | ≤ ℘, • array D j (|D j | ≤ ℘) -contains the elements of array A from the range K j , in the order as they appear in A; each element is decreased by (j -1) • ℘, to ensure that the array D j is a permutation of {1..|D j |}:

D j [i] = A[C j [i]] -(j -1) • ℘, for 1 ≤ i ≤ |C j |
• array E j (|E j | = n + 1) -containing indices used for translating queries from array A j to array D j ; E j [i] denotes the number of elements from A[1..i] from the range K j : Then the algorithm preprocesses each array B j for range minimum queries, and each array D j for range next value queries (using RNVALG).

E j [i] =      E j [i -1] + 1 if A[i] ∈ K j and i > 0 E j [i -1] if A[i] ∈ K j and i > 0 0 if i = 0 A 4 
Algorithm 2 Construction of RNV DS2(℘,RNVALG)

1: for j = 1, . . . , n/℘ do 2:
compute arrays B j , C j , D j , E j ,

3:

preprocess sequence B j for RM Q (Range Minimum Queries)

4:

preprocess sequence D j for RN V (Range Next Value Queries) using RNVALG

5: end for

The B j arrays will be used for answering the range next value queries if the answer is outside of the range K j . The D j will be used if the answer is within the range K j . Since we do not know in the advance which case is valid, the algorithm tries both cases, and then chooses the smaller result.

Algorithm 3 Query Processing of RNV DS2(℘,RNVALG) In the rest of this section, we consider three recent variants of the classic pattern matching problem, which we define below after defining some related concepts. Given two occurrences i, j ∈ [1..n -m + 1], j > i of a pattern P[1..m] in a text T [1.

1: Set a 1 = a 2 = ∞ 2: Set j, such that: x = (j -1) • ℘ < K ≤ j • ℘ 3: if j < q then 4: a 1 = RM Q B j+1 ([ ..r]) 5: end if 6: Set = E j [ -1] + 1; r = E j [r] 7: if ≤ r then 8: a 2 = RN V D j ([ ..r ]], K -x) + x
.n], we say that j is minimal with respect to i, if, and only if, there exists no occurrence of P in T in the range [i + 1..j -1]. And, two occurrences i, j ∈ [1..n -m + 1] of P in T are said to be non-overlapping, if, and only if, |j -i| ≥ m. Otherwise, they are said to be overlapping. Problem 5.5. Suppose we are given a text T of length n. Preprocess T to answer the following form of queries: Query: Given a pattern P of length m, and an index i, we want to find out an occurrence i ≥ i of P in T , such that i is minimal with respect to i. Problem 5.6. Suppose we are given a text T of length n. Preprocess T to answer the following form of queries: Query: Given a pattern P of length m, and a list of indices U = i 1 , . . . , i , our goal is to construct the list V = j 1 , . . . , j , such that, for all k ∈ [1.. ], j k is an occurrence of P in T and j k ∈ V is, either minimal with respect to i k ∈ U or equal to N ill. The latter case means that there doesn't exist any occurrence to the right of i k .

Problem 5.7. Suppose we are given a text T of length n. Preprocess T to answer the following form of queries: Query: Given a pattern P of length m, and an interval [i..j], we want to find an ascending sequence U = i 1 , . . . , i of non-overlapping occurrences of P in T , such that i ≤ i 1 ≤ i ≤ j and is maximal. Problems 5.5 to 5.7 were handled very recently in [START_REF] Keller | Range non-overlapping indexing and successive list indexing[END_REF]. The corresponding data structures presented in [START_REF] Keller | Range non-overlapping indexing and successive list indexing[END_REF] for the above problems requires O(n log n) storage and O(n log n log log n) expected preprocessing time each. The query time achieved in [START_REF] Keller | Range non-overlapping indexing and successive list indexing[END_REF], for Problem 5.6 and 5.7 is O(m + log log n) and for Problem 5.5 is O(m + log log n). Notably, none of the query times achieved in [START_REF] Keller | Range non-overlapping indexing and successive list indexing[END_REF] are optimal. In the rest of this section, we briefly show, how Problem RNV can be used to achieve optimal query times for the above problems. We remark however that, we omit many of the details for space constraint and left them for the journal version.

Problems 5.5 and 5.6

It is clear that, Problem 5.5 is a simpler version of the Problem 5.6. Interestingly, we can use Problem RNV to solve both the problems efficiently. We first consider Problem 5.5. Following the techniques of [START_REF] Crochemore | Finding patterns in given intervals[END_REF], we construct a suffix tree and do some preprocessing on it to get Occ P T implicitly in the form of an array L and an interval [a..b]. More specifically, using the techniques of [START_REF] Crochemore | Finding patterns in given intervals[END_REF], after the preprocessing, we can implicitly have Occ P T in L[a..b] in O(m) time. Now, it is easy to see that to solve the query of problem 5.5, we simply need to get the answer of the following query:

RN V L ([a..b], i) (5.1) 
Therefore, we have the following result.

Theorem 5.8. For Problem 5.5, we can construct a data structure in O(max(n 1+ , n log σ)) time and O(n 1+ ) space, and we can answer the relevant queries in the optimal O(m) time per query.

Proof. For the preprocessing, we first construct the suffix tree and do the preprocessing of [START_REF] Crochemore | Finding patterns in given intervals[END_REF], requiring O(n log σ) time, where σ = min(n, |Σ|). Then we preprocess L for Problem RNV. Total construction time and space complexity is, O(max(n 1+ , n log σ)) and O(n 1+ ) respectively. As for the query, we require O(m) time to get Occ P T implicitly [START_REF] Crochemore | Finding patterns in given intervals[END_REF]. Then, we just need to perform the Query 5.1 requiring constant time. Hence, the result follows.

We can easily extend the above result for Problem 5.6, simply by executing RNV queries, RN V L ([a..b], i) for all i ∈ U. Therefore, we get the following theorem. Theorem 5.9. For Problem 5.6, we can construct a data structure in O(max(n 1+ , n log σ)) time and O(n 1+ ) space, and we can answer the relevant queries in the optimal O(m + ) time per query.

Problem 5.7

To solve Problem 5.7, we follow the greedy strategy of [START_REF] Keller | Range non-overlapping indexing and successive list indexing[END_REF] as follows. Suppose, we have the set Occ P T in the list W = i 1 , . . . , i |Occ P T | in ascending order. Now, we construct another list Y as follows. We first put i 1 in Y. We use last(Y) to denote the most recently put index in Y. Now we scan the list W from left to right and put i k ∈ W in Y, only if i k and last(Y) are non-overlapping. It was proved in [START_REF] Keller | Range non-overlapping indexing and successive list indexing[END_REF] that, |Y| is maximal. Therefore, we have the following theorem.

Theorem 5.10. For Problem 5.7, we can construct a data structure in O(max(n 1+ , n log σ)) time and O(n 1+ ) space, and we can answer the relevant queries in the optimal O(m + ) time per query.

Proof. We do the same preprocessing as we did for Problems 5.5 and 5.6 and hence achieve the same preprocessing time and space complexity. Now, we consider the query. We start with the query RN V L ([a..b], i + 1). Now suppose, the query returns q. Now, if q ≤ j, then we put q in U and perform the query RN V L ([a..b], q + m) and continue as before. We stop when we get a query result q such that q > j. It is easy to verify that this would correctly construct a maximal list U. Finally, since each of the queries require constant time, the result follows.
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 1 Figure 1: The situation of an RNV query
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 2 Figure 2: Example of computing arrays D j and E j , for n = 15, ℘ = 4, j = 2, K j = [5..8]
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 910241 return min(a 1 , a Theorem If we are given the f (n), g(n) RNV algorithm, then using the RNV DS2, we can construct O((n 2 + nf (℘))/℘), g(℘) + O(1) algorithm for RNV.Proof. The preprocessing of the RNV DS2 requires:• computing n/℘ arrays B j (each of length n), this step requires O(n 2 /℘) time, PMQI, a variant of the classic pattern matching problem. Problem PMQI is formally defined as follows (We use Occ P T to denote the occurrence set for the classic pattern matching problem): Problem 5.1. Pattern Matching in a Query Interval (Problem PMQI). Suppose we are given a text T of length n. Preprocess T to answer queries of the following form. Query: We are given a pattern P of length m and a query interval [ ..r], with 1 ≤ ≤ r ≤ n. Let us denote by Occ P T the set of all occurrences of P in T . We are to construct the set: Occ P T [ ..r] = {i | i ∈ Occ P T and i ∈ [ ..r]} Using the reduction of [4] from Problem PMQI to Problem RNV, we obtain the following theorem. Theorem 5.2. We can construct a data structure for Problem PMQI in O(max(n 1+ , n log σ)) time and O(n 1+ ) space, and we can answer the relevant queries in the optimal O(m + |Occ P T [ ..r] |) time per query. A more general problem called PMI was also handled in [4]. Problem 5.3. Generalized Pattern Matching with Intervals (Problem PMI). Suppose we are given a text T of length n and a set of intervals π= {[s 1 ..f 1 ], [s 2 ..f 2 ], . . . , [s |π| ..f |π| ]}, such that s i , f i ∈ [1..n] and s i ≤ f i , for all 1 ≤ i ≤ |π|.Preprocess T to answer queries of the following form. Query: Given a pattern P and a query interval [ ..r], such that , r ∈ [1..n] and ≤ r, construct the setOcc P T [ ..r],π = {i | i ∈ Occ P T and i ∈ [ , r] ∩ f or some ∈ π}To solve Problem PMI, a data structure with O(n log 3 n) time, O(n log 2 n) space was constructed in[START_REF] Crochemore | Finding patterns in given intervals[END_REF]; the query time achieved was O(m+log log n+|Occ P T [ ..r],π |). It was left as an open problem to achieve the optimal query time for Problem PMI[START_REF] Crochemore | Finding patterns in given intervals[END_REF]. Interestingly, using Problem RNV, we can get the optimal query time for Problem PMI as well. The details are left for the journal version; but we report the new result in the following theorem. Theorem 5.4. For problem PMI, we can construct a data structure in O(max(n 1+ , n log σ)) time and O(n 1+ ) space, and we can answer the relevant queries in the optimal O(m + |Occ P T [ ..r],π |) time per query.

  is preprocessed for the RMQ problem. This completes the construction of the data structure. It is clear that, Algorithm CIR requires O(n 2 ) preprocessing time. The query processing is as follows. Consider the query RN V A ([ ..r], K). Then, we simply need to apply range minimum query in B K for the interval [ ..r], i.e., we need to execute the query: RM Q B K ([ ..r]). This gives us the following theorem.Theorem 2.2.[START_REF] Crochemore | Finding patterns in given intervals[END_REF]. For Problem RNV, we can construct a data structure in O(n 2 ) time and space to answer the relevant queries in O(1) time per query.

The same result was achieved in[START_REF] Gabow | Scaling and related techniques for geometry problems[END_REF], albeit with a more complex data structure.
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• preprocessing n/℘ arrays B j for the Range Minimum Queries, this step also requires

Answering the Range Next Value queries requires:

• one range minimum query on the B j array, what can be done in O(1) time,

• one recursive call of the range next value query for D j array using f (n), g(n) RNV algorithm, requiring g(℘) time, • constant number of additional operations (i.e. accessing arrays E j ) Clearly the total query time is g(℘) + O(1). Corollary 4.2. RNV DS2 can be constructed in O(n 1.5 ) running time and space.

Proof. This can be achieved if we use the RNV DS2 construction method, with ℘ = √ n, and using as RNVALG, the base algorithm (with complexity O(n 2 ), O(1) ).

We can obtain even more efficient algorithm, carefully iterating RNV DS2 construction. 3 ), O(1) . By simple induction, one can easily prove, that the RNV DS2(i) has the complexity O(n 1+ 1 i ), O(i) .

Applications

In this section, we discuss possible applications of Problem RNV. As has already been mentioned in Section 1, the study of the RNV problem in [START_REF] Crochemore | Finding patterns in given intervals[END_REF] was motivated by Problem