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Abstract. It is the purpose of this paper to introduce a novel estimator for the
extremal index of an instantaneous function {f(Xn)}n∈N of a regenerative Har-
ris Markov chain X, based on the renewal properties of the latter. The estimate
proposed may be viewed as a ”regenerative version” of the runs estimator, inso-
far as it measures the clustering tendency of high threshold exceedances within
regeneration cycles. Strong consistency of this estimator is established under mild
stochastic stability assumptions and a simulation result is displayed in the case
when the underlying chain is the waiting process related to a simple M/M/1 queue.
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1 Introduction

A key parameter in the extremal behavior analysis of (approximately) sta-
tionary sequences Y = {Yn}n∈N of dependent r.v.’s, when well defined, is the
extremal index θY ∈ (0, 1), measuring to which extent extreme values tend
to come in ”small clusters” (refer to Embrechts et al. (1997), Coles (2001),
Finkenstadt and Rootzén (2003) for an account of this notion). Indeed, as-
suming that Y is ergodic with limiting probability measure µ, it allows to
connect the distribution of the sample maximum to its counterpart in the
case where the Yn’s would be i.i.d. with common distribution µ:

P( max
1≤k≤n

Yk ≤ u) ≈ µ(]−∞, u])nθY , as u ↑ ∞. (1)

As a continuation of the results established in Bertail et al. (2007), this
paper is devoted to introduce a novel statistical methodology for estimating
this parameter in the case where the sequence of interest is an instantaneous
function of a time-homogeneous regenerative Markov chain X = {Xn}n∈N
with state space (E, E), i.e. a sequence of the form f(X) = {f(Xn)}n∈N
where f : E → R is a measurable function.
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Various extremal index estimators have been recently proposed in the sta-
tistical literature (see Ancona-Navarette and Tawn (2000), Laurini and Tawn
(2003), Hsing (1993) for instance), which generally rely on blocking techniques,
where data segments of fixed (deterministic) length are considered in order
to account for the dependence structure within the observations, whereas we
propose here a methodology specifically tailored for regenerative sequences.
Roughly speaking, data blocks correspond here to cycles (of random length)
in between successive regeneration times and our procedure boils down to
counting how many times over the observed sample path, within a cycle,
solely the first observation exceeds a given high threshold u and then divid-
ing the result by the number of cycles with a first observation above u. First
developed in the seminal work of Rootzén (1988), the idea of exploiting X’s
renewal properties for extremal values analysis has recently been revisited in
Bertail et al. (2007) from a statistical perspective.

The paper is structured as follows. Notation are set out in section 2,
together with a list of required assumptions. The regenerative runs estimator
for the extremal index of a sequence f(X) is then defined in the next section,
where its strong consistency is established under mild hypotheses. Eventually,
a simulation result is briefly presented in section 4, while technical details are
postponed to the Appendix.

2 Notation and assumptions

Here and throughout X = {Xn}n∈N is a Harris recurrent time-homogeneous
Markov chain, valued in a measurable space (E, E) with transition probabil-
ity Π(x, dy) and initial distribution ν (see Revuz (1984) for an account of the
Markov chain theory). Recall that Harris recurrence boils down to assuming
the existence of a positive measure ψ (namely, a maximal irreducibility mea-
sure) such that, for any measurable set B ∈ E , the condition ”ψ(B) > 0”
entails that it is visited by the chain infinitely many times with probability
one, no matter what the initial state.
A Markov chain is said regenerative when it possesses an accessible atom,
i.e., a measurable set A such that ψ(A) > 0 and Π(x, .) = Π(y, .) for all x, y
in A. Denote then by τA = τA(1) = inf {n ≥ 1, Xn ∈ A} the hitting time on
A, by τA(j) = inf {n > τA(j − 1), Xn ∈ A} for j ≥ 2 the successive return
times to A, also termed regeneration times, insofar as they are times at which
X forgets its past. Indeed, it follows from the strong Markov property that
the data blocks determined by the latter (namely, the regeneration cycles)

B1 = (XτA(1)+1, ..., XτA(2)), ..., Bj = (XτA(j)+1, ..., XτA(j+1)), ...,

are i.i.d., valued in the torus T = ∪∞n=1E
n.

Denote by Pν (resp. PA) the probability measure on the underlying space
such that X0 ∼ ν (resp. X0 ∈ A) and by Eν [.] (resp. EA[.]) the corresponding
expectation.
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In the regenerative setup, stochastic stability properties classically boil
down to checking conditions related to the speed of return times to the re-
generative set. It is well-known for instance that X is positive recurrent if and
only if α = EA[τA] <∞ (see Theorem 10.2.2 in Meyn and Tweedie (1996)),
and its (unique) invariant probability distribution µ is then the Pitman’s
occupation measure given by µ(B) = α−1EA[

∑τA

i=1 I{Xi ∈ B}] for all B ∈ E .
Under adequate conditions related to the distribution of the regenerative

blocks, standard limit theorems can be classically derived from the applica-
tion of the corresponding results in the i.i.d. setting to the Bj ’s blocks (see
Smith (1992)). The following assumptions are involved in the analysis below.
Assumptions. Let κ ≥ 1. H(κ) : EA[τκA] <∞ and H(ν, κ) : Eν [τκA] <∞.

3 Regeneration-based estimation of the extremal index

Let f : E → R be measurable. It is well-known that, when X is positive re-
current with limiting distribution µ, the sequence f(X) = {f(Xn)}n∈N fulfills
Leadbetter’s mixing condition and its extremal index θ(= θ(f)) consequently
exists (see O’Brien (1987), Leadbetter and Rootzén (1988)). Precisely, we
have Pµ(max1≤i≤n f(Xi)) ≤ un) ∼

n→∞
F (un)nθ, for any sequence un such

that n(1−F (un))→ η <∞, denoting by F (x) = α−1EA[
∑τA

i=1 I{f(Xi) ≤ x}]
the cdf of f(X1) in steady-state (i.e. under Pµ).

Using the regenerative method, it has been proved in Rootzén (1988) that
θ may be expressed as a limiting conditional probability:

θ = lim
n→∞

PA( max
2≤i≤τA

f(Xi) ≤ un | X1 > un). (2)

Based on a path X1, . . . , Xn, the natural empirical counterpart of (2) is

θ̂n(u) =

∑ln−1
j=1 I{max2+τA(j)≤i≤τA(j+1) f(Xi) ≤ u < f(X1+τA(j))}∑ln−1

j=1 I{f(X1+τA(j)) > u}
, (3)

where ln =
∑n
i=1 I{f(Xi) ∈ A} (with the usual convention regarding empty

summation and 0
0 = 0). Insofar as (2) measures the clustering tendency of

high threshold exceedances within regeneration cycles only, it should be seen
as a ”regenerative version” of the runs estimator

θ̂(r)n (u) =

∑n−r
j=1 1l{maxj+1≤i≤j+r f(Xi) ≤ u < f(Xj)}∑n−r

j=1 1l{f(Xj) > u}
, (4)

obtained by averaging over overlapping data segments of fixed length r.
Beyond its practical advantage (blocks are here entirely determined by

the data), the estimator (3) may be proved strongly consistent as stated in
the next theorem, while only weak consistency has been established for (4)
(but for a wider class of weakly dependent sequences, see Hsing (1993)).
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Theorem 1. Let rn ↑ ∞ in a way that rn = o(
√
n/ log log n) as n → ∞.

Assume that H(ν, 1) and H(2) are fulfilled. Considering (vn)n∈N such that
rn(1− F (vn))→ η <∞ as n→∞, we then have θ̂n(vn)→ θ Pν-a.s. .

Remark 1. (Extension to the pseudo-regenerative case) Following
the data-driven approach developped in Bertail and Clémençon (2006), in
the general Harris setting, one may consider the estimator built from pseudo-
regeneration times (approximating the regeneration times of a Nummelin
extension) replacing the renewal times by their approximate versions in (3).
In spite of the approximation step, the resulting estimator may be still proved
consistent, under additional mild hypotheses.

4 A simulation result

Numerical experiments have been carried out from a sequence drawn as
the waiting time process X related to a standard M/M/1 queue: Xn+1 =
max{Xn +Un−∆Tn+1, 0} where inter-arrivals and service times, (∆Tn)n≥1

and (Un)n≥1, are assumed independent from each other and i.i.d. with expo-
nential distributions of respective intensities λ and µ. If the load condition
”λ/µ < 1” holds, X is classically positive recurrent with the empty file {0} as
atom. Besides, it is known that X’s extremal index is then θ = (1−λ/µ)2 (see
Hooghiemstra and Meester (1995)). Using threshold levels u corresponding

Fig. 1. Estimation of the extremal index in the M/M/1 queue
with parameters λ = 0.2, µ = 0.8, θ = 0.56.
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to high percentiles of the Xn’s with n = 10000 (represented along the x-axis
in Fig. 1), θ̂n(u) is plotted (y-axis in Fig. 1), together with the standard runs
estimates for various lengths r. We observe that the accuracy of our estima-
tor generally surpasses the one of (4), except in the case when a runs length
is taken approximately equal to the mean blocklength r = bn/lnc, for which
value the latter estimate behaves similarly to the regenerative version (3).

A Proof of Theorem 1

Consider the empirical counterparts of the theoretical probabilities F1(u) =
PA(f(X1) ≤ u) and H1(u) = PA(max2≤i≤τA

f(Xi) ≤ u < f(X1))

F1,ln(u) =
1

ln − 1

ln−1∑
j=1

I{f(X1+τA(j)) > u},

H1,ln(u) =
1

ln − 1

ln−1∑
j=1

I{ max
2+τA(j)≤i≤τA(j+1)

f(Xi) ≤ u < f(X1+τA(j))}.

Equipped with this notation, θ̂n(u) = H1,ln(u)/(1− F1,ln(u)). The fact that
θ̂n(un)→ θ = limn→∞

H1(un)
1−F1(un) immediately follows from the decomposition

θ̂n(u)− θ =
1− F (u)

1− F1,ln(u)
· {H1,ln(u)−H1(u)

1− F (u)
− θ

F1,ln(u)− F1(u)
1− F (u)

+
H1(u)− θ(1− F1(u))

1− F (u)
}.

combined with the next lemma (of which proof is a slight modification of the
one of Lemma 6 in Bertail et al. (2007) and is thus omitted) and the fact
that we choose rn = o(n/ log log n) as n→∞.

Lemma 1. (LIL for functionals of positive chains) Let X be a re-
generative chain, fulfilling assumptions H(ν, 1) and H(2). We then have

1. lim supn→∞
supu∈R |F1,ln (u)−F1(u)|√

(2σ2
F1

log logn)α/n
= +1 Pν-a.s., with σ2

F1
= supu∈R σ

2
F1

(u)

and, for all u ∈ R, σ2
F1

(u) = F1(u)(1− F1(u)).

2. lim supn→∞
supu∈R |H1,ln (u)−H1(u)|√

(2σ2
H1

log logn)α/n
= +1 Pν-a.s., with σ2

H1
= supu∈R σ

2
H1

(u)

and, for all u ∈ R, σ2
H1

(u) = H1(u)(1−H1(u)).

References

Ancona-Navarette, M. A. and Tawn, J. A. (2000): A comparison of methods for
estimating the extremal index. Extremes, 3, 5–38.



6 Bertail et al.
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