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It is the purpose of this paper to introduce a novel estimator for the extremal index of an instantaneous function {f (Xn)} n∈N of a regenerative Harris Markov chain X, based on the renewal properties of the latter. The estimate proposed may be viewed as a "regenerative version" of the runs estimator, insofar as it measures the clustering tendency of high threshold exceedances within regeneration cycles. Strong consistency of this estimator is established under mild stochastic stability assumptions and a simulation result is displayed in the case when the underlying chain is the waiting process related to a simple M/M/1 queue.

Introduction

A key parameter in the extremal behavior analysis of (approximately) stationary sequences Y = {Y n } n∈N of dependent r.v.'s, when well defined, is the extremal index θ Y ∈ (0, 1), measuring to which extent extreme values tend to come in "small clusters" (refer to [START_REF] Embrechts | Modelling Extremal Events for Insurance and Finance[END_REF], [START_REF] Coles | An introduction to statistical modelling of Extreme Values[END_REF], [START_REF] Finkenstadt | Extreme values in Finance, Telecommunications and the Environment[END_REF] for an account of this notion). Indeed, assuming that Y is ergodic with limiting probability measure µ, it allows to connect the distribution of the sample maximum to its counterpart in the case where the Y n 's would be i.i.d. with common distribution µ:

P( max 1≤k≤n Y k ≤ u) ≈ µ(] -∞, u]) nθ Y , as u ↑ ∞.
(1)

As a continuation of the results established in [START_REF] Bertail | Extreme value statistics for Markov chains via the (pseudo-)regenerative method[END_REF], this paper is devoted to introduce a novel statistical methodology for estimating this parameter in the case where the sequence of interest is an instantaneous function of a time-homogeneous regenerative Markov chain X = {X n } n∈N with state space (E, E), i.e. a sequence of the form f

(X) = {f (X n )} n∈N where f : E → R is a measurable function.
Various extremal index estimators have been recently proposed in the statistical literature (see [START_REF] Ancona-Navarette | A comparison of methods for estimating the extremal index[END_REF], [START_REF] Laurini | New estimators for the extremal index and other cluster characteristics[END_REF], [START_REF] Hsing | Extremal index estimation for a weakly dependent stationary sequence[END_REF] for instance), which generally rely on blocking techniques, where data segments of fixed (deterministic) length are considered in order to account for the dependence structure within the observations, whereas we propose here a methodology specifically tailored for regenerative sequences. Roughly speaking, data blocks correspond here to cycles (of random length) in between successive regeneration times and our procedure boils down to counting how many times over the observed sample path, within a cycle, solely the first observation exceeds a given high threshold u and then dividing the result by the number of cycles with a first observation above u. First developed in the seminal work of [START_REF] Leadbetter | Extremal theory for stochastic processes[END_REF], the idea of exploiting X's renewal properties for extremal values analysis has recently been revisited in [START_REF] Bertail | Extreme value statistics for Markov chains via the (pseudo-)regenerative method[END_REF] from a statistical perspective.

The paper is structured as follows. Notation are set out in section 2, together with a list of required assumptions. The regenerative runs estimator for the extremal index of a sequence f (X) is then defined in the next section, where its strong consistency is established under mild hypotheses. Eventually, a simulation result is briefly presented in section 4, while technical details are postponed to the Appendix.

Notation and assumptions

Here and throughout X = {X n } n∈N is a Harris recurrent time-homogeneous Markov chain, valued in a measurable space (E, E) with transition probability Π(x, dy) and initial distribution ν (see [START_REF] Revuz | Markov Chains[END_REF] for an account of the Markov chain theory). Recall that Harris recurrence boils down to assuming the existence of a positive measure ψ (namely, a maximal irreducibility measure) such that, for any measurable set B ∈ E, the condition "ψ(B) > 0" entails that it is visited by the chain infinitely many times with probability one, no matter what the initial state. A Markov chain is said regenerative when it possesses an accessible atom, i.e., a measurable set A such that ψ(A) > 0 and Π(x, .) = Π(y, .) for all x, y in A. Denote then by τ A = τ A (1) = inf {n ≥ 1, X n ∈ A} the hitting time on A, by τ A (j) = inf {n > τ A (j -1), X n ∈ A} for j ≥ 2 the successive return times to A, also termed regeneration times, insofar as they are times at which X forgets its past. Indeed, it follows from the strong Markov property that the data blocks determined by the latter (namely, the regeneration cycles)

B 1 = (X τ A (1)+1 , ..., X τ A (2) ), ..., B j = (X τ A (j)+1 , ..., X τ A (j+1) ), ..., are i.i.d., valued in the torus T = ∪ ∞ n=1 E n .
Denote by P ν (resp. P A ) the probability measure on the underlying space such that X 0 ∼ ν (resp. X 0 ∈ A) and by E ν [.] (resp. E A [.]) the corresponding expectation.

In the regenerative setup, stochastic stability properties classically boil down to checking conditions related to the speed of return times to the regenerative set. It is well-known for instance that X is positive recurrent if and [START_REF] Meyn | Markov Chains and Stochastic Stability[END_REF]), and its (unique) invariant probability distribution µ is then the Pitman's occupation measure given by µ

only if α = E A [τ A ] < ∞ (see Theorem 10.2.2 in
(B) = α -1 E A [ τ A i=1 I{X i ∈ B}] for all B ∈ E.
Under adequate conditions related to the distribution of the regenerative blocks, standard limit theorems can be classically derived from the application of the corresponding results in the i.i.d. setting to the B j 's blocks (see [START_REF] Smith | The extremal index for a Markov chain[END_REF]). The following assumptions are involved in the analysis below.

Assumptions. Let κ ≥ 1. H(κ) : E A [τ κ A ] < ∞ and H(ν, κ) : E ν [τ κ A ] < ∞.
3 Regeneration-based estimation of the extremal index

Let f : E → R be measurable. It is well-known that, when X is positive recurrent with limiting distribution µ, the sequence f (X) = {f (X n )} n∈N fulfills Leadbetter's mixing condition and its extremal index θ(= θ(f )) consequently exists (see [START_REF] O'brien | Extreme values for stationnary and Markov sequences[END_REF], [START_REF] Leadbetter | Extremal theory for stochastic processes[END_REF]). Precisely, we have

P µ (max 1≤i≤n f (X i )) ≤ u n ) ∼ n→∞ F (u n ) nθ , for any sequence u n such that n(1-F (u n )) → η < ∞, denoting by F (x) = α -1 E A [ τ A i=1 I{f (X i ) ≤ x}] the cdf of f (X 1 ) in steady-state (i.e. under P µ ).
Using the regenerative method, it has been proved in [START_REF] Leadbetter | Extremal theory for stochastic processes[END_REF] that θ may be expressed as a limiting conditional probability:

θ = lim n→∞ P A ( max 2≤i≤τ A f (X i ) ≤ u n | X 1 > u n ).
(2)

Based on a path X 1 , . . . , X n , the natural empirical counterpart of (2) is

θn (u) = ln-1 j=1 I{max 2+τ A (j)≤i≤τ A (j+1) f (X i ) ≤ u < f (X 1+τ A (j) )} ln-1 j=1 I{f (X 1+τ A (j) ) > u} , (3) 
where l n = n i=1 I{f (X i ) ∈ A} (with the usual convention regarding empty summation and 0 0 = 0). Insofar as (2) measures the clustering tendency of high threshold exceedances within regeneration cycles only, it should be seen as a "regenerative version" of the runs estimator

θ(r) n (u) = n-r j=1 1l{max j+1≤i≤j+r f (X i ) ≤ u < f (X j )} n-r j=1 1l{f (X j ) > u} , ( 4 
)
obtained by averaging over overlapping data segments of fixed length r.

Beyond its practical advantage (blocks are here entirely determined by the data), the estimator (3) may be proved strongly consistent as stated in the next theorem, while only weak consistency has been established for (4) (but for a wider class of weakly dependent sequences, see [START_REF] Hsing | Extremal index estimation for a weakly dependent stationary sequence[END_REF]).

Theorem 1. Let r n ↑ ∞ in a way that r n = o( n/ log log n) as n → ∞. Assume that H(ν, 1) and H(2) are fulfilled. Considering (v n ) n∈N such that r n (1 -F (v n )) → η < ∞ as n → ∞, we then have θn (v n ) → θ P ν -a.s. .
Remark 1. (Extension to the pseudo-regenerative case) Following the data-driven approach developped in [START_REF] Bertail | Regenerative-block bootstrap for Markov chains[END_REF], in the general Harris setting, one may consider the estimator built from pseudoregeneration times (approximating the regeneration times of a Nummelin extension) replacing the renewal times by their approximate versions in (3). In spite of the approximation step, the resulting estimator may be still proved consistent, under additional mild hypotheses.

A simulation result

Numerical experiments have been carried out from a sequence drawn as the waiting time process X related to a standard M/M/1 queue: X n+1 = max{X n + U n -∆T n+1 , 0} where inter-arrivals and service times, (∆T n ) n≥1 and (U n ) n≥1 , are assumed independent from each other and i.i.d. with exponential distributions of respective intensities λ and µ. If the load condition "λ/µ < 1" holds, X is classically positive recurrent with the empty file {0} as atom. Besides, it is known that X's extremal index is then θ = (1-λ/µ) 2 (see [START_REF] Hooghiemstra | Computing the extremal index of special Markov chains and queues[END_REF]). Using threshold levels u corresponding to high percentiles of the X n 's with n = 10000 (represented along the x-axis in Fig. 1), θn (u) is plotted (y-axis in Fig. 1), together with the standard runs estimates for various lengths r. We observe that the accuracy of our estimator generally surpasses the one of (4), except in the case when a runs length is taken approximately equal to the mean blocklength r = n/l n , for which value the latter estimate behaves similarly to the regenerative version (3).

A Proof of Theorem 1

Consider the empirical counterparts of the theoretical probabilities

F 1 (u) = P A (f (X 1 ) ≤ u) and H 1 (u) = P A (max 2≤i≤τ A f (X i ) ≤ u < f (X 1 )) F 1,ln (u) = 1 l n -1 ln-1 j=1 I{f (X 1+τ A (j) ) > u}, H 1,ln (u) = 1 l n -1 ln-1 j=1 I{ max 2+τ A (j)≤i≤τ A (j+1) f (X i ) ≤ u < f (X 1+τ A (j) )}.
Equipped with this notation, θn (

u) = H 1,ln (u)/(1 -F 1,ln (u)). The fact that θn (u n ) → θ = lim n→∞ H1(un) 1-F1(un) immediately follows from the decomposition θn (u) -θ = 1 -F (u) 1 -F 1,ln (u) • { H 1,ln (u) -H 1 (u) 1 -F (u) -θ F 1,ln (u) -F 1 (u) 1 -F (u) + H 1 (u) -θ(1 -F 1 (u)) 1 -F (u) }.
combined with the next lemma (of which proof is a slight modification of the one of Lemma 6 in [START_REF] Bertail | Extreme value statistics for Markov chains via the (pseudo-)regenerative method[END_REF] and is thus omitted) and the fact that we choose r n = o(n/ log log n) as n → ∞.

Lemma 1. (LIL for functionals of positive chains) Let X be a regenerative chain, fulfilling assumptions H(ν, 1) and H(2). We then have and, for all u ∈ R, σ 2 H1 (u) = H 1 (u)(1 -H 1 (u)).
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 1 Fig. 1. Estimation of the extremal index in the M/M/1 queue with parameters λ = 0.2, µ = 0.8, θ = 0.56.
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