Index theory and Groupoids

Claire Debord, Jean-Marie Lescure

To cite this version:

Claire Debord, Jean-Marie Lescure. Index theory and Groupoids. 2008. hal-00214242v1

HAL Id: hal-00214242

https://hal.science/hal-00214242v1

Preprint submitted on 23 Jan 2008 (v1), last revised 17 Sep 2008 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

INDEX THEORY AND GROUPOIDS

CLAIRE DEBORD AND JEAN-MARIE LESCURE

Abstract

These lecture notes are mainly devoted to a proof using groupoids and $K K$-theory of Atiyah-Singer index theorem on compact smooth manifolds. We will present an elementary introduction to groupoids, C^{*}-algebras, $K K$ theory and pseudodifferential calculus on groupoids. We will finish by showing that the point of view adopted here generalizes to the case of conical pseudomanifolds.

Contents

Introduction 1

1. Groupoids 2
2. C^{*}-algebras of groupoids 12
3. Introduction to KK-theory 16
4. Hilbert Modules 19
5. KK-Theory 31
6. Introduction to Pseudodifferential operators on groupoids 43
7. Index theorem for smooth manifolds 47
8. The case of pseudomanifolds with isolated singularities 51
References 53

Introduction

During this course we intend to give the tools involved in our approach of index theory for singular spaces. The global framework adopted here is Noncommutative Geometry.
Most of the ideas were introduced by A. Connes and G. Skandalis $[10,11,14]$ in the 80^{\prime} th with the study of foliation. The goal was to study the space of leaves M / \mathcal{F} of a smooth foliation on a smooth manifold.
The first idea, due to A . Connes, is to study such a topological space via a C^{*} algebra similar to the algebra of continuous functions on the space M / \mathcal{F}.
This idea is motivated by the Gelfand transform which gives a one to one correspondence between locally compact spaces and commutative C^{*}-algebras: any commutative algebra A is isomorphic to the algebra $C_{0}(X)$ of continuous function vanishing at infinity on some locally compact space X.
In order to associate a relevant C^{*}-algebra to the foliation \mathcal{F}, the first step is to find a groupoid associated to \mathcal{F} : it should be smooth, define the foliation and as small as possible. The answer to this problem is the holonomy groupoid. Next we can

[^0]associate to such a groupoid a C^{*}-algebra. The definitions and study of groupoids C^{*}-algebras are due to J. Renault [44, 45].
In the 60 'th, M. Atiyah and I. Singer [6] have shown there famous index theorem. Roughly speaking, they showed that given a closed manifold one can associate to any elliptic operator an integer called the index which can be described in two different way: one purely analytic and the other one purely topological.
A. Connes with G. Skandalis [14], using the holonomy groupoid, were able to give sense to (and prove) the index theorem for foliations.
Moreover, in both cases of closed manifolds or foliations, the index map can be described with the use of a groupoid of another kind, namely a deformation groupoid. This point, already explained by A. Connes in [13], is developed in a joint work of the two authors and V. Nistor [20], in order to produce a statement and a simplified proof of the index theorem which have the great advantage to work for a class of singular spaces (namely, pseudomanifolds).

The contents of this series of lecture is the following.
As mentioned earlier, the first problem in the study of a singular geometrical situation is to associate to it a mathematical object which carries the information that one wants to study and which is regular enough to be analyzed in a reasonable way. In noncommutative geometry we often answer to this problem by looking for a good groupoid and construct its C^{*}-algebra. These points will be the subject of the first two sections.
Once the situation is desingularized, say, trough the construction of a groupoid and its C^{*}-algebra, one may look for invariants which capture the basic properties. Roughly speaking, the $K K$-theory groups are convenient groups of invariants for C^{*}-algebras and $K K$-theory comes with powerful tools to make computations. Kasparov's bivariant K-theory will be the main topic of sections 3 to 5 .
Then we will go to index theory. First, we will briefly explain in section 6 the pseudo-differential calculus on groupoids. Then we will prove in section 7 the Atiyah Singer index theorem for compact manifolds using the language of groupoids and $K K$-theory. Finally we will see during the last section how one can extend these results to conical pseudo-manifolds.
Acknowledgments We would like to thank Georges Skandalis who allowed us to use his several works to make this course, in particular the manuscript of one of his course [46, 47]. In addition, we would like to thank warmly Jorge Plazas for having typewritten a part of this course during the summer school.

Groupoids and there C^{*}-algebras

This first part will be devoted to the notion of groupoids, especially differentiable groupoids. We will see the definitions and look at standard examples. The interested reader may look for example at $[33,12]$. Then we will recall the definition of C^{*}-algebras and see how one can associate a C^{*}-algebra to a groupoid. The theory of C^{*}-algebra of groupoid was initiated by Jean Renault [44]. A really good reference for the construction of groupoid C^{*}-algebras is [31] from which the end of this section is inspired.

1. Groupoids

1.1. Definitions and basic examples of groupoids.

Definition 1. Let G and $G^{(0)}$ be two sets. A structure of groupoid on G over $G^{(0)}$ is given by the following homomorphisms:

- An injective map $u: G^{(0)} \rightarrow G$. The map u is called the unit map. We often identify $G^{(0)}$ with its image in G. The set $G^{(0)}$ is called the set of units of the groupoid.
- Two surjective maps: $r, s: G \rightarrow G^{(0)}$, which are respectively the range and source map. They are equal to identity on the space of units.
- An involution:

$$
\begin{array}{rllc}
i: & G & \rightarrow & G \\
& \gamma & \mapsto & \gamma^{-1}
\end{array}
$$

called the inverse map. It satisfies: $s \circ i=r$.

- A map

$$
\begin{array}{cccc}
p: & G^{(2)} & \rightarrow & G \\
& \left(\gamma_{1}, \gamma_{2}\right) & \mapsto & \gamma_{1} \cdot \gamma_{2}
\end{array}
$$

called the product, where the set

$$
G^{(2)}:=\left\{\left(\gamma_{1}, \gamma_{2}\right) \in G \times G \mid s\left(\gamma_{1}\right)=r\left(\gamma_{2}\right)\right\}
$$

is the set of composable pair. Moreover for $\left(\gamma_{1}, \gamma_{2}\right) \in G^{(2)}$ we have $r\left(\gamma_{1}\right.$. $\left.\gamma_{2}\right)=r\left(\gamma_{1}\right)$ and $s\left(\gamma_{1} \cdot \gamma_{2}\right)=s\left(\gamma_{2}\right)$.
The following properties must be fulfilled:

- The product is associative: for any $\gamma_{1}, \gamma_{2}, \gamma_{3}$ in G such that $s\left(\gamma_{1}\right)=r\left(\gamma_{2}\right)$ and $s\left(\gamma_{2}\right)=r\left(\gamma_{3}\right)$ the following equality holds

$$
\left(\gamma_{1} \cdot \gamma_{2}\right) \cdot \gamma_{3}=\gamma_{1} \cdot\left(\gamma_{2} \cdot \gamma_{3}\right)
$$

- For any γ in $G: r(\gamma) \cdot \gamma=\gamma \cdot s(\gamma)=\gamma$ and $\gamma \cdot \gamma^{-1}=r(\gamma)$.

We will often use the following notations:

$$
G_{A}:=s^{-1}(A), G^{B}=r^{-1}(B) \text { and } G_{A}^{B}=G_{A} \cap G^{B} .
$$

If x belongs to $G^{(0)}$, the s-fiber (resp. r-fiber) of G over x is $G_{x}=s^{-1}(x)$ (resp. $\left.G^{x}=r^{-1}(x)\right)$.
The groupoid is topological when G and $G^{(0)}$ are topological spaces with $G^{(0)}$ Hausdorff, the structural homomorphisms are continuous and i is an homeomorphism. We will often ask our topological groupoids to be locally compact. This means that $G \rightrightarrows G^{(0)}$ is a topological groupoid, such that G is second countable, each point γ in G has a compact (Hausdorff) neighborhood, and the map s is open. In this situation the map r is open and the s-fibers of G are Hausdorff.
The groupoid is smooth when G and $G^{(0)}$ are second countable smooth manifolds with $G^{(0)}$ Hausdorff, the structural homomorphisms are smooth, u is an embedding, s is a submersion and i is a diffeomorphism.
When $G \rightrightarrows G^{(0)}$ is at least topological, we say that G is s-connected when for any $x \in G^{(0)}$, the s-fiber of G over x is connected. The s-connected component of a groupoid G is $\cup_{x \in X} C G_{x}$ where $C G_{x}$ is the connected component of the s-fiber G_{x} which contains the unit $u(x)$.

Examples

1. A space X is a groupoid over itself with $s=r=u=\mathrm{Id}$.
2. A group $G \rightrightarrows\{e\}$ is a groupoid over its unit e, with the usual product and inverse map.
3. A group bundle : $\pi: E \rightarrow X$ is a groupoid $E \rightrightarrows X$ with $r=s=\pi$ and algebraic operations given by the structure of group of each fiber $E_{x}, x \in X$.
4. If \mathcal{R} is an equivalence relation on a space X, then the graph of \mathcal{R} :

$$
G_{\mathcal{R}}:=\{(x, y) \in X \times X \mid x \mathcal{R} y\}
$$

admits a structure of groupoid over X, which is given by:

$$
u(x)=(x, x), s(x, y)=y, r(x, y)=x,(x, y)^{-1}=(y, x),(x, y) \cdot(y, z)=(x, z)
$$

for x, y, z in X.
When $x \mathcal{R} y$ for any x, y in $X, G_{\mathcal{R}}=X \times X \rightrightarrows X$ is called the pair groupoid.
5. If G is a group acting on a space X, the groupoid of the action is $G \times X \rightrightarrows X$ with the following structural homomorphisms

$$
\begin{aligned}
u(x) & =(e, x), s(g, x)=x, r(g, x)=g \cdot x \\
(g, x)^{-1} & =\left(g^{-1}, g \cdot x\right),(h, g \cdot x) \cdot(g, x)=(h g, x)
\end{aligned}
$$

for x in X and g, h in G.
6. Let X be a topological space the homotopy groupoid of X is

$$
\Pi(X):=\{\bar{c} \mid c:[0,1] \rightarrow X \text { a continuous path }\} \rightrightarrows X
$$

where \bar{c} denotes the homotopy class (with fixed endpoints) of c. We let

$$
u(x)=\overline{c_{x}} \text { where } c_{x} \text { is the constant path equal to } x, s(\bar{c})=c(0), r(\bar{c})=c(1)
$$

$$
\bar{c}^{-1}=\overline{c^{-1}} \text { where } c^{-1}(t)=c(1-t)
$$

$$
\overline{c_{1}} \cdot \overline{c_{2}}=\overline{c_{1} \cdot c_{2}} \text { where } c_{1} \cdot c_{2}(t)=c_{2}(2 t) \text { for } t \in\left[0, \frac{1}{2}\right] \text { and } c_{1} \cdot c_{2}(t)=c_{1}(2 t-1) \text { for } t \in\left[\frac{1}{2}, 1\right] .
$$

When X is a smooth manifold of dimension $n, \Pi(X)$ is naturally endowed with a smooth structure (of dimension 2n). A neighborhood of \bar{c} being of the form $\left\{\overline{c_{1}} \bar{c} \overline{c_{0}} \mid c_{1}(0)=c(1), c(0)=c_{0}(1), \operatorname{Imc} c_{i} \subset U_{i} i=0,1\right\}$ where U_{i} is a given neighborhood of $c(i)$ in X.

1.2. Homomorphisms and Morita Equivalences.

homomorphisms

Let $G \rightrightarrows G^{(0)}$ be a groupoid of source s_{G} and range r_{G} and $H \rightrightarrows H^{(0)}$ be a groupoid of source s_{H} and range r_{H}. A groupoid homomorphism from G to H is given by two maps :

$$
f: G \rightarrow H \text { and } f^{(0)}: G^{(0)} \rightarrow H^{(0)}
$$

such that
$\circ r_{H} \circ f=f^{(0)} \circ r_{G}$,

- $f(\gamma)^{-1}=f\left(\gamma^{-1}\right)$ for any $\gamma \in G$,
- $f\left(\gamma_{1} \cdot \gamma_{2}\right)=f\left(\gamma_{1}\right) \cdot f\left(\gamma_{2}\right)$ for γ_{1}, γ_{2} in G such that $s_{G}\left(\gamma_{1}\right)=r_{G}\left(\gamma_{2}\right)$.

We say that f is a homomorphism over $f^{(0)}$. When $G^{(0)}=H^{(0)}$ and $f^{(0)}=\operatorname{Id}$ we say that f is a homomorphism over identity.
The homomorphism f is an isomorphism when the maps $f, f^{(0)}$ are bijection and $f^{-1}: H \rightarrow G$ is a homomorphism over $\left(f^{(0)}\right)^{-1}$.
As usual, when we are dealing with topological groupoids we ask f to be continuous and when we are dealing with smooth groupoids we ask f to be smooth.

Morita equivalence

In most situations, the good notion of "isomorphism of locally compact groupoids" is the weaker notion of Morita equivalence.

Definition 2. Two locally compact groupoids $G \rightrightarrows G^{(0)}$ and $H \rightrightarrows H^{(0)}$ are Morita equivalent if there exists a locally compact groupoid $P \rightrightarrows G^{(0)} \sqcup H^{(0)}$ such that

- the restrictions of P over $G^{(0)}$ and $H^{(0)}$ are respectively G and H :

$$
P_{G^{(0)}}^{G^{(0)}}=G \text { and } P_{H^{(0)}}^{H^{(0)}}=H
$$

- for any $\gamma \in P$ there exists η in $P_{G^{(0)}}^{H^{(0)}} \cup P_{H^{(0)}}^{G^{(0)}}$ such that (γ, η) is a composable pair (ie $s(\gamma)=r(\eta))$.
Examples 1. Let $f: G \rightarrow H$ be an isomorphism of locally compact groupoid then the following groupoid defines a Morita equivalence between H and G :

$$
P=G \sqcup \tilde{G} \sqcup \tilde{G}^{-1} \sqcup H \rightrightarrows G^{(0)} \sqcup H^{(0)}
$$

where with the obvious notations we have

$$
\begin{aligned}
& G=\tilde{G}=\tilde{G}^{-1} \\
& s_{P}=\left\{\begin{array}{l}
s_{G} \text { on } G \\
s_{H} \circ f \text { on } \tilde{G} \\
r_{G} \text { on } \tilde{G}^{-1} \\
s_{P}=s_{H} \text { on } H
\end{array} \quad, r_{P}=\left\{\begin{array}{l}
r_{G} \text { on } G \sqcup \tilde{G} \\
s_{H} \circ f \text { on } \tilde{G}^{-1} \\
r_{H} \text { on } H
\end{array} \quad, u_{P}=\left\{\begin{array}{l}
u_{G} \text { on } G^{(0)} \\
u_{H} \text { on } H^{(0)}
\end{array}\right.\right.\right. \\
& i_{P}(\gamma)=\left\{\begin{array}{l}
i_{G}(\gamma) \text { on } G \\
i_{H}(\gamma) \text { on } H \\
\gamma \in \tilde{G}^{-1} \text { on } \tilde{G} \\
\gamma \in \tilde{G} \text { on } \tilde{G}^{-1}
\end{array}, p_{P}\left(\gamma_{1}, \gamma_{2}\right)=\left\{\begin{array}{l}
p_{G}\left(\gamma_{1}, \gamma_{2}\right) \text { on } G^{(2)} \\
p_{H}\left(\gamma_{1}, \gamma_{2}\right) \text { on } H^{(2)} \\
p_{G}\left(\gamma_{1}, \gamma_{2}\right) \in \tilde{G} \text { for } \gamma_{1} \in G, \gamma_{2} \in \tilde{G} \\
p_{G}\left(\gamma_{1}, f^{-1}\left(\gamma_{2}\right)\right) \in \tilde{G} \text { for } \gamma_{1} \in \tilde{G}, \gamma_{2} \in H \\
p_{G}\left(\gamma_{1}, \gamma_{2}\right) \in G \text { for } \gamma_{1} \in \tilde{G}, \gamma_{2} \in \tilde{G}^{-1} \\
f \circ p_{G}\left(\gamma_{1}, \gamma_{2}\right) \in H \text { for } \gamma_{1} \in \tilde{G}, \gamma_{2} \in \tilde{G}^{-1}
\end{array}\right.\right.
\end{aligned}
$$

2. Suppose that $G \rightrightarrows G^{(0)}$ is a locally compact groupoid and $\varphi: X \rightarrow G^{(0)}$ is an open surjective map, where X is a locally compact space. The pull back groupoid is the groupoid:

$$
{ }^{*} \varphi^{*}(G) \rightrightarrows X
$$

where

$$
{ }^{*} \varphi^{*}(G)=\{(x, \gamma, y) \in X \times G \times X \mid \varphi(x)=r(\gamma) \text { and } \varphi(y)=s(\gamma)\}
$$

with $s(x, \gamma, y)=y, r(x, \gamma, y)=x,\left(x, \gamma_{1}, y\right) \cdot\left(y, \gamma_{2}, z\right)=\left(x, \gamma_{1} \cdot \gamma_{2}, z\right)$ and $(x, \gamma, y)^{-1}=$ $\left(y, \gamma^{-1}, x\right)$.
$\dddot{\mathrm{i}} ? ?$? The groupoid ${ }^{*} \varphi^{*}(G)$ is naturally endowed with a structure of locally compact groupoid. Moreover the groupoids G and ${ }^{*} \varphi^{*}(G)$ are Morita equivalent.
To prove this last point, one can put a structure of locally compact groupoid on $P=G \sqcup X \times_{r} G \sqcup G \times_{s} X \sqcup{ }^{*} \varphi^{*}(G)$ over $X \sqcup G^{(0)}$ where $X \times_{r} G=\{(x, \gamma) \in$ $X \times G \mid \varphi(x)=r(\gamma)\}$ and $G \times{ }_{s} X=\{(\gamma, x) \in G \times X \mid \varphi(x)=s(\gamma)\}$.

1.3. The orbits of a groupoid.

Suppose that $G \rightrightarrows G^{(0)}$ is a groupoid of source s and range r.
Definition 3. The orbit of G passing trough x is the following subset of $G^{(0)}$:

$$
O r_{x}=r\left(G_{x}\right)=s\left(G^{x}\right)
$$

We let $G^{(0)} / G$ or $\operatorname{Or}(G)$ be the space of orbits.
The isotropy group of G at x is G_{x}^{x} which is naturally endowed with a group structure with x as unit. Notice that multiplication induces a free left (resp. right) action of
G_{x}^{x} on G^{x} (resp. G_{x}). Moreover the orbits space of this action is precisely $O r_{x}$ and the restriction $s: G^{x} \rightarrow O r_{x}$ is the quotient map.

Examples and remark 1. In the example 4. below the orbits of $G_{\mathcal{R}}$ correspond exactly to the orbits of the equivalence relation \mathcal{R}. In the example 5 . the orbits of the groupoid of the action are the orbits of the action.
2. The second assertion in the definition of Morita equivalence means precisely that both $G^{(0)}$ and $H^{(0)}$ meet all the orbits of P. Moreover one can show that the map

$$
\begin{array}{clc}
\operatorname{Or}(G) & \rightarrow & \operatorname{Or}(H) \\
\operatorname{Or}(G)_{x} & \mapsto & \operatorname{Or}(P)_{x} \cap H^{(0)}
\end{array}
$$

is a bijection. In other word, when two groupoids are Morita Equivalent, they have the same orbits space.
Groupoids are often used in Noncommutative Geometry for the study of geometrical singular situations. In many geometrical situations, the topological space which arise is strongly non Hausdorff and the standard tools do not apply. Nevertheless, it is sometimes possible to associate to such a space X a relevant C^{*}-algebra to take the place of $C_{0}(X)$. Usually we first associate a groupoid $G \rightrightarrows G^{(0)}$ such that its space of orbits $G^{(0)} / G$ is (equivalent to) X. If the groupoid is enough regular (smooth for example) then we can associate natural C^{*}-algebras to G. This point will be discussed later.
In other words we desingularize a singular space by viewing it as coming from the action of a nice groupoid on its space of units. To illustrate this point let us look at two examples.
1.4. Groupoids associated to a foliation. Let M be a smooth manifold.

Definition 4. A (regular) smooth foliation \mathcal{F} on M of dimension p is a partition $\left\{F_{i}\right\}_{I}$ of M where each F_{i} is an immersed sub-manifold of dimension p called a leaf. Moreover the manifold M admits charts of the following type:

$$
\varphi: U \rightarrow \mathbb{R}^{p} \times \mathbb{R}^{q}
$$

where U is open in M and such that for any connected component P of $F_{i} \cap U$ where $i \in I$, there is a $t \in \mathbb{R}^{q}$ such that $\varphi(P)=\mathbb{R}^{p} \times\{t\}$.
In this situation the tangent space to the foliation $T \mathcal{F}:=\cup_{I} T F_{i}$ is a sub-bundle of TM stable under Lie Bracket.
The space of leaves M / \mathcal{F} is the quotient of M by the equivalence relation: being on the same leaf.

Typical example. Take $M=P \times T$ where P and T are connected smooth manifolds with the partition into leaves given by $\{P \times\{t\}\}_{t \in T}$. Every foliation is locally of this type.

The space of leaves of a foliation is often difficult to study. As it appears in the following two examples:
Examples 1. Let $\tilde{\mathcal{F}}_{a}$ be the foliation on the plane \mathbb{R}^{2} by lines $\{y=a x+t\}_{t \in \mathbb{R}}$ where a belongs to \mathbb{R}. Take the torus $T=\mathbb{R}^{2} / \mathbb{Z}^{2}$ as being the quotient of \mathbb{R}^{2} by translations of \mathbb{Z}^{2}. We denote by \mathcal{F}_{a} the foliation induced by $\tilde{\mathcal{F}}_{a}$ on T. When a is rational the space of leaves is a circle but when a is irrational it is topologically
equivalent to a point (ie: each point is in any neighborhood of any other point). 2. Let $\mathbb{C} \backslash\{(0)\}$ be foliated by:

$$
\left\{S_{t}\right\}_{t \in] 0,1]} \cup\left\{D_{t}\right\}_{t \in] 0,2 \pi]}
$$

where $S_{t}=\{z \in \mathbb{C}| | z \mid=t\}$ is the circle of radius t and $D_{t}=\left\{z=e^{i(x+t)+x} \mid x \in\right.$ $\left.\mathbb{R}_{*}^{+}\right\}$.

The holonomy groupoid is a smooth groupoid which desingularize the space of leaves of a foliation. Precisely, if \mathcal{F} is a smooth foliation on a manifold M its holonomy groupoid is the smallest s-connected smooth groupoid $G \rightrightarrows M$ whose orbits are precisely the leaves of the foliation.
Here smallest means that if $H \rightrightarrows M$ is another s-connected smooth groupoid whose orbits are the leaves of the foliation then there is a surjective groupoid homomorphism : $H \rightarrow G$ over identity.
The first naive idea to define such a groupoid is to consider the graph of the equivalence relation being in the same leaf. This does not work: you get a groupoid but it may not be smooth. This fact can be observed on example 2. below. Another idea consists in looking at the homotopy groupoid. Let $\Pi(\mathcal{F})$ be the set of homotopy class of smooth paths lying on leaves of the foliation. It is naturally endowed with a groupoid structure similarly to the homotopy groupoid of section 1 . example 6 . Such a groupoid can be naturally equipped with a smooth structure (of dimension $2 p+q$) and the holonomy groupoid is a quotient of this homotopy groupoid. In particular, when the leaves have no homotopy, the holonomy groupoid is the graph of the equivalence relation being in the same leaf.
1.5. The noncommutative tangent space of a conical pseudomanifold. It may happens that the underlying topological space which is under study is a nice compact space which is "almost" smooth. This is the case of pseudo-manifolds $[24,34,51]$, for a review on the subject see [9, 28]. In such a situation we can desingularize the tangent space $[19,18]$. Let us see how it works in the case of a conical pseudomanifold with one singularity.

Let M be an m-dimensional compact manifold with a compact boundary L. We attach to L the cone $c L=L \times[0,1] / L \times\{0\}$, using the obvious map $L \times\{1\} \rightarrow L \subset$ ∂M. The new space $X=c L \cup M$ is a compact pseudomanifold with a singularity [24]. In general, there is no manifold structure around the vertex c of the cone.
We will use the following notations: $X^{\circ}=X \backslash\{c\}$ is the regular part, X^{+}denotes $M \backslash L=X \backslash c L, \overline{X_{+}}=M$ its closure in X and $\left.X^{-}=L \times\right] 0,1[$. If y is a point of the cylindrical part of $X \backslash\{c\}$, we will write $y=\left(y_{L}, k_{y}\right)$ where $y_{L} \in L$ and $\left.\left.k_{y} \in\right] 0,1\right]$ are the tangential and radial coordinates. We extend the map k on M to
a smooth defining function for its boundary; in particular, $k^{-1}(1)=L=\partial M$ and $k(M) \subset[1,+\infty[$.

Let us consider $T \overline{X^{+}}$, the restriction to $\overline{X^{+}}$of the tangent bundle of X°. As a \mathcal{C}^{∞} vector bundle, it is a smooth groupoid with unit space $\overline{X^{+}}$. We define the groupoid $T^{\mathrm{S}} X$ as the disjoint union:

$$
T^{\mathrm{S}} X=X^{-} \times X^{-} \cup T \overline{X^{+}} \underset{r}{\stackrel{s}{\rightrightarrows}} X^{\circ}
$$

where $X^{-} \times X^{-} \rightrightarrows X^{-}$is the pair groupoid.
In order to endow $T^{\mathrm{S}} X$ with a smooth structure, compatible with the usual smooth structure on $X^{-} \times X^{-}$and on $T \overline{X^{+}}$, we have to take care of what happen around points of $\left.T \overline{X^{+}}\right|_{\partial \overline{X^{+}}}$.
Let τ be a smooth positive function on \mathbb{R} such that $\tau^{-1}(\{0\})=[1,+\infty[$. We let $\tilde{\tau}$ be the smooth map from X° to \mathbb{R}^{+}given by $\tilde{\tau}(y)=\tau \circ k(y)$.
Let (U, ϕ) be a local chart for X° around $z \in \partial \overline{X^{+}}$. Setting $U^{-}=U \cap X^{-}$and $\overline{U^{+}}=U \cap \overline{X^{+}}$, we define a local chart of G by:

$$
\begin{gather*}
\tilde{\phi}: \quad U^{-} \times U^{-} \cup T \overline{U^{+}} \longrightarrow \mathbb{R}^{m} \times \mathbb{R}^{m} \\
\tilde{\phi}(x, y)=\left(\phi(x), \frac{\phi(y)-\phi(x)}{\tilde{\tau}(x)}\right) \text { if }(x, y) \in U^{-} \times U^{-} \text {and } \tag{1.1}\\
\tilde{\phi}(x, V)=\left(\phi(x),(\phi)_{*}(x, V)\right) \text { elsewhere. }
\end{gather*}
$$

We define in this way a structure of smooth groupoid on $T^{S} X$. Note that at the topological level, the space of orbits of $T^{\mathrm{S}} X$ is equivalent to X : there is a canonical isomorphism between the algebras $C(X)$ and $C\left(X^{\circ} / T^{\mathrm{S}} X\right)$.
The smooth groupoid $T^{\mathrm{S}} X \rightrightarrows X^{\circ}$ is called the noncommutative tangent space of X.
1.6. Lie Theory for smooth groupoids. Let us go into the more specific world of smooth groupoids. Similarly to Lie groups which admit Lie algebras, any smooth groupoids has a Lie algebroid [41, 40].
Definition 5. A Lie algebroid $\mathcal{A}=\left(p: \mathcal{A} \rightarrow T M,[,]_{\mathcal{A}}\right)$ on a smooth manifold M is a vector bundle $\mathcal{A} \rightarrow M$ equipped with a $\operatorname{bracket}[,]_{\mathcal{A}}: \Gamma(\mathcal{A}) \times \Gamma(\mathcal{A}) \rightarrow \Gamma(\mathcal{A})$ on the module of sections of \mathcal{A} together with a homomorphism of fiber bundle $p: \mathcal{A} \rightarrow T M$ from \mathcal{A} to the tangent bundle $T M$ of M called the anchor, such that:
i) the bracket $[,]_{\mathcal{A}}$ is \mathbb{R}-bilinear, antisymmetric and satisfies the Jacobi identity,
ii) $[X, f Y]_{\mathcal{A}}=f[X, Y]_{\mathcal{A}}+p(X)(f) Y$ for all $X, Y \in \Gamma(\mathcal{A})$ and f a smooth function of M,
iii) $p\left([X, Y]_{\mathcal{A}}\right)=[p(X), p(Y)]$ for all $X, Y \in \Gamma(\mathcal{A})$.

Each Lie groupoid admits a Lie algebroid. Let us recall this construction.
Let $G \stackrel{s}{\rightrightarrows} G^{(0)}$ be a Lie groupoid. We denote by $T^{s} G$ the subbundle of $T G$ of s-vertical tangent vectors. That is $T^{s} G$ is the kernel of the differential $T s$ of s.
For all γ in G let $R_{\gamma}: G_{r(\gamma)} \rightarrow G_{s(\gamma)}$ be the right multiplication by γ. A tangent vector field Z on G is right invariant if it satisfies:

- Z is s-vertical: $T s(Z)=0$.
- For all $\left(\gamma_{1}, \gamma_{2}\right)$ in $G^{(2)}, Z\left(\gamma_{1} \cdot \gamma_{2}\right)=T R_{\gamma_{2}}\left(Z\left(\gamma_{1}\right)\right)$.

Note that if Z is a right invariant vector field and h^{t} its flow then for all t, the local diffeomorphism h^{t} is a local left translation of G that is $h^{t}\left(\gamma_{1} \cdot \gamma_{2}\right)=h^{t}\left(\gamma_{1}\right) \cdot \gamma_{2}$ when it makes sense.

The Lie algebroid $\mathcal{A} G$ of G is defined in the following way:

- The fiber bundle $\mathcal{A} G \rightarrow G^{(0)}$ is the restriction of $T^{s} G$ to $G^{(0)}$. In other words: $\mathcal{A} G=\cup_{x \in G^{(0)}} T_{x} G_{x}$ is the union of the tangent spaces to the s-fiber at the corresponding unit.
- The anchor $p: \mathcal{A} G \rightarrow T G^{(0)}$ is the restriction of the differential $T r$ of r to $\mathcal{A} G$.
- If $Y: U \rightarrow \mathcal{A} G$ is a local section of $\mathcal{A} G$, where U is an open subset of $G^{(0)}$, we define the local right invariant vector field Z_{Y} associated with Y by

$$
Z_{Y}(\gamma)=T R_{\gamma}(Y(r(\gamma))) \text { for all } \gamma \in G^{U}
$$

The Lie bracket is then defined by:

$$
\left[\begin{array}{cccc}
{[,]:} & \Gamma(\mathcal{A} G) \times \Gamma(\mathcal{A} G) & \longrightarrow & \Gamma(\mathcal{A} G) \\
\left(Y_{1}, Y_{2}\right) & \mapsto & {\left[Z_{Y_{1}}, Z_{Y_{2}}\right]_{G^{(0)}}}
\end{array}\right.
$$

where $\left[Z_{Y_{1}}, Z_{Y_{2}}\right.$] denotes the s-vertical vector field obtained with the usual bracket and $\left[Z_{Y_{1}}, Z_{Y_{2}}\right]_{G^{(0)}}$ is the restriction of $\left[Z_{Y_{1}}, Z_{Y_{2}}\right]$ to $G^{(0)}$.

Example If $\Pi(\mathcal{F})$ is the homotopy groupoid (or the holonomy groupoid) of a smooth foliation, its Lie algebroid is the tangent space $T \mathcal{F}$ to the foliation. The anchor is the inclusion. In particular the Lie algebroid of the pair groupoid $M \times M$ on a smooth manifold M is $T M$, the anchor being the identity map.

Lie theory for groupoids is much more tricky than for groups. For a long time people thought that, as for Lie algebras, every Lie algebroid integrates into a Lie groupoid [42]. In fact this assertion, named Lie's third theorem for Lie algebroid is false. This was pointed out by a counter example given by P. Molino and R. Almeida in [1]. Since that time, a lot of works has been done around this problem. A few years ago M. Crainic and R.L. Fernandes [15] have completely solved this question by giving a necessary and sufficient condition for the integrability of Lie algebroids.
1.7. Example of groupoids involved in Index theory. Index theory is a part of non commutative geometry where groupoids may play a crucial role. Index theory will be treated later in this course but we want to present here some of the groupoids which will arise.

Definition 6. A smooth groupoid G is called a deformation groupoid if:

$$
\left.\left.G=G_{1} \times\{0\} \cup G_{2} \times\right] 0,1\right] \rightrightarrows G^{(0)}=M \times[0,1]
$$

where G_{1} and G_{2} are smooth groupoids with unit space M. That is, G is obtained by gluing $\left.\left.\left.\left.G_{2} \times\right] 0,1\right] \rightrightarrows M \times\right] 0,1\right]$ which is the groupoid G_{2} parametrized by $\left.] 0,1\right]$ with the groupoid $G_{1} \times\{0\} \rightrightarrows M \times\{0\}$.

Example Let G be a smooth groupoid and let $\mathcal{A} G$ be its Lie algebroid. The adiabatic groupoid of $G[13,36,37]$ is a deformation of G on its Lie algebroid:

$$
\left.\left.G_{a d}=\mathcal{A} G \times\{0\} \cup G \times\right] 0,1\right] \rightrightarrows G^{(0)} \times[0,1]
$$

Here, the vector bundle $\pi: \mathcal{A} G \rightarrow G^{(0)}$ is considered as a groupoid in the obvious way. One can put a natural smooth structure on $G_{a d}$.

The tangent groupoid

A special example of adiabatic groupoid is the tangent groupoid of A. Connes [13]. Consider the pair groupoid $M \times M$ on a smooth manifold M. We have seen that its Lie algebroid is $T M$. In this situation, the adiabatic groupoid is called the tangent groupoid and is given by:

$$
\left.\left.\mathcal{G}_{M}^{t}:=T M \times\{0\} \sqcup M \times M \times\right] 0,1\right] \rightrightarrows M \times[0,1]
$$

The Lie algebroid is the bundle $\mathcal{A}\left(\mathcal{G}_{M}^{t}\right):=T M \times[0,1] \rightarrow M \times[0,1]$ with anchor $p:(x, V, t) \in T M \times[0,1] \mapsto(x, t V, t, 0) \in T M \times T[0,1]$.
Choose a riemannian metric on M, the smooth structure on \mathcal{G}_{M}^{t} is such that the following map :

$$
\begin{array}{rlc}
\mathcal{U} \subset T M \times[0,1] & \rightarrow & \mathcal{G}_{M}^{t} \\
(x, V, t) & \mapsto & \left\{\begin{array}{c}
(x, V, 0) \text { if } t=0 \\
\left(x, \exp _{x}(-t V), t\right) \text { elsewhere }
\end{array}\right.
\end{array}
$$

is a smooth diffeomorphism on its image, where \mathcal{U} is an open neighborhood of $T M \times\{0\}$.
The previous construction of the tangent groupoid of a compact manifold generalize to the case of conical manifold. When X is a conical manifold, its tangent groupoid is a deformation of the pair groupoid over X° into the groupoid $T^{\mathrm{S}} X$. This deformation has a nice description at the level of Lie algebroids. Indeed, with the notation of 1.5 , the Lie algebroid of \mathcal{G}_{X}^{t} is the (unique) Lie algebroid given by the fiber bundle $\mathcal{A G}_{X}^{t}=[0,1] \times \mathcal{A}\left(T^{\mathrm{S}} X\right)=[0,1] \times T X^{\circ} \rightarrow[0,1] \times X^{\circ}$, with anchor map

$$
\begin{array}{cccc}
p_{\mathcal{G}_{X}^{t}}: & \mathcal{A G}_{X}^{t}=[0,1] \times T X^{\circ} & \longrightarrow & T\left([0,1] \times X^{\circ}\right)=T[0,1] \times T X^{\circ} \\
(\lambda, x, V) & \longmapsto & (\lambda, 0, x,(\tilde{\tau}(x)+\lambda) V) .
\end{array}
$$

Such a Lie algebroid is almost injective, thus it is integrable [15, 17].
Moreover, it integrates into the tangent groupoid which is defined by:

$$
\left.\left.\mathcal{G}_{X}^{t}=X^{\circ} \times X^{\circ} \times\right] 0,1\right] \cup T^{\mathrm{S}} X \times\{0\} \rightrightarrows X^{\circ} \times[0,1]
$$

Once again one can equip such a groupoid with a smooth structure compatible with the usual one on each pieces: $\left.\left.X^{\circ} \times X^{\circ} \times\right] 0,1\right]$ and $T^{\mathrm{S}} X \times\{0\}[19]$.

The Thom groupoid

Another important deformation groupoid for our purpose is the Thom groupoid [20].
Let $\pi: E \rightarrow X$ be a conical vector bundle. This means that X is a conical manifolds (or a smooth manifold without vertexes) and we have a smooth vector bundle $\pi^{\circ}: E^{\circ} \rightarrow X^{\circ}$ which restriction to $\left.X^{-}=L \times\right] 0,1\left[\right.$ is equal to $\left.E_{L} \times\right] 0,1[$
where $E_{L} \rightarrow L$ is a smooth vector bundle. If $E^{+} \rightarrow X^{+}$denotes the bundle E° restricted to X^{+}, then E is the conical manifold: $E=c E_{L} \cup E^{+}$.
When X is a smooth manifold (with no conical point), it is just the usual notion of smooth vector bundle.

From the definition, π restricts to a smooth vector bundle map $\pi^{\circ}: E^{\circ} \rightarrow X^{\circ}$. We let $\pi_{[0,1]}=\pi^{\circ} \times i d: E^{\circ} \times[0,1] \rightarrow X^{\circ} \times[0,1]$.
We consider the tangent groupoids $\mathcal{G}_{X}^{t} \rightrightarrows X^{\circ}$ for X and $\mathcal{G}_{E}^{t} \rightrightarrows E^{\circ}$ for E equipped with a smooth structure constructed using the same gluing function τ (in particular $\tau_{X} \circ \pi=\tilde{\tau_{E}}$. We denote by ${ }^{*} \pi_{[0,1]}^{*}\left(\mathcal{G}_{X}^{t}\right) \rightrightarrows E^{\circ} \times[0,1]$ the pull back of \mathcal{G}_{X}^{t} by $\pi_{[0,1]}$.
We first associate to the conical vector bundle E a deformation groupoid \mathcal{T}_{E}^{t} from ${ }^{*} \pi_{[0,1]}^{*}\left(\mathcal{G}_{X}^{t}\right)$ to \mathcal{G}_{E}^{t}. More precisely, we define:

$$
\left.\left.\mathcal{T}_{E}^{t}:=\mathcal{G}_{E}^{t} \times\{0\} \sqcup^{*} \pi_{[0,1]}^{*}\left(\mathcal{G}_{X}^{t}\right) \times\right] 0,1\right] \rightrightarrows E^{\circ} \times[0,1] \times[0,1]
$$

Once again, one can equip \mathcal{T}_{E}^{t} with a smooth structure [20] and the restriction of \mathcal{T}_{E}^{t} to $E^{\circ} \times\{0\} \times[0,1]$ leads to a smooth groupoid:

$$
\left.\left.\mathcal{H}_{E}=T^{S} E \times\{0\} \sqcup^{*} \pi^{*}\left(T^{S} X\right) \times\right] 0,1\right] \rightrightarrows E^{\circ} \times[0,1]
$$

called a Thom groupoid associated to the conical vector bundle E over X.
The following example explains what these constructions become if there are no singularities.
Example Suppose that $p: E \rightarrow M$ is a smooth vector bundle over the smooth manifold M. Then $\left.\left.\mathcal{G}_{E}^{t}=T E \times\{0\} \sqcup E \times E \times\right] 0,1\right] \rightrightarrows E \times[0,1]$ and $\mathcal{G}_{M}^{t}=T M \times$ $\{0\} \sqcup M \times M \times] 0,1] \rightrightarrows M \times[0,1]$ are the usual tangent groupoids. In this example the groupoid \mathcal{T}_{E}^{t} will be given by
$\left.\left.\left.\left.\mathcal{T}_{E}^{t}=T E \times\{0\} \times\{0\} \sqcup^{*} p^{*}(T M) \times\{0\} \times\right] 0,1\right] \sqcup E \times E \times\right] 0,1\right] \times[0,1] \rightrightarrows E \times[0,1] \times[0,1]$ and is smooth. Similarly, the Thom groupoid will be given by: $\mathcal{H}_{E}:=T E \times\{0\} \sqcup$ $\left.\left.{ }^{*} p^{*}(T M) \times\right] 0,1\right] \rightrightarrows E \times[0,1]$.
1.8. Haar systems. A locally compact groupoid $G \rightrightarrows G^{(0)}$ can be viewed as a family of locally compact spaces:

$$
G_{x}=\{\gamma \in G \mid s(\gamma)=x\}
$$

parametrized by $x \in G^{(0)}$. Moreover, right translations act on these spaces. Precisely, to any $\gamma \in G$ is associated the homeomorphism

$$
\begin{aligned}
R_{\gamma}: \quad G_{y} & \rightarrow \quad G_{x} \\
\eta & \mapsto \eta \cdot \gamma .
\end{aligned}
$$

This picture enables to define the good analogue of Haar measure on locally compact groups to locally compact groupoids, namely Haar systems. The following definition is due to J. Renault [44].

Definition 7. A Haar system on G is a collection $\nu=\left\{\nu_{x}\right\}_{x \in G^{(0)}}$ of positive regular Borel measure on G satisfying the following conditions:
(1) Support: For every $x \in G^{(0)}$, the support of ν_{x} is contained in G_{x}.
(2) Invariance: For all $\gamma \in G$, the right-translation operator $R_{\gamma}: G_{y} \rightarrow G_{x}$ is measure-preserving. That is, for all $f \in C_{c}(G)$:

$$
\int f(\eta) d \nu_{y}(\eta)=\int f(\eta \cdot \gamma) d \nu_{x}(\eta)
$$

(3) Continuity: For all $f \in C_{c}(G)$, the map

$$
\begin{array}{ccc}
G^{(0)} & \rightarrow & \mathbb{C} \\
x & \mapsto & \int f(\gamma) d \nu_{x}(\gamma)
\end{array}
$$

is continuous.
Contrary to the case of locally compact groups, Haar systems on groupoids may not exist. Moreover, when such a Haar system exists, it may not be unique. In the special case of smooth groupoid a Haar system always exists [38, 43] and any two Haar systems $\left\{\nu_{x}\right\}$ and $\left\{\mu_{x}\right\}$ differ by a continuous and positive function f on $G^{(0)}: \nu_{x}=f(x) \mu_{x}$ for all $x \in G^{(0)}$.
Example: When the source and range map are local homeomorphisms, a possible choice for ν_{x} is the counting measure on G_{x}.

2. C^{*}-Algebras of groupoids

We will start this second part with the definition of a C^{*}-algebra together with some results. Then we will see how are constructed the maximal and minimal C^{*}-algebras associated to a groupoid. We will compute explicit examples.
2.1. C^{*}-algebras - Basic definitions. In this chapter we introduce the terminology and we give some examples and properties of C^{*}-algebras. One can look at $[21,39,3]$ for a more complete overview on this subject.
Definition 8. A C^{*}-algebra A is a complex Banach algebra with an involution $x \mapsto x^{*}$ such that:
(1) $(\lambda x+\mu y)^{*}=\bar{\lambda} x^{*}+\bar{\mu} y^{*}$ for $\lambda, \mu \in \mathbb{C}$ and $x, y \in A$,
(2) $(x y)^{*}=y^{*} x^{*}$ for $x, y \in A$, and
(3) $\left\|x^{*} x\right\|=\|x\|^{2}$ for $x \in A$.

Note that it follows from the definition that $*$ is isometric.
The element x in A is self-adjoint if $x^{*}=x$, normal if $x x^{*}=x^{*} x$. When 1 belongs to A, x is unitary if $x x^{*}=x^{*} x=1$.
Given two C^{*}-algebras A, B, a homomorphism respecting the involution is a called a *-homomorphism.
Examples 1. Let \mathcal{H} be an Hilbert space. The algebra $\mathcal{L}(\mathcal{H})$ of all continuous linear transformation of \mathcal{H} is a C^{*}-algebra. The involution of $\mathcal{L}(\mathcal{H})$ is given by the usual adjunction of bounded linear operators.
2. $\mathcal{K}(\mathcal{H})$ is the norm closure of finite rank operators on \mathcal{H}. It is a sub C^{*}-algebra of $\mathcal{L}(\mathcal{H}) . i ̈ ? ?$ i
3. The algebra $M_{n}(\mathbb{C})$ is a C^{*}-algebra. It is a special example of the previous kind, when $\operatorname{dim}(\mathcal{H})=n$.
4. Let X be a locally compact, Hausdorff, topological space. The algebra $C_{0}(X)$ of continuous functions vanishing at ∞ endowed with the supremum norm and the
involution $f \mapsto \bar{f}$ is a commutative C^{*}-algebra. When X is compact, 1 belongs to $C(X)=C_{0}(X)$.
Conversely every commutative C^{*}-algebra A is isomorphic to $C_{0}(X)$ for some locally compact space X (and it is compact precisely when A is unital). Precisely, a character \mathcal{X} of A is a continuous homomorphism of algebras $\mathcal{X}: A \rightarrow \mathbb{C}$. The set X of characters of A, called the spectrum of A, can be endowed with a locally compact space topology. The Gelfand transform $\mathcal{F}: A \rightarrow C_{0}(X)$ given by $\mathcal{F}(x)(\mathcal{X})=\mathcal{X}(x)$ is the desired $*$-isomorphism.
Let A be a C^{*}-algebra and \mathcal{H} a Hilbert space.
Definition 9. A *-representation of A in \mathcal{H} is a $*$-homomorphism $\pi: A \rightarrow \mathcal{L}(\mathcal{H})$. The representation is faithful if π is injective.

Theorem 10. (Gelfand-Naimark) If A is a C^{*}-algebra, there exists a Hilbert space \mathcal{H} and a faithful representation $\pi: a \rightarrow \mathcal{L}(\mathcal{H})$.

In other words any C^{*}-algebra is isomorphic to a norm-closed involutive subalgebra of $\mathcal{L}(\mathcal{H})$. Moreover, when A is separable, \mathcal{H} can be taken to be the (unique up to isometry) separable Hilbert space of infinite dimension.

Enveloping algebra

Given a Banach $*$-algebra A, consider the family π_{α} of all continuous $*$-representations for A. The Hausdorff completion of A for the seminorm $\|x\|=\sup _{\alpha}\left(\left\|\pi_{\alpha}(x)\right\|\right)$ is a C^{*}-algebra called the enveloping C^{*}-algebra of A.

Units

A C^{*}-algebra may or may not have a unit, but it can always be embedded into a unital C^{*}-algebra \tilde{A} :

$$
\tilde{A}:=\{x+\lambda \mid x \in A, \lambda \in \mathbb{C}\}
$$

with the obvious product and involution. The norm on \tilde{A} is given for all $x \in \tilde{A}$ by: $\|x\|^{\sim}=\operatorname{Sup}\{\|x y\|, y \in A ;\|y\|=1\}$. On A we have $\|\cdot\|=\|\cdot\|^{\sim}$. The algebra A is a closed two sided ideal in \tilde{A} and $\tilde{A} / A=\mathbb{C}$.

Functional calculus

Let A be a C^{*}-algebra. If x belongs to A, the spectrum of x in A is the compact set:

$$
S p(x)=\{\lambda \in \mathbb{C} \mid x-\lambda \text { is not invertible in } \tilde{A}\}
$$

The spectral radius of X is the number:

$$
\nu(x)=\sup \{|\lambda| ; \lambda \in S p(x)\} .
$$

We have:

$$
\begin{aligned}
& S p(x) \subset \mathbb{R} \text { when } x \text { is self-adjoint }\left(x^{*}=x\right), \\
& S p(x) \subset \mathbb{R}_{+} \text {when } x \text { is positive }\left(x=y^{*} y \text { with } y \in A\right), \\
& S p(x) \subset U(1) \text { when } x \text { is unitary }\left(x^{*} x=x x^{*}=1\right)
\end{aligned}
$$

When x is normal: $x^{*} x=x x^{*}$, these conditions on the spectrum are equivalences.
When x is normal, $\nu(x)=\|x\|$. This enables to show that for any polynomial $P \in \mathbb{C}[x],\|P(x)\|=\sup \{P(t) \mid t \in S p(x)\}$ (using that $S p(P(x))=P(S p(x))$). We can then define $f(x) \in A$ for every continuous function $f: S p(x) \rightarrow \mathbb{C}$. Precisely, according to Weirstrass' theorem, there is a sequence $\left(P_{n}\right)$ of polynomials which converges uniformly to f on $S p(x)$. We simply define $f(x)=\lim P_{n}(x)$.
2.2. The reduced and maximal C^{*}-algebra of a groupoid. We will restrict our study to the case of Hausdorff locally compact groupoids, for the non Hausdorff case, one can look at $[13,11,31]$.
From now, $G \rightrightarrows G^{(0)}$ is a locally compact Hausdorff groupoid equipped with a fixed Haar system $\nu=\left\{\nu_{x}\right\}_{x \in G^{(0)}}$. We let $C_{c}(G)$ be the space of complex valued functions with compact support on G. It is provided with a structure of involutive algebra as follows. If f and g belong to $C_{c}(G)$ we define the involution by

$$
\text { for } \gamma \in G, f^{*}(\gamma)=\overline{f\left(\gamma^{-1}\right)}
$$

the convolution product by

$$
\text { for } \gamma \in G, f * g(\gamma)=\int_{\eta \in G_{x}} f\left(\gamma \eta^{-1}\right) g(\eta) d \nu_{x}(\eta)
$$

where $x=s(\gamma)$. The 1-norm on $C_{c}(G)$ is defined by

$$
\|f\|_{1}=\sup _{x \in G^{(0)}} \max \left(\int_{G_{x}}|f(\gamma)| d \nu_{x}(\gamma), \int_{G_{x}}\left|f\left(\gamma^{-1}\right)\right| d \nu_{x}(\gamma)\right)
$$

The full groupoid C^{*}-algebra $C^{*}(G, \nu)$ is defined to be the enveloping C^{*}-algebra of the Banach $*$-algebra $\overline{C_{c}(G)}{ }^{\|\cdot\|_{1}}$ obtained by completion of $C_{c}(G)$ with respect to the norm $\|\cdot\|_{1}$.

Given x in $G^{(0)}, f \in C_{c}(G), \xi \in L^{2}\left(G_{x}, \nu_{x}\right)$ and $\gamma \in G_{x}$, we set

$$
\pi_{x}(f)(\xi)(\gamma)=\int_{\eta \in G_{x}} f\left(\gamma \eta^{-1}\right) \xi(\eta) d \nu_{x}(\eta)
$$

One can show that π_{x} define a $*$-representation of $C_{c}(G)$ on the Hilbert space $L^{2}\left(G_{x}, \nu_{x}\right)$. Moreover we have for any $f \in C_{c}(G)$ the inequality $\left\|\pi_{x}(f)\right\| \leq\|f\|_{1}$. The reduced norm on $C_{c}(G)$ is

$$
\|f\|_{r}=\sup _{x \in G^{(0)}}\left\{\left\|\pi_{x}(f)\right\|\right\}
$$

which is a C^{*}-norm. The reduced C^{*}-algebra $C_{r}(G, \nu)$ is defined to be the C^{*} algebra obtained by completion of A with respect to $\|\cdot\|_{r}$.
When G is smooth, the reduced and maximal C^{*}-algebras of the groupoid G do not depend up to isomorphism on the choice of the Haar system ν, in the general case they do not depend on ν up to Morita equivalence [44]. When there is no ambiguity on the Haar system, we will only denote $C^{*}(G)$ and $C_{r}^{*}(G)$ the maximal and reduced C^{*}-algebras.
The identity map on $C_{c}(G)$ induces a surjective homomorphism from $C^{*}(G)$ to $C_{r}^{*}(G)$. Thus $C_{r}^{*}(G)$ is a quotient of $C^{*}(G)$.
For a quite large class of groupoids, amenable groupoids [2], the reduced and maximal C^{*}-algebras are equal. This will be the case for all the groupoids we will meet in the last part of this course devoted to index theory.

Examples 1. When $X \rightrightarrows X$ is a locally compact space, $C^{*}(X)=C_{r}^{*}(X)=C_{0}(X)$. 2. When $G \rightrightarrows e$ is a group and Λ a Haar measure on G, we recover the usual notion of reduced and maximal C^{*}-algebra of a group.
3. Let M be a smooth manifold and $T M \rightrightarrows M$ the tangent bundle. Provide the vector bundle $T M$ with a euclidean structure. The Fourier transform:

$$
f \in C_{c}(T M), \quad(x, w) \in T^{*} M, \quad \hat{f}(x, w)=\frac{1}{(2 \pi)^{n / 2}} \int_{X \in T_{x} M} e^{-i w(X)} f(X) d X
$$

gives an isomorphism between $C^{*}(T M)=C_{r}^{*}(T M)$ and $C_{0}\left(T^{*} M\right)$.
4. Let X be a locally compact space, with μ a measure on X and consider the pair groupoid $X \times X \rightrightarrows X$. If f, g belongs to $C_{c}(X \times X)$, the convolution product is given by:

$$
f * g(x, y)=\int_{z \in X} f(x, z) g(z, y) d \mu(z)
$$

and a representation of $C_{c}(X \times X)$ is given by

$$
\pi: C_{c}(X \times X) \rightarrow \mathcal{L}\left(L^{2}(X, \mu)\right) ; \pi(f)(\xi)(x)=\int_{z \in X} f(x, z) \xi(z) d \mu(z)
$$

when $f \in C_{c}(X \times X), \xi \in L^{2}(X, \mu)$ and $x \in X$.
It turns out that $C^{*}(X \times X)=C_{r}^{*}(X \times X) \simeq \mathcal{K}\left(L^{2}(X, \mu)\right)$.
5. Let M be a compact smooth manifold and $\mathcal{G}_{M}^{t} \rightrightarrows M \times[0,1]$ its tangent groupoid. In this situation $C^{*}\left(\mathcal{G}_{M}^{t}\right)=C_{r}^{*}\left(\mathcal{G}_{M}^{t}\right)$ is a continuous field $\left(A_{t}\right)_{t \in[0,1]}$ of C^{*}-algebras ([21]) with $A_{0} \simeq C_{0}\left(T^{*} M\right)$ being a commutative C^{*}-algebra and for any $\left.\left.t \in\right] 0,1\right]$, $A_{t} \simeq \mathcal{K}\left(L^{2}(M)\right)$ [13].
In the sequel we will need the two following properties of C^{*}-algebras of groupoids.
Properties 1. Let G_{1} and G_{2} be two locally compact groupoids equipped with Haar systems and suppose for instance that G_{1} is amenable. Then according to [2], $C^{*}\left(G_{1}\right)=C_{r}^{*}\left(G_{1}\right)$ is nuclear - which implies that for any C^{*}-algebra B there is only one tensor product C^{*}-algebra $C^{*}\left(G_{1}\right) \otimes B$. The groupoid $G_{1} \times G_{2}$ is a locally compact and

$$
C^{*}\left(G_{1} \times G_{2}\right) \simeq C^{*}\left(G_{1}\right) \otimes C^{*}\left(G_{2}\right) \text { and } C_{r}^{*}\left(G_{1} \times G_{2}\right) \simeq C^{*}\left(G_{1}\right) \otimes C_{r}^{*}\left(G_{2}\right)
$$

2. Let $G \rightrightarrows G^{(0)}$ be a locally compact groupoid with a Haar system ν.

An open subset $U \subset G^{(0)}$ is saturated if U is a union of orbits of G, in other words $U=s\left(r^{-1}(U)\right)=r\left(s^{-1}(U)\right)$. The set $F=G^{(0)} \backslash U$ is a closed saturated subset of $G^{(0)}$. The Haar system ν can be restricted to the restrictions $\left.G\right|_{U}:=G_{U}^{U}$ and $\left.G\right|_{F}:=G_{F}^{F}$ and we have the following exact sequence of C^{*}-algebras [27, 43]:

$$
0 \rightarrow C^{*}\left(\left.G\right|_{U}\right) \xrightarrow{i} C^{*}(G) \xrightarrow{r} C^{*}\left(\left.G\right|_{F}\right) \rightarrow 0
$$

where $i: C_{c}\left(\left.G\right|_{U}\right) \rightarrow C_{c}(G)$ is given by the extension of functions by 0 while $r: C_{c}(G) \rightarrow C_{c}\left(\left.G\right|_{F}\right)$ is given by the restriction of functions.

KK-Theory

This part on $K K$-theory starts with some historical introduction. Then in order to motivate our purpose we will list most of the properties of the functor $K K$. Then from section 4 up to section 5 we will define in great details all the ingredients involved in $K K$-theory. In order to make this course we have made an intensive use of the following references [47, 26, 46, 52]. Moreover a significant part of this chapter has been written by Jorge Plazas from the lectures and we would like to thank him for his big help.

3. Introduction to KK-Theory

3.1. Historical comments. The story begins with several studies of M. Atiyah $[4,5]$.

Firstly, recall that if X is a compact set, the K-theory of X is constructed in the following way: let $\mathcal{E} v$ be the set of isomorphism classes of continuous vector bundles over X. Thanks to the direct sum of bundles, the set $\mathcal{E} v$ is naturally endowed with a structure of abelian semi-group. One can then symetrize $\mathcal{E} v$ in order to get a group, this gives the K-theory group of X :

$$
K^{0}(X)=\{[E]-[F] ;[E],[F] \in \mathcal{E} v\}
$$

For example the K-theory of a point is \mathbb{Z} since a vector bundle on a point is just a vector space and vector spaces are classified, up to isomorphism, by their dimension. When \mathcal{H} is an infinite dimensional separable Hilbert space, the set $\mathcal{F}(\mathcal{H})$ of Fredholm operators on \mathcal{H} is the open subset of $\mathcal{L}(\mathcal{H})$ made of bounded operators T on \mathcal{H} such that the dimension of the kernel and cokernel of T are finite. The set $\mathcal{F}(\mathcal{H})$ is stable under the composition. We set

$$
[X, \mathcal{F}(\mathcal{H})]=\{\text { homotopy classes of continuous maps: } X \rightarrow \mathcal{F}(\mathcal{H})\}
$$

The set $[X, \mathcal{F}(\mathcal{H})]$ is naturally endowed with a structure of semi-group. M. Atiyah and independently Janish, showed that $[X, \mathcal{F}(\mathcal{H})]$ is actually (a group) isomorphic to $K^{0}(X)$ [4]. The idea of the proof is the following. If $f: X \rightarrow \mathcal{F}(\mathcal{H})$ is continuous, we can make a compact perturbation of f, in order to get \tilde{f} such that \tilde{f} is in the same homotopy class as f and $\operatorname{Ker} \tilde{f}:=\cup_{x \in} \operatorname{ker}\left(\tilde{f}_{x}\right)$ together with $\operatorname{CoKer} \tilde{f}:=\cup_{x \in} \operatorname{ker}\left(\tilde{f}_{x}\right)$ are vector bundles (i.e. of constant dimension) on X. The isomorphism is then given by:

$$
\begin{array}{ccc}
\mathcal{E} & \rightarrow & K^{0}(X) \\
\bar{f} & \mapsto & {[\operatorname{Ker} \tilde{f}]-[\operatorname{CoKer} \tilde{f}]}
\end{array}
$$

Thus K-theory can be expressed in terms of Fredholm operators.
Later, M. Atiyah looked for a description of the dual functor : the K-homology of X, with the help of Fredholm operators. This gave rise to $E l l(X)$. The cycles are triples (H, π, F) where:

- $H=H_{0} \oplus H_{1}$ is a \mathbb{Z}_{2} graded Hilbert space,
- $\pi: C(X) \rightarrow \mathcal{L}(H)$ is a representation by operators of degree 0 (this means that $\left.\pi(f)=\left(\begin{array}{cc}\pi_{0}(f) & 0 \\ 0 & \pi_{1}(f)\end{array}\right)\right)$,
- F belongs to $\mathcal{L}(H)$, is of degree 1 (thus it is of the form $F=\left(\begin{array}{cc}0 & G \\ T & 0\end{array}\right)$) and satisfies

$$
F^{2}-1 \in \mathcal{K}(H) \text { and }[\pi, F] \in \mathcal{K}(H)
$$

In particular G is an inverse of T modulo compact operators.
M. Atiyah also defined the following pairing between $K^{0}(X)$ and $\operatorname{Ell}(X)$:

$$
\begin{array}{ccc}
K^{0}(X) \times \operatorname{Ell}(X) & \rightarrow & \mathbb{Z} \\
([E],(H, \pi, F)) & \mapsto & \operatorname{Index}\left(F_{E}\right)
\end{array}
$$

where $\operatorname{Index}\left(F_{E}\right)=\operatorname{dim}\left(\operatorname{Ker}\left(F_{E}\right)\right)-\operatorname{dim}\left(\operatorname{CoKer}\left(F_{E}\right)\right)$ is the index of a Fredholm operator associated to a vector bundle E on X and a cycle (H, π, F) as follows. Let E^{\prime} be a vector bundle on X such that $E \oplus E^{\prime} \simeq \mathbb{C}^{N} \times X$ and let e be the
projection of $\mathbb{C}^{N} \times X$ onto E. We can identify $C\left(X, \mathbb{C}^{N}\right) \underset{C(X)}{\otimes} H$ with H^{N}. Let \tilde{e} be the image of $e \otimes 1$ under this identification. We define $F_{E}:=\left.\tilde{e} F^{N}\right|_{\tilde{e}\left(H^{N}\right)}$ where F^{N} is the diagonal operator with F in each diagonal entry. The operator F_{E} is the desired Fredholm operator on $\tilde{e}\left(H^{N}\right)$.

On the other hand, to any C^{*}-algebra A is associated a group $K_{0}(A)$. When A is unital, it can be defined as follows:

$$
\begin{gathered}
K_{0}(A)=\{[\mathcal{E}]-[\mathcal{F}] ;[\mathcal{E}],[\mathcal{F}] \text { are isomorphism classes of } \\
\text { finitely generated projective } A \text {-modules }\} .
\end{gathered}
$$

Recall that a A-module \mathcal{E} is finitely generated and projective if there exists another A-module \mathcal{G} such that $\mathcal{E} \oplus \mathcal{G} \simeq A^{N}$ for some integer N.
When X is compact $K^{0}(X)=K_{0}(C(X))$ (Swan-Serre theorem).
During the years $79 \sim 80$ 'th G. Kasparov has defined with a great success a bivariant theory, the $K K$-theory, which generalizes both K-theory and K-homology and is defined for any pair of C^{*}-algebras [29]. Moreover in many cases $K K(A, B)$ contains all the morphisms from $K_{0}(A)$ to $K_{0}(B)$. Before going to the definitions we will end this introduction by listing most of the properties of the bi-functor $K K$.
3.2. Abstract properties of $K K(A, B)$. Let A an B be two C^{*}-algebras. In order to simplify our purpose, we will suppose that A and B are separable. Here is the list of the most important properties of the $K K$ functor.

- $K K(A, B)$ is an abelian group.
- Functorial properties The functor $K K$ is covariant in B and contravariant in $A:$ if $f: B \rightarrow C$ and $g: A \rightarrow D$ are two homomorphisms of C^{*}-algebras, there exist two homomorphisms of groups:

$$
f_{*}: K K(A, B) \rightarrow K K(A, C) \text { and } g^{*}: K K(D, B) \rightarrow K K(A, B)
$$

In particular $i d_{*}=i d$ and $i d^{*}=i d$.

- Each ${ }^{*}$-morphism $f: A \rightarrow B$ defines an element, denoted by $[f]$, in $K K(A, B)$. We will denote $1_{A}:=\left[i d_{A}\right] \in K K(A, A)$.
- Homotopy invariance $K K(A, B)$ is homotopy invariant.

Recall that the C^{*}-algebras A and B are homotopic, if there exist two ${ }^{*}$-morphisms $f: A \rightarrow B$ and $g: B \rightarrow A$ such that $f \circ g$ is homotopic to $i d_{B}$ and $g \circ f$ is homotopic to $i d_{A}$.
Two homomorphisms $F, G: A \rightarrow B$ are homotopic when there exists a $*$-morphism $H: A \rightarrow C([0,1], B)$ such that $H(a)(0)=F(a)$ and $H(a)(1)=G(a)$ for any $a \in A$.

- If \mathcal{K} is the algebra of compact operators on a Hilbert space there are isomorphisms:

$$
K K(A, B \otimes \mathcal{K}) \simeq K K(A \otimes \mathcal{K}, B) \simeq K K(A, B)
$$

More generally, the bifunctor $K K$ is invariant under Morita equivalence.

- Suspension If E is a C^{*}-algebra there exists an homomorphism

$$
\tau_{E}: K K(A, B) \rightarrow K K(A \otimes E, B \otimes E)
$$

which satisfies $\tau_{E} \circ \tau_{D}=\tau_{E \otimes D}$ for any C^{*}-algebra D.

- Kasparov product There is a well defined bilinear coupling:

$$
\begin{array}{ccc}
K K(A, D) \times K K(D, B) & \rightarrow & K K(A, B) \\
(x, y) & \mapsto & x \otimes y
\end{array}
$$

called the Kasparov product. It is associative, covariant in B and contravariant in A : if $f: C \rightarrow A$ and $g: B \rightarrow E$ are two homomorphisms of C^{*}-algebras then

$$
f^{*}(x \otimes y)=f^{*}(x) \otimes y \text { and } g_{*}(x \otimes y)=x \otimes g_{*}(y) .
$$

If $g: D \rightarrow C$ is another ${ }^{*}$-morphism, $x \in K K(A, D)$ and $z \in K K(C, B)$ then

$$
h_{*}(x) \otimes z=x \otimes h^{*}(z) .
$$

Moreover, the following equalities hold:

$$
f^{*}(x)=[f] \otimes x, g_{*}(z)=z \otimes[g] \text { and }[f \circ h]=[h] \otimes[f] .
$$

In particular

$$
x \otimes 1_{D}=1_{A} \otimes x=x .
$$

The Kasparov product behaves well with suspensions. If E is a C^{*}-algebra:

$$
\tau_{E}(x \otimes y)=\tau_{E}(x) \otimes \tau_{E}(y)
$$

This enables to extend the Kasparov product:

$$
\begin{array}{cl}
\otimes \underset{D}{\otimes}: K K(A, B \otimes D) \times k k(D \otimes C, E) & \rightarrow \quad K K(A \otimes C, B \otimes E) \\
& \mapsto \quad x \otimes y:=\tau_{C}(x) \otimes \tau_{B}(y)
\end{array}
$$

- The Kasparov product $\underset{\mathbb{C}}{\otimes}$ is commutative.
- Higher groups For any $n \in \mathbb{N}$, let

$$
K K_{n}(A, B):=K K\left(A, C_{0}\left(\mathbb{R}^{n}\right) \otimes B\right) .
$$

An alternative definition, leading to isomorphic groups, is

$$
K K_{n}(A, B):=K K\left(A, C_{n} \otimes B\right)
$$

where C_{n} is the Clifford algebra of \mathbb{C}^{n}. This will be explained later. The functor $K K$ satisfies the Bott periodicity: there is an isomorphism

$$
K K_{2}(A, B) \simeq K K(A, B)
$$

- Exact sequences Consider the following exact sequence of C^{*}-algebras:

$$
0 \rightarrow J \xrightarrow{i} A \xrightarrow{p} Q \rightarrow 0
$$

and let B be another C^{*}-algebra. Under some more assumptions (for example all the C^{*}-algebras are nuclear or K-nuclear, or the exact sequence above admits a completely positive norm decreasing cross section [48]) we have the following two periodic exact sequences

where the connecting homomorphisms δ are given by Kasparov products.

- Final remark Let us go back to the end of the introduction, to make it more precise.
As a result, we recover the usual K-theory:

$$
K K(\mathbb{C}, B) \simeq K_{0}(B)
$$

while the K-homology of a C^{*}-algebra A is defined by

$$
K^{0}(A)=K K(A, \mathbb{C})
$$

Any $x \in K K(A, B)$ induces a homomorphism of group:

$$
\begin{array}{ccc}
K K(\mathbb{C}, A) \simeq K_{0}(A) & \rightarrow & K_{0}(B) \simeq K K(\mathbb{C}, B) \\
\alpha & \mapsto & \alpha \otimes x
\end{array}
$$

In most situations, the induced homomorphism $\operatorname{KK}(A, B) \rightarrow \operatorname{Mor}\left(K_{0}(A), K_{0}(B)\right)$ is surjective. Thus one can think to $K K$-elements as homomorphisms between K groups.

When X is a compact space, one has $K^{0}(X) \simeq K_{0}(C(X)) \simeq K K(\mathbb{C}, C(X))$ and we will see that $K^{0}(C(X))=K K(C(X), \mathbb{C})$ is a quotient of the set $E l l(X)$ defined by M. Atiyah. Moreover the pairing $K^{0}(X) \times \operatorname{Ell}(X) \rightarrow \mathbb{Z}$ coincides with the Kasparov product $K K(\mathbb{C}, C(X)) \times K K(C(X), \mathbb{C}) \rightarrow K K(\mathbb{C}, \mathbb{C}) \simeq \mathbb{Z}$.

4. Hilbert Modules

We review the main properties of Hilbert modules over C^{*}-algebras necessary to a correct understanding of bivariant K-theory. We follows closely the presentation given by G. Skandalis [46]. Most of proofs given below come from his lectures on the subject. We are indebted to him for allowing us to use his lectures notes. Some of the material given below can also be found in [52], where the reader will find a guide to the literature and a more detailed presentation.
4.1. Basic definitions and examples. Let A be a C^{*}-algebra and E be a A-right module.
A sesquilinear form $(\cdot, \cdot): E \times E \rightarrow A$ is positive if for all $x \in E,(x, x) \in A_{+}$. Here A_{+}denotes the set of positives element in A. It is positive definite if moreover $(x, x)=0$ if and only if $x=0$.
Let $(\cdot, \cdot): E \times E \rightarrow A$ be a positive sesquilinear form and set $Q(x)=(x, x)$. By the polarization identity:

$$
\forall x, y \in E, \quad(x, y)=\frac{1}{4}(Q(x+y)-i Q(x+i y)-Q(x-y)+i Q(x-i y))
$$

we get:

$$
\forall x, y \in E, \quad(x, y)=(y, x)^{*}
$$

Definition 11. A pre-hilbert A-module is a right A-module E with a positive definite sesquilinear map $(\cdot, \cdot): E \times E \rightarrow A$ such that $y \mapsto(x, y)$ is A-linear.

Proposition 12. Let $(E,(\cdot, \cdot))$ be a pre-Hilbert A-module. The following:

$$
\begin{equation*}
\forall x \in E, \quad\|x\|=\sqrt{(x, x)} \tag{4.1}
\end{equation*}
$$

defines a norm on E.
Proof. The only non trivial fact is the triangle inequality, which results from:
Lemma 13. (Cauchy-Schwarz inequality)

$$
\forall x, y \in E, \quad(x, y)^{*}(x, y) \leq\|x\|^{2}(y, y)
$$

In particular: $\|(x, y)\| \leq\|x\|\|y\|$.
Set $a=(x, y)$. We have for all $t \in \mathbb{R}:(x a+t y, x a+t y) \geq 0$, thus:

$$
\begin{equation*}
2 t a^{*} a \leq a^{*}(x, x) a+t^{2}(y, y) \tag{4.2}
\end{equation*}
$$

Since $(x, x) \geq 0$, we have: $a^{*}(x, x) a \leq\|x\|^{2} a^{*} a$ (it uses the equivalence: $z^{*} z \leq w^{*} w$ if and only if $\|z x\| \leq\|w x\|$ for all $x \in A$) and choosing $t=\|x\|^{2}$ in (4.2) gives the result.

Definition 14. A Hilbert A-module is a pre-Hilbert A-module which is complete for the norm defined in (4.1).
A Hilbert A-submodule of a Hilbert A-module is a closed A-submodule provided with the restriction of the A-valued scalar product.

When there is no ambiguity about the base C^{*}-algebra A, we simply say pre-Hilbert module and Hilbert module.
Let $(E,(\cdot, \cdot))$ be a pre-Hilbert A-module. Using the continuity of the sesquilinear form $(\cdot, \cdot): E \times E \rightarrow A$ and of the right multiplication $E \rightarrow E, x \mapsto x a$ for any $a \in A$, we get that the completion of E for the norm (4.1) is a Hilbert A-module.
Remark 15. In the definition of a pre-Hilbert A-module, one can remove the hypothesis (\cdot, \cdot) is definite. In that case, (4.1) defines a semi-norm and one checks that the Hausdorff completion of a pre-Hilbert A-module, in this extended sense, is a Hilbert A-module.

We continue this paragraph with classical examples.

1. The algebra A is a Hilbert A-module with its obvious right A-module structure and:

$$
(a, b):=a^{*} b
$$

2. For any positive integer n, A^{n} is a Hilbert A-module with its obvious right A-module structure and:

$$
\left(\left(a_{i}\right),\left(b_{i}\right)\right):=\sum_{i=1}^{n} a_{i}^{*} b_{i} .
$$

Observe that $\sum_{i=1}^{n} a_{i}^{*} a_{i}$ is a sum of positive elements in A, which implies that

$$
\left\|\left(a_{i}\right)\right\|=\sqrt{\left\|\sum_{i=1}^{n} a_{i}^{*} a_{i}\right\|} \geq\left\|a_{k}\right\|
$$

for all k. It follows that if $\left(a_{1}^{m}, \ldots, a_{n}^{m}\right)_{m}$ is a Cauchy sequence in A^{n}, the sequences $\left(a_{k}^{m}\right)_{m}$ are Cauchy in A, thus convergent and we conclude that A^{n} is complete.
3. Example 2. can be extended to the direct sum of n Hilbert A-modules E_{1}, \ldots, E_{n} with the Hilbertian product:

$$
\left(\left(x_{i}\right),\left(y_{i}\right)\right):=\sum_{i=1}^{n}\left(x_{i}, y_{i}\right)_{E_{i}}
$$

4. If F is a closed A-submodule of a Hilbert A-module E then F is a Hilbert A-module. For instance, a closed right ideal in A is a Hilbert A-module.

5. The standard Hilbert A-module

Let

$$
\begin{equation*}
\mathcal{H}_{A}=\left\{x=\left(x_{k}\right)_{k \in \mathbb{N}} \mid \sum_{k \in \mathbb{N}} x_{k}^{*} x_{k} \text { converges }\right\} \tag{4.3}
\end{equation*}
$$

The right A-module structure is given by $\left(x_{k}\right) a=\left(x_{k} a\right)$ and the Hilbertian A-valued product is:

$$
\begin{equation*}
\left(\left(x_{k}\right),\left(y_{k}\right)\right)=\sum_{k=0}^{+\infty} x_{k}^{*} y_{k} \tag{4.4}
\end{equation*}
$$

This sum converges for elements of \mathcal{H}_{A}, indeed for all $q>p \in \mathbb{N}$:

$$
\begin{aligned}
\left\|\sum_{k=p}^{q} x_{k}^{*} y_{k}\right\| & =\left\|\left(\left(x_{k}\right)_{p}^{q},\left(y_{k}\right)_{p}^{q}\right)_{A^{q-p}}\right\| \\
& \leq\left\|\left(x_{k}\right)_{p}^{q}\right\|_{A^{q-p}}\left\|\left(y_{k}\right)_{p}^{q}\right\|_{A^{q-p}} \quad\left(\text { Cauchy Schwarz inequality in } A^{q-p}\right) \\
& =\sqrt{\left\|\sum_{k=p}^{q} x_{k}^{*} x_{k}\right\| \sqrt{\left\|\sum_{k=p}^{q} y_{k}^{*} y_{k}\right\|}}
\end{aligned}
$$

This implies that $\sum_{k>0} x_{k}^{*} y_{k}$ satisfies the Cauchy criterion, thus converges, and (4.4) makes sense. Since for all $\left(x_{k}\right),\left(y_{k}\right)$ in \mathcal{H}_{A} :

$$
\sum_{k \geq 0}\left(x_{k}+y_{k}\right)^{*}\left(x_{k}+y_{k}\right)=\sum_{k \geq 0} x_{k}^{*} x_{k}+\sum_{k \geq 0} y_{k}^{*} x_{k}+\sum_{k \geq 0} x_{k}^{*} y_{k}+\sum_{k \geq 0} y_{k}^{*} y_{k}
$$

is the sum of four convergent series, we find that $\left(x_{k}\right)+\left(y_{k}\right)=\left(x_{k}+y_{k}\right)$ is in \mathcal{H}_{A}. We also have, as before, that for all $a \in A$ and $\left(x_{k}\right) \in \mathcal{H}_{A}$:

$$
\left\|\sum_{k=0}^{+\infty}\left(x_{k} a\right)^{*}\left(x_{k} a\right)\right\| \leq\|a\|^{2}\left\|\sum_{k=0}^{+\infty} x_{k}^{*} x_{k}\right\|
$$

Hence, \mathcal{H}_{A} is a pre-Hilbert A-module, and we need to check that it is complete. Let $\left(u_{n}\right)_{n}=\left(\left(u_{i}^{n}\right)\right)_{n}$ be a Cauchy sequence in \mathcal{H}_{A}. We get, as in example 2., that for all $i \in \mathbb{N}$, the sequence $\left(u_{i}^{n}\right)_{n}$ is Cauchy in A, thus converges to an element denoted v_{i}. Let us check that $\left(v_{i}\right)$ belongs to \mathcal{H}_{A}.
Let $\varepsilon>0$. Choose n_{0} such that

$$
\forall p>q \geq n_{0},\left\|u_{q}-u_{p}\right\|_{\mathcal{H}_{A}} \leq \varepsilon / 2
$$

Choose i_{0} such that

$$
\forall k>j \geq i_{0},\left\|\sum_{i=j}^{k} u_{i}^{n_{0} *} u_{i}^{n_{0}}\right\|^{1 / 2} \leq \varepsilon / 2
$$

Then thanks to the triangle inequality in A^{k-j} we get for all $p, q \geq n_{0}$ and $j, k \geq i_{0}$:

$$
\left\|\sum_{i=j}^{k} u_{i}^{p *} u_{i}^{p}\right\|^{1 / 2} \leq\left\|\sum_{i=j}^{k}\left(u_{i}^{p}-u_{i}^{n_{0}}\right)^{*}\left(u_{i}^{p}-u_{i}^{n_{0}}\right)\right\|^{1 / 2}+\left\|\sum_{i=j}^{k} u_{i}^{n_{0} *} u_{i}^{n_{0}}\right\|^{1 / 2} \leq \varepsilon
$$

Taking the limit $p \rightarrow+\infty$, we get: $\left\|\sum_{i=j}^{k} v_{i}^{*} v_{i}\right\|^{1 / 2} \leq \varepsilon$ for all $j, k \geq i_{0}$ which implies that $\left(v_{i}\right) \in \mathcal{H}_{A}$. It remains to check that $\left(u_{n}\right)_{n}$ converges to $v=\left(v_{i}\right)$ in \mathcal{H}_{A}. With the notations above:

$$
\forall p, q \geq n_{0}, \forall I \in \mathbb{N}, \quad\left\|\sum_{i=0}^{I}\left(u_{i}^{p}-u_{i}^{q}\right)^{*}\left(u_{i}^{p}-u_{i}^{q}\right)\right\|^{1 / 2} \leq \varepsilon
$$

taking the limit $p \rightarrow+\infty$:

$$
\forall q \geq n_{0}, \forall I \in \mathbb{N}, \quad\left\|\sum_{i=0}^{I}\left(v_{i}-u_{i}^{q}\right)^{*}\left(v_{i}-u_{i}^{q}\right)\right\|^{1 / 2} \leq \varepsilon
$$

taking the limit $I \rightarrow+\infty$:

$$
\forall q \geq n_{0}, \quad\left\|v-u_{q}\right\| \leq \varepsilon
$$

which ends the proof.
The standard Hilbert space H_{A} is maybe the most important one. Indeed, Kasparov proved:

Theorem 16. Let E be a countably generated Hilbert A-module. Then E and $E \oplus H_{A}$ are isomorphic.

The proof can be found in [52]. This means that there exists a A-linear unitary $\operatorname{map} U: E \oplus H_{A} \rightarrow E$. The notion of unitary uses the notion of adjoint, which will be explained later.

Remark 17. 1. The algebraic sum $\underset{\mathbb{N}}{\oplus} A$ is dense in \mathcal{H}_{A}.
2. We can replace in \mathcal{H}_{A} the summand A by any sequence of Hilbert A-modules $\left(E_{i}\right)_{i \in \mathbb{N}}$ and the Hilbertian A-valued product by:

$$
\left(\left(x_{k}\right),\left(y_{k}\right)\right)=\sum_{k=0}^{+\infty}\left(x_{k}, y_{k}\right)_{E_{k}}
$$

If $E_{i}=E$ for all $i \in \mathbb{N}$, the resulting Hilbert A-module is denoted $l^{2}(\mathbb{N}, E)$.
3. We can generalize the construction to any family $\left(E_{i}\right)_{i \in I}$ using summable families instead of convergent series.

We end with two concrete examples.
a. Let X be a locally compact space and E an hermitian vector bundle. The space $C_{0}(X, E)$ of continuous sections of E vanishing at infinity is a Hilbert $C_{0}(X)$-module with the module structure given by:

$$
\xi \cdot a(x)=\xi(x) a(x), \quad \xi \in C_{0}(X, E), a \in C_{0}(X)
$$

and the product given by:

$$
(\xi, \eta)(x)=(\xi(x), \eta(x))_{E_{x}}
$$

b. Let G be a locally compact groupoid with a Haar system λ and E a hermitian vector bundle over $G^{(0)}$. Then

$$
\begin{equation*}
f, g \in C_{c}\left(G, r^{*} E\right), \quad(f, g)(\gamma)=\int_{G_{s(\gamma)}}\left(f\left(\eta \gamma^{-1}\right), g(\eta)\right)_{E_{r(\eta)}} d \lambda^{s(\gamma)}(\eta) \tag{4.5}
\end{equation*}
$$

gives a positive definite sesquilinear $C_{c}(G)$-valued form which has the correct behavior with respect to the right action of $C_{c}(G)$ on $C_{c}\left(G, r^{*} E\right)$. This leads to two norms $\|f\|=\|(f, f)\|_{C^{*}(G)}^{1 / 2}$ and $\|f\|_{r}=\|(f, f)\|_{C_{r}^{*}(G)}^{1 / 2}$ and two completions of $C_{c}\left(G, r^{*} E\right)$, denoted $C^{*}\left(G, r^{*} E\right)$ and $C_{r}^{*}\left(G, r^{*} E\right)$ which are Hilbert modules respectively over $C^{*}(G)$ and $C_{r}^{*}(G)$.
4.2. Homomorphisms of Hilbert A-modules. Let E, F be Hilbert A-modules. We will need the orthogonality in Hilbert modules:
Lemma 18. Let S be a subset of E. The orthogonal of S :

$$
S^{\perp}=\{x \in E \mid \forall y \in S,(y, x)=0\}
$$

is a Hilbert A-submodule of E.
4.2.1. Adjoints. Let $T: E \rightarrow F$ be a map. T is adjointable if there exists a map $S: F \rightarrow E$ such that:

$$
\begin{equation*}
\forall(x, y) \in E \times F, \quad(T x, y)=(x, S y) \tag{4.6}
\end{equation*}
$$

Definition 19. Adjointable maps are called homomorphisms of Hilbert A-modules. The set of adjointable maps from E to F is denoted $\operatorname{Mor}(E, F)$, and $\operatorname{Mor}(E)=$ $\operatorname{Mor}(E, E)$.

The vocabulary will be clear after the next proposition.
Proposition 20. Let $T \in \operatorname{Mor}(E, F)$.
(a) The operator satisfying (4.6) is unique. It is denoted T^{*} and called the adjoint of T. One has $T^{*} \in \operatorname{Mor}(F, E)$ and $\left(T^{*}\right)^{*}=T$.
(b) T is linear, A-linear and continuous.
(c) $\|T\|=\left\|T^{*}\right\|,\left\|T^{*} T\right\|=\|T\|^{2}, \operatorname{Mor}(E, F)$ is a closed subspace of $\mathcal{L}(E, F)$. In particular $\operatorname{Mor}(E)$ is a C^{*}-algebra.
(d) If $S \in \operatorname{Mor}(E, F)$ and $T \in \operatorname{Mor}(F, G)$ then $T S \in \operatorname{Mor}(E, G)$ and $(T S)^{*}=$ $S^{*} T^{*}$.
Proof. (a) Let R, S be two maps satisfying (4.6) for T. Then:

$$
\forall x \in E, y \in F, \quad(x, R y-S y)=0
$$

and taking $x=R y-S y$ yields $R y-S y=0$. The remaining is obvious. (b) $\forall x, y \in E, z \in F, \lambda \in \mathbb{C}$,

$$
(T(x+\lambda y), z)=\left(x+\lambda y, T^{*} z\right)=\left(x, T^{*} z\right)+\bar{\lambda}\left(y, T^{*} z\right)=(T x, z)(\lambda T y, z)
$$

thus $T(x+\lambda y)=T x+\lambda T y$ and T is linear. Moreover:

$$
\forall x \in E, y \in F, a \in A, \quad(T(x a), y)=\left(x a, T^{*} y\right)=a^{*}\left(x, T^{*} y\right)=((T x) a, y)
$$

which gives the A-linearity. Consider the set

$$
S=\left\{\left(-T^{*} y, y\right) \in E \times F \mid y \in F\right\}
$$

Then

$$
\begin{aligned}
\left(x_{0}, y_{0}\right) \in S^{\perp} & \Leftrightarrow \forall y \in F,\left(x_{0},-T^{*} y\right)+\left(y_{0}, y\right)=0 \\
& \Leftrightarrow \forall y \in F,\left(y_{0}-T x_{0}, y\right)=0
\end{aligned}
$$

Thus $G(T)=\{(x, y) \in E \times F \mid y=T x\}=S^{\perp}$ is closed and the closed graph theorem implies that T is continuous.
(c) We have:

$$
\|T\|^{2}=\sup _{\|x\| \leq 1}\|T x\|^{2}=\sup _{\|x\| \leq 1}\left(x, T^{*} T x\right) \leq\left\|T^{*} T\right\| \leq\left\|T^{*}\right\|\|T\|
$$

Thus $\|T\| \leq\left\|T^{*}\right\|$ and switching T and T^{*} gives the equality.
One has also proved:

$$
\|T\|^{2} \leq\left\|T^{*} T\right\| \leq\left\|T^{*}\right\|\|T\|=\|T\|^{2}
$$

thus $\left\|T^{*} T\right\|=\|T\|^{2}$ and the norm of $\operatorname{Mor}(E)$ satisfies the C^{*}-algebraic equation. Let $\left(T_{n}\right)_{n}$ be a sequence in $\operatorname{Mor}(E, F)$, which converges to $T \in \mathcal{L}(E, F)$. Since $\|T\|=\left\|T^{*}\right\|$ and since $T \rightarrow T^{*}$ is (anti-)linear, the sequence $\left(T_{n}^{*}\right)_{n}$ is a Cauchy sequence, thus converges to an operator $S \in \mathcal{L}(F, E)$. It is then immediate that S is the adjoint of T. This proves that $\operatorname{Mor}(E, F)$ is closed, in particular $\operatorname{Mor}(E)$ is a C^{*}-algebra.
(d) Easy.

Remark 21. There exist continuous linear and A-linear maps $T: E \rightarrow F$ which do not have an adjoint. For instance, take $\left.\left.A=C([0,1]), J=C_{0}(] 0,1\right]\right)$ and $T: J \hookrightarrow A$ the inclusion. Assuming that T is adjointable, a one line computation proves that $T^{*} 1=1$. But 1 does not belong to J. Thus $J \hookrightarrow A$ has no adjoint.
One can also take $\left.\left.E=C([0,1]) \oplus C_{0}(] 0,1\right]\right)$ and $T: E \rightarrow E, x+y \mapsto y+0$ to produce an example of $T \in \mathcal{L}(E)$ and $T \notin \operatorname{Mor}(E)$.

One can characterize the self-adjoints and positive elements in the C^{*}-algebra $\operatorname{Mor}(E)$ as follows.
Proposition 22. Let $T \in \operatorname{Mor}(E)$.
(a) $T=T^{*} \Leftrightarrow \forall x \in E,(x, T x)=(x, T x)^{*}$
(b) $T \geq 0 \Leftrightarrow \forall x \in E,(x, T x) \geq 0$

Proof. (a) The implication (\Rightarrow) is obvious. Conversely, set $Q_{T}(x)=(x, T x)$. Using the polarization identity:

$$
(x, T y)=\frac{1}{4}\left(Q_{T}(x+y)-i Q_{T}(x+i y)-Q_{T}(x-y)+i Q_{T}(x-i y)\right)
$$

one easily get $(x, T y)=(T x, y)$ for all $x, y \in E$, thus T is self-adjoint.
(b) If T is positive, there exists $S \in \operatorname{Mor}(E)$ such that $T=S^{*} S$. Then $(x, T x)=$ ($S x, S x$) is positive for all x. Conversely, if $(x, T x) \geq 0$ for all x then T is self-adjoint using (a) and there exists positive elements T_{+}, T_{-}such that:

$$
T=T_{+}-T_{-}, T_{+} T_{-}=T_{-} T_{+}=0
$$

It follows that:

$$
\begin{aligned}
\forall x \in E,\left(x, T_{+} x\right) & \geq\left(x, T_{-} x\right) \\
\forall z \in E,\left(T_{-} z, T_{+} T_{-} z\right) & \geq\left(T_{-} z, T_{-} T_{-} z\right) \\
\forall z \in E,\left(z,\left(T_{-}\right)^{3} z\right) & \leq 0
\end{aligned}
$$

Since T_{-}is positive, T_{-}^{3} is also positive and the last line above implies $T_{-}^{3}=0$. It follows that $T_{-}=0$ and then $T=T_{+} \geq 0$.
4.2.2. Orthocompletion. Recall that for any subset S of E, S^{\perp} is a Hilbert submodule of E. Remark also that any orthogonal submodules: $F \perp G$ of E are direct summands.

The following properties are left as an exercise:
Proposition 23. Let F, G be A-submodules of E.

- $E^{\perp}=\{0\}$ and $\{0\}^{\perp}=E$.
- $F \subset G \Rightarrow G^{\perp} \subset F^{\perp}$.
- $F \subset F^{\perp \perp}$.
- If $F \perp G$ and $F \oplus G=E$ then $F^{\perp}=G$ and $G^{\perp}=F$. In particular F and G are Hilbert submodules.

Definition 24. A Hilbert A-submodule F of E is said to be orthocomplemented if $F \oplus F^{\perp}=E$.

Remark 25. A Hilbert submodule is not necessarily orthocomplemented, even if it can be topologically complemented. For instance consider $A=C([0,1])$ and $J=C_{0}([0,1])$ as a Hilbert A-submodule of A. One easily check that $J^{\perp}=\{0\}$, thus J is not orthocomplemented. On the other hand: $A=J \oplus \mathbb{C}$.

Lemma 26. Let $T \in \operatorname{Mor}(E)$. Then

- $\operatorname{ker} T^{*}=(\operatorname{Im} T)^{\perp}$
- $\overline{\operatorname{Im} T} \subset\left(\operatorname{ker} T^{*}\right)^{\perp}$

The proof is obvious. Note the difference in the second point with the case of bounded operators on Hilbert spaces (where equality always occurs). Thus, in general, $\operatorname{ker} T^{*} \oplus \overline{\operatorname{Im} T}$ is not the whole of E. It happens precisely when $\overline{\operatorname{Im} T}$ is orthocomplemented.
To emphasize, we can have T^{*} injective without having $\operatorname{Im} T$ dense in E (for instance: $T: C[0,1] \rightarrow C[0,1], f \mapsto t f)$. Nevertheless, we have:

Theorem 27. Let $T \in \operatorname{Mor}(E, F)$. The following assertions are equivalent:
(1) $\operatorname{Im} T$ closed,
(2) $\operatorname{Im} T^{*}$ closed,
(3) 0 is isolated in $T^{*} T$,
(4) 0 is isolated in $T T^{*}$,
and in that case $\operatorname{Im} T, \operatorname{Im} T^{*}$ are orthocomplemented.
Thus, under the assumption of the theorem $\operatorname{ker} T^{*} \oplus \operatorname{Im} T=F, \operatorname{ker} T \oplus \operatorname{Im} T^{*}=E$. We gather some technical preliminaries into a lemma:

Lemma 28. Let $T \in \operatorname{Mor}(E, F)$. Then
(1) $T^{*} T \geq 0$. We set $|T|=\sqrt{T^{*} T}$.
(2) $\overline{\operatorname{Im} T^{*}}=\overline{\operatorname{Im}|T|}=\overline{\operatorname{Im} T^{*} T}$
(3) Assume that $T\left(E_{1}\right) \subset F_{1}$ for some Hilbert submodules E_{1}, F_{1}. Then $\left.T\right|_{E_{1}} \in$ $\operatorname{Mor}\left(E_{1}, F_{1}\right)$.
(4) If T is onto then $T T^{*}$ is invertible $($ in $\operatorname{Mor}(F))$ and $E=\operatorname{ker} T \oplus \operatorname{Im} T^{*}$.

Proof of the lemma. (1) is obvious using lemma 22.
(2) On has $T^{*} T(E) \subset T^{*}(F)$. Conversely:

$$
T^{*}=\lim T^{*}\left(1 / n+T T^{*}\right)^{-1} T T^{*}
$$

This is a convergence in norm because:

$$
\left\|T^{*}\left(1 / n+T T^{*}\right)^{-1} T T^{*}-T^{*}\right\|=\left\|\frac{1}{n} T^{*}\left(\frac{1}{n}+T T^{*}\right)^{-1}\right\|=O(1 / \sqrt{n})
$$

It follows that $T^{*}(F) \subset \overline{T^{*} T(E)}$ and thus $\overline{\operatorname{Im} T^{*}}=\overline{\operatorname{Im} T^{*} T}$. Replacing T by $|T|$ we get the other equality.
(3) Easy.
(4) By the open mapping theorem, there exists a positive real number $k>0$ such that each $y \in F$ has a preimage x_{y} by T with $\|y\| \geq k\left\|x_{y}\right\|$. Using Cauchy-Schwarz for $T^{*} y$ and x_{y}, we get:

$$
\text { (*) }\left\|T^{*} y\right\| \geq k\|y\| \quad \forall y \in F
$$

Recall that in a C^{*}-algebra, the inequality $a^{*} a \leq b^{*} b$ is equivalent to: $\|a x\| \leq\|b x\|$ for all $x \in A$, It can be adapted to Hilbert modules to show that ($*$) implies $T T^{*} \geq$ k^{2} in $\operatorname{Mor}(F)$, and thus $T T^{*}$ is invertible. Consider then $p=T^{*}\left(T T^{*}\right)^{-1} T$. It is an idempotent, thus $E=\operatorname{ker} p \oplus \operatorname{Im} p$. Moreover $\left(T T^{*}\right)^{-1} T$ is onto so $\operatorname{Im} p=\operatorname{Im} T^{*}$ and $T^{*}\left(T T^{*}\right)^{-1}$ is injective, so $\operatorname{ker} p=\operatorname{ker} T$.

Proof of the theorem. Let us start with the implication (1) \Rightarrow (3). By point (3) of the lemma $S:=(T: E \rightarrow T E) \in \operatorname{Mor}(E, T E)$ and by the point (4) of the lemma $S S^{*}$ is invertible and 0 is isolated in its spectrum. Since the spectra of $S S^{*}$ and $S^{*} S$ coincide outside 0 and since $S^{*} S=T^{*} T$, we get (3).
The implication (4) \Rightarrow (1). Consider the functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(0)=g(0)=0, f(t)=1, g(t)=1 / t$ for $t \neq 0$. Thus f and g are continuous on the spectrum of $T T^{*}$. Using the equalities $f(t) t=t$ and $\operatorname{tg}(t)=f(t)$, we get $f\left(T T^{*}\right) T T^{*}=T T^{*}$ and $T T^{*} g\left(T T^{*}\right)=f\left(T T^{*}\right)$ from which we deduce $\operatorname{Im} f\left(T T^{*}\right)=\operatorname{Im} T T^{*}$. But $f\left(T T^{*}\right)$ is a projector (self-adjoint idempotent), hence $\operatorname{Im} T T^{*}$ is closed and orthocomplemented. Using point (2) of the lemma and the inclusion $\operatorname{Im} T T^{*} \subset \operatorname{Im} T$, we get (1) (and also the orthocomplementability of $\operatorname{Im} T$). At this point we have the following equivalences $(1) \Leftrightarrow(3) \Leftrightarrow(4)$. Replacing T by T^{*} we get $(2) \Leftrightarrow(3) \Leftrightarrow(4)$.

Another result which deserves to be given is:
Proposition 29. Let H be a Hilbert submodule of E and $T: E \rightarrow F$ a A-linear map.

- H is orthocomplemented if and only if $i: H \hookrightarrow E \in \operatorname{Mor}(H, E)$.
- $T \in \operatorname{Mor}(E, F)$ if and only if the graph of T :

$$
\{(x, y) \in E \times F \mid y=T x\}
$$

is orthocomplemented.
4.2.3. Partial isometries. The following easy result is left as an exercise:

Proposition 30. (and definition). Let $u \in \operatorname{Mor}(E, F)$. The following assertions are equivalent:
(1) $u^{*} u$ is an idempotent,
(2) $u u^{*}$ is an idempotent,
(3) $u^{*}=u^{*} u u^{*}$,
(4) $u=u u^{*} u$.
u is then called a partial isometry, with initial support $I=\operatorname{Im} u^{*}$ and final support $J=\operatorname{Im} u$.

Remark 31. If u is a partial isometry, then $\operatorname{ker} u=\operatorname{ker} u^{*} u, \operatorname{ker} u^{*}=\operatorname{ker} u u^{*}$, $\operatorname{Im} u=\operatorname{Im} u u^{*}$ and $\operatorname{Im} u^{*}=\operatorname{Im} u^{*} u$. In particular u has closed range and $E=$ $\operatorname{ker} u \oplus \operatorname{Im} u^{*}, F=\operatorname{ker} u^{*} \oplus \operatorname{Im} u$ where the direct sums are orthogonal.
4.2.4. Polar decompositions. All homomorphisms do not admit a polar decomposition. For instance, consider: $T \in \operatorname{Mor}(C[-1,1])$ defined by $T f=t$. f (here $C[-1,1]$ is regarded as a Hilbert $C[-1,1]$-module). T is self-adjoint and $|T|: f \mapsto|t| . f$. The equation $T=u|T|, u \in \operatorname{Mor}(C[-1,1])$ leads to the constraint $u(1)(t)=\operatorname{sign}(t)$, so $u(1) \notin C[-1,1]$ and u does not exist.
The next result clarifies the conditions to get a polar decomposition:
Theorem 32. Let $T \in \operatorname{Mor}(E, F)$ such that $\overline{\operatorname{Im} T}$ and $\overline{\operatorname{Im} T^{*}}$ are orthocomplemented. Then there exists a unique $u \in \operatorname{Mor}(E, F)$, vanishing on $\operatorname{ker} T$, such that

$$
T=u|T|
$$

Moreover, u is a partial isometry with initial support $\overline{\operatorname{Im} T^{*}}$ and final support $\overline{\operatorname{Im} T}$.
Proof. We first assume that T and T^{*} have dense image. Setting $u_{n}=T(1 / n+$ $\left.T^{*} T\right)^{-1 / 2}$ we get a bounded sequence $\left(\left\|u_{n}\right\| \leq 1\right)$ such that for all $y \in F, u_{n}\left(T^{*} y\right)=$ $\left(1 / n+T^{*} T\right)^{-1 / 2} T T^{*} y \rightarrow \sqrt{T T^{*}}(y)$. Thus, by density of $\operatorname{Im} T^{*}, u_{n}(x)$ converges for all $x \in E$. Let $v(x)$ denotes the limit. Replacing T by T^{*} above, we also have that $u_{n}^{*}(y)$ converges for all $y \in F$, which yields $v \in \operatorname{Mor}(E, F)$. A small computation shows that $u_{n}|T|-T$ goes to 0 in norm. Thus $v|T|=T$. The homomorphism v is unique by density of $\operatorname{Im}|T|$ and is unitary since $u_{n}^{*} u_{n}(x) \rightarrow x$ for all $x \in \operatorname{Im} T^{*} T$, which proves $v^{*} v=1$ and similarly for $v v^{*}$.
Now consider the general case and set $E_{1}=\overline{\operatorname{Im} T^{*}}, F_{1}=\overline{\operatorname{Im} T}$. One applies the first step to the restriction $T_{1} \in \operatorname{Mor}\left(E_{1}, F_{1}\right)$ of T, and we call v_{1} the unitary constructed. We set $u(x)=v_{1}(x)$ if $x \in E_{1}$ and $u(x)=0$ if $x \in E_{1}^{\perp}=\operatorname{ker} T$. This definition forces the unicity, and it is clear that u is a partial isometry with the claimed initial/final supports.

Remark 33. u is the strong limit of $T\left(1 / n+T^{*} T\right)^{-1 / 2}$.
4.2.5. Compact homomorphisms. Let $x \in E, y \in F$ and define $\theta_{y, x} \in \operatorname{Mor}(E, F)$ by

$$
\theta_{y, x}(z)=y \cdot(x, z)
$$

The adjoint is given by $\theta_{y, x}^{*}=\theta_{x, y}$. Then
Definition 34. We define $\mathcal{K}(E, F)$ to be the closure of the linear span of $\left\{\theta_{y, x} ; x \in\right.$ $E, y \in F\}$ in $\operatorname{Mor}(E, F)$.

One easily check that

- $\left\|\theta_{y, x}\right\| \leq\|x\|\|y\|$ and $\left\|\theta_{x, x}\right\|=\|x\|^{2}$,
- $T \theta_{y, x}=\theta_{T y, x}$ and $\theta_{y, x} S=\theta_{y, S^{*} x}$,
- $\mathcal{K}(E):=\mathcal{K}(E, E)$ is a closed two-sided ideal of $\operatorname{Mor}(E)$ (and hence a C^{*} algebra.
We also prove:

Proposition 35.

$$
\mathcal{M}(\mathcal{K}(E)) \simeq \operatorname{Mor}(\mathcal{E})
$$

where $\mathcal{M}(A)$ denotes the multiplier algebra of a C^{*}-algebra A.
Proof. One can show that for all $x \in E$ one can find a unique $y \in E$ such that $x=y .\langle y, y\rangle$ (a technical exercise: show that the limit $y=\lim x . f_{n}(\sqrt{(x, x)})$ with $f_{n}(t)=t^{1 / 3} .(1 / n+t)^{-1}$ exists and satisfies the desired assertion $)$.
It has the consequence that E is a non degenerate $\mathcal{K}(E)$-module (ie, $\mathcal{K}(E) \cdot E=E$), indeed $x=y .<y, y>=\theta_{y, y}(y)$. Using an approximate unit $\left(u_{\lambda}\right)_{\Lambda}$ for $\mathcal{K}(E)$, we can extend the $\mathcal{K}(E)$-module structure of E into a $\mathcal{M}(\mathcal{K}(E))$-module structure:

$$
\forall T \in \mathcal{M}(\mathcal{K}(E)), x \in E, \quad T \cdot x=\lim _{\Lambda} T\left(u_{\lambda}\right) \cdot x
$$

The existence of the limit is a consequence of $x=\theta_{y, y}(y)$ and $T\left(u_{\lambda}\right) \cdot \theta_{y, y}=$ $T\left(u_{\lambda} \theta_{y, y}\right) \rightarrow T\left(\theta_{y, y}\right)$. The limit is just $T\left(\theta_{y, y}\right) \cdot y$. By the unicity of y, this module structure, extending that of $\mathcal{K}(E)$ is unique.
Hence each $m \in \mathcal{M}(\mathcal{K}(E))$ gives a map $M: E \rightarrow E$. For any x, z in E,

$$
(z, M \cdot x)=\left(z,\left(M \circ \theta_{y, y}\right)(y)\right)=\left(z,\left(m \theta_{y, y}\right) \cdot y\right)=\left(\left(m \theta_{y, y}\right)^{*} z,(y)\right)
$$

thus M has an adjoint: $M \in \operatorname{Mor}(E)$ and M^{*} corresponds to m^{*}. The map $\rho: m \rightarrow M$ provides a $*$-homomorphism from $\mathcal{M}(\mathcal{K}(E))$ to $\operatorname{Mor}(E)$ which is the identity on $\mathcal{K}(E)$. On the other hand let $\pi: \operatorname{Mor}(E) \rightarrow \mathcal{M}(\mathcal{K}(E)$ be the unique *-homomorphism, equal to identity on $\mathcal{K}(E)$, associated to the inclusion $\mathcal{K}(E) \subset$ $\operatorname{Mor}(E)$ as a closed ideal. We have $\pi \circ \rho=I d$, and by unicity of the $\mathcal{M}(\mathcal{K}(E))$ module structure of $E, \rho \circ \pi=I d$.
Let us give some generic examples:
(1) Consider A as a Hilbert A-module. We know that for any $a \in A$, there exists $c \in A$ such that $a=c c^{*} c$. It has the consequence that the map $\gamma_{a}: A \rightarrow A, b \mapsto a b$ is equal to $\theta_{c, c^{*} c}$ and thus is compact. We get a $*-$ homomorphism $\gamma: A \rightarrow \mathcal{K}(A), a \mapsto \gamma_{a}$ which has dense image (the linear span of the θ 's is dense in $\mathcal{K}(A))$ and clearly injective, because $y b=0$ for all $b \in A$ implies $y=0$. Thus γ is an isomorphism;

$$
\mathcal{K}(A) \simeq A
$$

In particular, $\operatorname{Mor}(A) \simeq \mathcal{M}(A)$, and if $1 \in A$, then $A \simeq \operatorname{Mor}(A)=\mathcal{K}(A)$.
(2) For any n, one has in a similar way $\mathcal{K}\left(A^{n}\right) \simeq M_{n}(A)$ and $\operatorname{Mor}\left(A^{n}\right) \simeq$ $M_{n}(\mathcal{M}(A))$. If moreover $1 \in A$,

$$
\text { (i) } \operatorname{Mor}\left(A^{n}\right)=\mathcal{K}\left(A^{n}\right) \simeq M_{n}(A)
$$

For any Hilbert A-module E, we also have $\mathcal{K}\left(E^{n}\right) \simeq M_{n}(\mathcal{K}(E))$.
The relations (i) can be extended to arbitrary finitely generated Hilbert A-modules:
Proposition 36. Let A be a unital C^{*}-algebra and E a A-Hilbert module. Then the following are equivalent:
(1) E is finitely generated.
(2) $\mathcal{K}(E)=\operatorname{Mor}(E)$.
(3) $I d_{E}$ is compact.

In that case, E is also projective (ie, it is a direct summand of A^{n} for some n).
For the proof we refer to [52].
4.3. Generalized Fredholm operators. The Atkinson's theorem claims that for any bounded linear operator on a Hilbert space H, the assertion: $\operatorname{ker} F$ and $\operatorname{ker} F^{*}$ are finite dimensional,
is equivalent to:
there exists a linear bounded operator G such that $F G-1, G F-1$ are compact . This is a little more subtle on Hilbert A-modules, since first of all the kernel of homomorphisms are A-modules not necessarily free and secondly, replacing the condition "finite dimensional" by "finitely generated", is not enough to recover the previous equivalence. This is why one uses the second assertion as a definition of Fredholm operators in the context of Hilbert modules, and we will see how to adapt the Atkison's classical result to this new notion.

Definition 37. The homomorphism $T \in \operatorname{Mor}(E, F)$ is a generalized Fredholm operator if there exists $G \in \operatorname{Mor}(F, E)$ such that:

$$
G F-\operatorname{Id} \in \mathcal{K}(E) \quad \text { and } \quad F G-\operatorname{Id} \in \mathcal{K}(F) .
$$

The following theorem is important to understand the next chapter on $K K$-theory.
Theorem 38. Let A be a unital C^{*}-algebra, \mathcal{E} a Hilbert countably generated A module and F a generalized Fredholm operator on \mathcal{E}.
(1) If $\operatorname{Im} F$ is closed, then $\operatorname{ker} F$ and $\operatorname{ker} F^{*}$ are finitely generated Hilbert modules.
(2) There exists a compact perturbation G of F such that $\operatorname{Im} G$ is closed.

Proof. (1) Since $\operatorname{Im} F$ is closed, so is $\operatorname{Im} F^{*}$ and both are orthocomplemented by, respectively, $\operatorname{ker} F^{*}$ and $\operatorname{ker} F$. Let $P \in \operatorname{Mor}(\mathcal{E})$ be the orthogonal projection on ker F. Since F is a generalized Fredholm operator, there exists $G \in \operatorname{Mor}(\mathcal{E})$ such that $Q=1-G F$ is compact. In particular, Q is equal to Id on $\operatorname{ker} F$ and:

$$
Q P: \mathcal{E}=\operatorname{ker} F \oplus \operatorname{Im} F^{*} \rightarrow \mathcal{E}, x \oplus y \mapsto x \oplus 0
$$

Since $Q P$ is compact, its restriction: $\left.Q P\right|_{\operatorname{ker} F}: \operatorname{ker} F \rightarrow \operatorname{ker} F$ is also compact, but $\left.Q P\right|_{\text {ker } F}=\operatorname{Id}_{\text {ker } F}$ hence proposition 36 implies that ker F is finitely generated. The same argument works for $\operatorname{ker} F^{*}$.
(2) Let us denote by π the projection homomorphism:

$$
\pi: \operatorname{Mor}(\mathcal{E}) \rightarrow C(\mathcal{E}):=\operatorname{Mor}(\mathcal{E}) / \mathcal{K}(\mathcal{E})
$$

Since $\pi(F)$ is invertible in $C(\mathcal{E})$ it has a polar decomposition: $\pi(F)=\omega .|\pi(F)|$. Any unitary of $C(\mathcal{E})$ can be lift to a partial isometry [52]. Let U be such a lift of the unitary ω. Using $|\pi(F)|=\pi(|F|)$, it follows that:

$$
F=U|F| \quad \bmod \mathcal{K}(\mathcal{E})
$$

Since $\pi(|F|)$ is also invertible, and positive, we can form $\log (\pi(|F|))$ and choose a self-adjoint $H \in \operatorname{Mor}(\mathcal{E})$ with $\pi(H)=\log (\pi(|F|))$. Then:

$$
\pi\left(U e^{H}\right)=\omega \pi(|F|)=\pi(F)
$$

that is, $U e^{H}$ is a compact perturbation of F (and thus is a generalized Fredholm operator). U is a partial isometry, hence has a closed image, and e^{H} is invertible in $\operatorname{Mor}(\mathcal{E})$, hence $U e^{H}$ has closed image and the theorem is proved.

4.4. Tensor products.

4.4.1. Inner tensor products. Let E be a Hilbert A-module, F a Hilbert B-module and $\pi: A \rightarrow \operatorname{Mor}(F)$ a $*$-homomorphism. We define a sesquilinear form on $E \otimes_{A} F$ by setting:

$$
\forall x, x^{\prime} \in E, y, y^{\prime} \in F, \quad\left(x \otimes y, x^{\prime} \otimes y^{\prime}\right)_{E \otimes F}:=\left(y,\left(x, x^{\prime}\right)_{E} \cdot y^{\prime}\right)_{F}
$$

where we have set $a \cdot y=\pi(a)(y)$ to lighten the formula. This sesquilinear form is a B-valued scalar product: only the positivity axiom needs some explanation. Set:

$$
b=\left(\sum_{i} x_{i} \otimes y_{i}, \sum_{i} x_{i} \otimes y_{i}\right)=\sum_{i, j}\left(y_{i},\left(x_{i}, x_{j}\right) \cdot y_{j}\right)
$$

where π has been omitted. Let us set $P=\left(\left(x_{i}, x_{j}\right)\right)_{i, j} \in M_{n}(A)$. The matrix P provides a (self-adjoint) compact homomorphism of A^{n}, which is positive since:

$$
\forall a \in A^{n},(a, P a)_{A^{n}}=\sum_{i, j} a_{i}^{*}\left(x_{i}, x_{j}\right) a_{j}=\left(\sum_{i} x_{i} a_{i}, \sum_{j} x_{j} a_{j}\right) \geq 0
$$

This means that $P=Q^{*} Q$ for some $Q \in M_{n}(A)$. On the other hand, one can consider P as a homomorphism on F^{n} and setting $y=\left(y_{1}, \ldots, y_{n}\right) \in F^{n}$:

$$
b=(y, P y)=(Q y, Q y) \geq 0
$$

Thus $E \otimes_{A} F$ is a pre-Hilbert module in the generalized sense (i.e. we do not require that the inner product is definite) and the Hausdorff completion of $E \otimes_{A} F$ is a Hilbert B-module denoted in the same way.

Proposition 39. Let $T \in \operatorname{Mor}(E)$ and $S \in \operatorname{Mor}(F)$.

- $T \otimes 1: x \otimes y \mapsto T x \otimes y$ defines a homomorphism of $E \otimes_{A} F$.
- If S commutes with π then $1 \otimes S: x \otimes y \mapsto x \otimes S y$ is a homomorphism which commutes with any $T \otimes 1$.

Remark 40. 1. Even if T is compact, $T \otimes 1$ is not compact in general. Same thing for S.
2. In general $1 \otimes S$ is not defined.
4.4.2. Outer tensor products. Now forget the homomorphism π and consider the tensor product over \mathbb{C} of E and F. We set:

$$
\forall x, x^{\prime} \in E, y, y^{\prime} \in F, \quad\left(x \otimes y, x^{\prime} \otimes y^{\prime}\right)_{E \otimes F}:=\left(x, x^{\prime}\right)_{E} \otimes\left(y, y^{\prime}\right)_{F} \in A \otimes B
$$

By default, we use the spatial tensor product of A and B. This defines a preHilbert $A \otimes B$-module in the generalized sense (the proof of positivity uses similar arguments) and the Hausdorff completion will be denoted $E \otimes_{\mathbb{C}} F$.

Examples 41. Let H be a separable Hilbert space. Then:

$$
H \otimes_{\mathbb{C}} A \simeq H_{A}
$$

4.4.3. Connections. We turn back to internal tensor products. We keep notations of the corresponding subsection. A. Connes and G. Skandalis [14] introduced the notion of connection to bypass the non existence, in general, of $1 \otimes S$.

Definition 42. Consider two C^{*}-algebras A and B. Let E be a Hilbert A-module and F be a Hilbert B-module. Assume there is a $*$-morphism

$$
g: A \rightarrow \mathcal{L}(F)
$$

and take the inner tensor product $E \otimes_{A} F$. Given $x \in E$ we define a homomorphism

$$
\begin{aligned}
T_{x}: E & \rightarrow E \otimes_{A} F \\
y & \mapsto x \otimes y
\end{aligned}
$$

whose adjoint is given by

$$
\begin{aligned}
T_{x}^{*}: E \otimes_{A} F & \rightarrow F \\
z \otimes y & \mapsto g((x, z)) y
\end{aligned}
$$

If $S \in \mathcal{L}(F)$, an S-connection on $E \otimes_{A} F$ is given by an element

$$
G \in \mathcal{L}\left(E \otimes_{A} F\right)
$$

such that for all $x \in E$:

$$
\begin{aligned}
T_{x} S-G T_{x} & \in \mathcal{K}\left(F, E \otimes_{A} F\right) \\
S T_{x}^{*}-T_{x}^{*} G & \in \mathcal{K}\left(E \otimes_{A} F, F\right)
\end{aligned}
$$

Proposition 43. (1) If $[\pi, S] \subset \mathcal{K}(F)$ then S-connections exists.
(2) If $G_{i}, i=1,2$ are S_{i}-connections, then $G_{1}+G_{2}$ is a $S_{1}+S_{2}$-connection and $G_{1} G_{2}$ is a $S_{1} S_{2}$-connection.
(3) For any S-connection $G,[G, \mathcal{K}(E) \otimes 1] \subset \mathcal{K}\left(E \otimes_{A} F\right)$.
(4) The space of 0-connections is exactly:
$\left\{G \in \operatorname{Mor}\left(F, E \otimes_{A} F\right) \mid(\mathcal{K}(E) \otimes 1) G\right.$ and $G(\mathcal{K}(E) \otimes 1)$ are subsets of $\left.\mathcal{K}\left(E \otimes_{A} F\right)\right\}$
All these assertions are important during the construction of the Kasparov product. For the proof, see [14]

5. KK-Theory

5.1. Kasparov modules and Homotopies. Given two C^{*}-algebras A and B a Kasparov A - B-module (shortly Kasparov module) is given by a triple

$$
x=(\mathcal{E}, \pi, F)
$$

where $\mathcal{E}=\mathcal{E}^{0} \bigoplus \mathcal{E}^{1}$ is a $(\mathbb{Z} / 2 \mathbb{Z})$-graded Hilbert countably generated B-module, $\pi: A \rightarrow \mathcal{L}(\mathcal{E})$ is a $*$-morphism of degree 0 with respect to the graduation, and $F \in \mathcal{L}(\mathcal{E})$. These data are required to satisfy the following properties:

$$
\begin{array}{rll}
\pi(a)\left(F^{2}-1\right) & \in \mathcal{K}(\mathcal{E}) & \\
\text { for all } a \in A \\
{[\pi(a), F]} & \in \mathcal{K}(\mathcal{E}) & \\
\text { for all } a \in A
\end{array}
$$

We denote the set of Kasparov A - B-modules by $E(A, B)$.
Let us immediately define the equivalence relation leading to the definition of $K K$-groups. We denote $B([0,1]):=C([0,1], B)$.
Definition 44. A homotopy between two Kasparov A - B-modules $x=(\mathcal{E}, \pi, F)$ and $x^{\prime}=\left(\mathcal{E}^{\prime}, \pi^{\prime}, F^{\prime}\right)$ is a Kasparov $A-B([0,1])$-module \tilde{x} such that:

$$
\begin{align*}
\left(e v_{t=0}\right)_{*}(\tilde{x}) & =x, \tag{5.1}\\
\left(e v_{t=1}\right)_{*}(\tilde{x}) & =x^{\prime} .
\end{align*}
$$

Here $e v_{t=\text {. }}$ is the evaluation map at $t=\cdot$. Homotopy between Kasparov $A-B$ modules is an equivalence relation. If there exists a homotopy between x and x^{\prime} we write $x \sim_{h} x^{\prime}$.
The set of homotopy classes of Kasparov A - B-modules is denoted $K K(A, B)$.

There is a natural addition on $E(A, B)$: if $x=(\mathcal{E}, \pi, F)$ and $x^{\prime}=\left(\mathcal{E}^{\prime}, \pi^{\prime}, F^{\prime}\right)$ belong to $E(A, B)$, their sum $x+x^{\prime} \in E(A, B)$ is defined by

$$
x+x^{\prime}=\left(\mathcal{E} \oplus \mathcal{E}^{\prime}, \pi \oplus \pi^{\prime}, F \oplus F^{\prime}\right)
$$

A Kasparov $A-B$-module $x=(\mathcal{E}, \pi, F)$ is called degenerate if for all $a \in A$, $\pi(a)\left(F^{2}-1\right)=0$ and $[\pi(a), F]=0$. It follows:
Proposition 45. Degenerate elements of $E(A, B)$ are homotopic to $(0,0,0)$.
The addition of Kasparov $A-B$-modules provides a structure of abelian group to $K K(A, B)$.
Proof. Let $x=(\mathcal{E}, \pi, F) \in E(A, B)$ be a degenerate element. Set $\tilde{x}=(\tilde{\mathcal{E}}, \tilde{\pi}, \tilde{F}) \in$ $E(A, B([0,1]))$ with

$$
\begin{aligned}
\tilde{\mathcal{E}} & =C_{0}([0,1[, \mathcal{E}) \\
\tilde{\pi}(a) \xi(t) & =\pi(a) \xi(t) \\
\tilde{F} \xi(t) & =F \xi(t)
\end{aligned}
$$

Then \tilde{x} is a homotopy between x and $(0,0,0)$.
One can easily show that addition of Kasparov modules makes sense at the level of their homotopy classes. Thus $K K(A, B)$ admits a commutative semi-group structure with $(0,0,0)$ as a neutral element. Eventually, the opposite in $K K(A, B)$ of $x=(\mathcal{E}, \pi, F) \in E(A, B)$ is represented by:

$$
\left(\mathcal{E}^{o p}, \pi,-F\right)
$$

where $\mathcal{E}^{o p}$ is \mathcal{E} with the opposite graduation: $\left(\mathcal{E}^{o p}\right)^{i}=\mathcal{E}^{1-i}$. Indeed, the module $(\mathcal{E}, \pi, F) \oplus\left(\mathcal{E}^{o p}, \pi,-F\right)$ is homotopically equivalent to the degenerate module

$$
\left(\mathcal{E} \oplus \mathcal{E}^{o p}, \pi \oplus \pi,\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right)
$$

This can be realized with the homotopy

$$
G_{t}=\cos \left(\frac{\pi t}{2}\right)\left(\begin{array}{cc}
0 & -F \\
F & 0
\end{array}\right)+\sin \left(\frac{\pi t}{2}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

5.2. Operations on Kasparov modules. Let us explain the functoriality of the $K K$-groups with respect to its variables. The following both operations on Kasparov modules make sense on $K K$-groups:

- Pushforward along *-morphisms: covariance in the second variable.

Let $x=(\mathcal{E}, \pi, F) \in E(A, B)$ and let $g: B \rightarrow C$ be a $*$-morphism. We define an element $g_{*}(x) \in E(A, C)$ by

$$
g_{*}(x)=\left(\mathcal{E} \otimes_{g} C, \pi \otimes 1, F \otimes i d\right)
$$

where $\mathcal{E} \otimes_{g} C$ is the inner tensor product of the Hilbert B-module \mathcal{E} with the Hilbert C-module C endowed with the left action of B given by g.

- Pullback along $*$-morphisms: contravariance in the first variable.

Let $x=(\mathcal{E}, \pi, F) \in E(A, B)$ and let $f: C \rightarrow A$ be a $*$-morphism. We define an element $f^{*}(x) \in E(C, B)$ by

$$
f^{*}(x)=(\mathcal{E}, \pi \circ f, F)
$$

Provided with this operations, $K K$-theory is a bifunctor from the category (of pairs) of C^{*}-algebras to the category of abelian groups.

We record another useful operation in $K K$-theory:

- Suspension:

Let $x=(\mathcal{E}, \pi, F) \in E(A, B)$ and let D be a C^{*}-algebra. We define an element $\tau_{D}(x) \in E(A \otimes D, B \otimes D)$ by

$$
\tau_{D}(x)=\left(\mathcal{E} \otimes_{\mathbb{C}} D, \pi \otimes 1, F \otimes i d\right)
$$

Here we take the external tensor product $\mathcal{E} \otimes_{\mathbb{C}} D$, which is a $B \otimes D$-Hilbert module.

5.3. Examples of Kasparov modules and of homotopies between them.

5.3.1. Kasparov Modules coming from homomorphisms between C^{*}-algebras. Let A, B be two C^{*}-algebras and $f: A \rightarrow B$ a $*$-homomorphism. Since $\mathcal{K}(B) \simeq B$, the following:

$$
[f]:=(B, f, 0)
$$

defines a Kasparov $A-B$-module. If A and B are \mathbb{Z}_{2}-graded, f has to be a homomorphism of degree 0 (ie, respecting the grading).
5.3.2. Atiyah's Ell. Let X be a compact Hausdorff topological space. Take $A=$ $C(X)$ be the algebra of continuous functions on X and let $B=\mathbb{C}$. Then

$$
E(A, B)=\operatorname{Ell}(X)
$$

the ring of generalized elliptic operators on X as defined by M. Atiyah. Below we give two concrete examples of such Kasparov modules:

- Assume X is a compact smooth manifold, let $A=C(X)$ as above and let $B=\mathbb{C}$. Let E and E^{\prime} be two smooth vector bundles over X and denote by π the action of $A=C(X)$ by multiplication on $L^{2}(X, E) \oplus L^{2}\left(X, E^{\prime}\right)$. Given a zero order pseudo-differential operator

$$
P: C^{\infty}(E) \rightarrow C^{\infty}\left(E^{\prime}\right)
$$

with parametrix $Q: C^{\infty}\left(E^{\prime}\right) \rightarrow C^{\infty}(E)$ the triple

$$
x_{P}=\left(L^{2}(X, E) \oplus L^{2}\left(X, E^{\prime}\right), \pi,\left(\begin{array}{cc}
0 & Q \\
P & 0
\end{array}\right)\right)
$$

defines an element in $E(A, B)=E(C(X), \mathbb{C})$.

- Let X be a compact spin^{c} manifold of dimension $2 n$, let $A=C(X)$ be as above and let $B=\mathbb{C}$. Denote by $S=S^{+} \otimes S^{-}$the complex spin bundle over X and let

$$
\not D: L^{2}(X, S) \rightarrow L^{2}(X, S)
$$

be the corresponding Dirac operator. Let π be the action of $A=C(X)$ by multiplication on $L^{2}(X, S)$. Then, the triple

$$
x_{\not D}=\left(L^{2}(X, S), \pi, \frac{\not D}{\sqrt{1+D^{2}}}\right)
$$

defines an element in $E(A, B)=E(C(X), \mathbb{C})$.
5.3.3. Compact perturbations. Let $x=(\mathcal{E}, \pi, F) \in E(A, B)$. Let $P \in \operatorname{Mor}(\mathcal{E})$ which satisfy:

$$
\begin{equation*}
\forall a \in A, \pi(a) . P \in \mathcal{K}(\mathcal{E}) \text { and } P . \pi(a) \in \mathcal{K}(\mathcal{E}) \tag{5.2}
\end{equation*}
$$

Then:

$$
x \quad \sim_{h} \quad(\mathcal{E}, \pi, F+P) .
$$

The homotopy is the obvious one: $(\mathcal{E} \otimes C([0,1]), \pi \otimes \mathrm{Id}, F+t P)$. In particular, when B is unital, we can always choose a representant (\mathcal{E}, π, G) with $\operatorname{Im} G$ closed (cf. theorem 38).
5.3.4. (Quasi) Self-adjoint representants. There exists a representant (\mathcal{E}, π, G) of $x=(\mathcal{E}, \pi, F) \in E(A, B)$ satisfying:

$$
\begin{equation*}
\pi(a)\left(G-G^{*}\right) \in \mathcal{K}(\mathcal{E}) \tag{5.3}
\end{equation*}
$$

Just take $\left(\mathcal{E} \otimes C([0,1]), \pi \otimes \operatorname{Id}, F_{t}\right)$ as a homotopy where

$$
F_{t}=\left(t F^{*} F+1\right)^{1 / 2} F\left(t F^{*} F+1\right)^{-1 / 2}
$$

Then $G=F_{1}$ satisfies (5.3). Now, $H=\left(G+G^{*}\right) / 2$ is self-adjoint and $P=$ $\left(G-G^{*}\right) / 2$ satisfies (5.2) thus (\mathcal{E}, π, H) is another representant of x.

Note that (5.3) is often useful in practice and is added as an axiom in many definitions of $K K$-theory, like the original one of Kasparov. It was observed in [47] that it could be omitted.
5.3.5. Unitarly equivalent modules. Let $\left(E_{i}, \pi_{i}, F_{i}\right), i=1,2$, be two Kasparov modules such that there exists a unitary $u: E_{1} \rightarrow E_{2}$ with:

$$
u F_{1} u^{*}=F_{2} \text { and } \forall a \in A, u \pi_{1}(a) u^{*}-\pi_{2}(a) \in \mathcal{K}\left(\mathcal{E}_{2}\right)
$$

We then say that $\left(E_{1}, F_{1}\right)$ and $\left(E_{2}, F_{2}\right)$ are unitarly equivalent. Unitarly equivalent Kasparov modules are, up to the addition of degenerate modules, homotopic. Consider for instance:

$$
\left(E_{1}+E_{2}, \pi_{1} \oplus \pi_{2},\left(\begin{array}{cc}
\cos t & -u^{*} \sin t \\
u \sin t & \cos t
\end{array}\right)\left(\begin{array}{cc}
F_{1} & 0 \\
0 & I
\end{array}\right)\left(\begin{array}{cc}
\cos t & u^{*} \sin t \\
-u \sin t & \cos t
\end{array}\right)\right)
$$

5.3.6. Relationship with ordinary K-theory. Let B be a unital C^{*}-algebra. A finitely generated ($\mathbb{Z} / 2 \mathbb{Z}$-graded) projective B-module \mathcal{E} is a submodule of some $B^{N} \oplus B^{N}$ and can then be endowed with a structure of Hilbert B-module. Afterwards, $\mathrm{Id}_{\mathcal{E}}$ is a compact morphism (prop. 36), thus:

$$
(\mathcal{E}, \iota, 0) \in E(\mathbb{C}, B)
$$

where ι is just multiplication by complex numbers. This provides a group homomorphism $K_{0}(B) \rightarrow K K(\mathbb{C}, B)$.

Conversely, let $(\mathcal{E}, 1, F) \in E(\mathbb{C}, B)$ be any Kasparov module where we have chosen F with closed range (see above): $\operatorname{ker} F$ is then a finitely generated $\mathbb{Z} / 2 \mathbb{Z}$ graded projective B-module. Consider $\widetilde{\mathcal{E}}=\{\xi \in C([0,1], \mathcal{E}) \mid \xi(1) \in \operatorname{ker} F\}$ and $\widetilde{F}(\xi): t \mapsto F(\xi(t))$. Then $(\widetilde{\mathcal{E}}, 1, \widetilde{F})$ provides a homotopy between $(\mathcal{E}, 1, F)$ and $(\operatorname{ker} F, 1,0)$. This also gives an inverse of the previous group homomorphism.
5.3.7. A non trivial generator of $K K(\mathbb{C}, \mathbb{C})$. In the special case $B=\mathbb{C}$, we get $K K(\mathbb{C}, \mathbb{C}) \simeq K_{0}(\mathbb{C}) \simeq \mathbb{Z}$ and under this isomorphisms, the following triple:

$$
\left(L^{2}(\mathbb{R})^{2}, 1, \frac{1}{\sqrt{1+H}}\left(\begin{array}{cc}
0 & -\partial_{x}+x \\
\partial_{x}+x & 0
\end{array}\right)\right) \quad \text { where } \quad H=-\partial_{x}^{2}+x^{2}
$$

corresponds to +1 . It is an easy exercise to check that $\partial_{x}+x$ and H are essentially self-adjoint as unbounded operators on $L^{2}(\mathbb{R})$, that H has a compact resolvant, $\partial_{x}+x$ has a Fredholm index equal to +1 , and thus that the previous element is unambiguously defined and satisfies the required claim.
5.4. Ungraded Kasparov modules and $K K_{1}$. Sometimes, triple (\mathcal{E}, π, F) satisfying axioms (5.1) arise with no natural grading for \mathcal{E}, and consequently with no diagonal/antidiagonal decompositions for π, F. We then speak about ungraded Kasparov A - B-modules and the corresponding set is denoted by $E^{1}(A, B)$. The direct sum is defined in the same way, as well as the homotopy, which is this times an element of $E^{1}(A, B[0,1])$. The homotopy is still an equivalence relation denoted \sim_{h} and the quotient $E^{1}(A, B) / \sim_{h}$ inherits a structure of abelian group as before. Let C_{1} be the Clifford Algebra over \mathbb{C}. It is the graded C^{*}-algebra generated by an element ε of order 1 satisfying $\varepsilon^{*}=\varepsilon$ and $\varepsilon^{2}=1$. We have:
Proposition 46. The following map:

$$
\begin{array}{rlc}
E^{1}(A, B) & \longrightarrow & E\left(A, B \otimes C_{1}\right) \\
(\mathcal{E}, \pi, F) & \longmapsto & \left(\mathcal{E} \otimes C_{1}, \pi \otimes \operatorname{Id}, F \otimes \varepsilon\right) \tag{5.4}
\end{array}
$$

induces an isomorphism between $E^{1}(A, B) / \sim_{h}$ and $K K_{1}(A, B)=K K\left(A, B \otimes C_{1}\right)$.
Proof. The grading of C_{1} gives the one of $\mathcal{E} \otimes C_{1}$ and the map (5.4) gives easily a homomorphism c from $K K_{1}(A, B)$ to $K K\left(A, B \otimes C_{1}\right)$.

Now let $y=(\mathcal{E}, \pi, F) \in E\left(A, B \otimes C_{1}\right)$. The multiplication by ε on the right of \mathcal{E} makes sense, even if B is not unital, and one has $\mathcal{E}_{1}=\mathcal{E}_{0} \varepsilon$. It follows that $\mathcal{E}=\mathcal{E}_{0} \oplus \mathcal{E}_{1} \simeq \mathcal{E}_{0} \oplus \mathcal{E}_{0}$ and any $T \in \operatorname{Mor}(\mathcal{E})$, thanks to the $B \otimes C_{1}$-linearity, has the following expression:

$$
T=\left(\begin{array}{ll}
Q & P \\
P & Q
\end{array}\right) \quad P, Q \in \operatorname{Mor}_{B}\left(\mathcal{E}_{0}\right)
$$

Thus $F=\left(\begin{array}{cc}0 & P \\ P & 0\end{array}\right), \pi=\left(\begin{array}{cc}\pi_{0} & 0 \\ 0 & \pi_{0}\end{array}\right)$ and $c^{-1}[y]=\left[\mathcal{E}_{0}, \pi_{0}, P\right]$.
Remark 47. The opposite of (\mathcal{E}, π, F) in $K K_{1}(A, B)$ is represented by $(\mathcal{E}, \pi,-F)$. One may wonder why we have to decide if a Kasparov module is graded or not. Actually, If we forget the $\mathbb{Z} / 2 \mathbb{Z}$ graduation of a graded Kasparov $A-B$-module $x=(\mathcal{E}, \pi, F)$ and consider it as angraded module, then we get the trivial class in $K K_{1}(A, B)$. Indeed, the graduation of x implies that F has a matricial decomposition $\left(\begin{array}{cc}0 & Q \\ P & 0\end{array}\right)$ and

$$
\left(\begin{array}{cc}
0 & -P \\
-Q & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & Q \\
P & 0
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)=\rho_{-\pi / 2} F \rho_{+\pi / 2}
$$

Thus, as operators on the Hilbert module \mathcal{E} where the graduation is forgotten, we get

$$
-F=\rho_{-\pi / 2} F \rho_{+\pi / 2}
$$

It follows that $F_{t}=\rho_{-t \pi / 2} F \rho_{+t \pi / 2}$ provides a ungraded homotopy between x and $-x$ and thus $x=0 \in K K_{1}(A, B)$.
Examples 48. Take again the example of the Dirac operator D on a spin^{c} manifold X whose dimension is odd. There is no natural $\mathbb{Z} / 2 \mathbb{Z}$ graduation for the spinor bundle. The previous triple $x_{\mathbb{D}}$ belongs this time to $E^{1}(C(X), \mathbb{C})$.
5.5. The Kasparov product. In this section we construct the product

$$
K K(A, B) \otimes K K(B, C) \rightarrow K K(A, C)
$$

It will satisfies the properties explained in 3. Actually:
Theorem 49. Let $x=(\mathcal{E}, \pi, F) \in E(A, B)$ and $x=\left(\mathcal{E}^{\prime}, \pi^{\prime}, F^{\prime}\right) \in E(B, C)$ be two Kasparov modules. Set

$$
\mathcal{E}^{\prime \prime}=\mathcal{E} \otimes_{B} \mathcal{E}^{\prime}
$$

and

$$
\pi^{\prime \prime}=\pi \otimes 1
$$

Then there exists a unique, up to homotopy, F^{\prime}-connection on $\mathcal{E}^{\prime \prime}$ denoted by $F^{\prime \prime}$ such that

- $\left(\mathcal{E}^{\prime \prime}, \pi^{\prime \prime}, F^{\prime \prime}\right) \in E(A, C)$
- $\pi^{\prime \prime}(a)\left[F^{\prime \prime}, F \otimes 1\right] \pi^{\prime \prime}(a)$ is nonnegative modulo $\mathcal{K}\left(\mathcal{E}^{\prime \prime}\right)$ for all $a \in A$.
$\left(\mathcal{E}^{\prime \prime}, \pi^{\prime \prime}, F^{\prime \prime}\right)$ is the Kasparov product of x and x^{\prime}. It enjoys all the properties described in section 3.

Idea of the proof. We just explain the construction of the operator $F^{\prime \prime}$. For a complete proof, see for instance $[29,14]$. A very naive idea for $F^{\prime \prime}$ could be $F \otimes 1+1 \otimes F^{\prime}$ but the trouble is that the operator $1 \otimes F^{\prime}$ is not well defined in general. We can overcome this first difficulty by replacing the not well defined $1 \otimes F^{\prime}$ by any F^{\prime} connection G on $\mathcal{E}^{\prime \prime}$, and try $F \otimes 1+G$. We get into a second problem which is that the axioms of Kasparov module are not satisfied in general with this candidate for $F^{\prime \prime}:$ for instance $\left(F^{2}-1\right) \otimes 1 \in \mathcal{K}(E) \otimes 1 \not \subset \mathcal{K}\left(E^{\prime \prime}\right)$ as soon as $E^{\prime \prime}$ is not finitely generated.
The case of tensor product of elliptic self-adjoint differential operators on a closed manifold M, indicates us the good way. If D_{1} and D_{2} are two such operators and H_{1}, H_{2} the natural L^{2} spaces on which they act, then the bounded operator on $H_{1} \otimes H_{2}$:

$$
\begin{equation*}
\frac{D_{1}}{\sqrt{1+D_{1}^{2}}} \otimes 1+1 \otimes \frac{D_{2}}{\sqrt{1+D_{2}^{2}}} \tag{5.5}
\end{equation*}
$$

inherits the same problem than $F \otimes 1+G$ but:

$$
D^{\prime \prime}:=\frac{1}{\sqrt{2+D_{1}^{2} \otimes 1+1 \otimes D_{2}^{2}}}\left(D_{1} \otimes 1+1 \otimes D_{2}\right)
$$

has better properties: $D^{\prime \prime 2}-1$ and $\left[C(M), D^{\prime \prime}\right]$ belong to $\mathcal{K}\left(H_{1} \otimes H_{2}\right)$. Note that

$$
D^{\prime \prime}=\sqrt{M} \cdot \frac{D_{1}}{\sqrt{1+D_{1}^{2}}} \otimes 1+\sqrt{N} \cdot 1 \otimes \frac{D_{2}}{\sqrt{1+D_{2}^{2}}}
$$

with

$$
M=\frac{1+D_{1}^{2} \otimes 1}{2+D_{1}^{2} \otimes 1+1 \otimes D_{2}^{2}} \text { and } N=\frac{1+1 \otimes D_{2}^{2}}{2+D_{1}^{2} \otimes 1+1 \otimes D_{2}^{2}} .
$$

The operators M, N are bounded on $H_{1} \otimes H_{2}$, positive, and satisfy $M+N=1$. We thus see that in that case, the naive idea (5.5) can be corrected by combining the involved operators with some adequate "partition of unity".

Turning back to our problem, this calculation leads us to look for the good operator $F^{\prime \prime}$ in the following form:

$$
F^{\prime \prime}=\sqrt{M} \cdot F \otimes 1+\sqrt{N} G .
$$

We need to have that $F^{\prime \prime}$ is a F^{\prime}-connection, and satisfies $a .\left(F^{\prime \prime 2}-1\right) \in \mathcal{K}\left(E^{\prime \prime}\right)$ and $\left[a, F^{\prime \prime}\right] \in \mathcal{K}\left(E^{\prime \prime}\right)$ for all $a \in A$ (by a we mean $\pi^{\prime \prime}(a)$). Using the previous form for $F^{\prime \prime}$, a small computation shows that these assertions become true if all the following conditions hold:
(i) M is a 0 -connection (equivalently, N is a 1-connection),
(थ) $[M, F \otimes 1], N .[F \otimes 1, G],[G, M], N\left(G^{2}-1\right)$ belong to $\mathcal{K}\left(E^{\prime \prime}\right)$,
(2uथ) $[a, M], N .[G, a]$ belong to $\mathcal{K}\left(E^{\prime \prime}\right)$.
At this point there is a miracle:
Theorem 50 (Kasparov's technical theorem). Let J be a C^{*}-algebra and denote by $\mathcal{M}(J)$ its multipliers algebra. Assume there are two subalgebras A_{1}, A_{2} of $\mathcal{M}(J)$ and a linear subspace $\triangle \subset \mathcal{M}(J)$ such that

$$
\begin{array}{rcc}
A_{1} A_{2} & \subset & J \\
{\left[\triangle, A_{1}\right]} & \subset & J
\end{array}
$$

Then there exist two nonnegative elements $M, N \in \mathcal{M}(J)$ with $M+N=1$ such that

$$
\begin{array}{rcc}
M A_{1} & \subset & J \\
N A_{2} & \subset & J \\
{[M, \triangle]} & \subset & J
\end{array}
$$

For a proof, see [25].
Now, to get $(\imath),(\imath \imath),(\imath \imath \imath)$, we apply this theorem with:

$$
\begin{aligned}
A_{1} & =C^{*}\left\langle\mathcal{K}(\mathcal{E}) \otimes 1, \mathcal{K}\left(\mathcal{E}^{\prime \prime}\right)\right\rangle \\
A_{2} & =C^{*}\left\langle G^{2}-1,[G, F \otimes 1],\left[G, \pi^{\prime \prime}\right]\right\rangle \\
\triangle & =\operatorname{Vect}\left\langle\pi^{\prime \prime}(A), G, F \otimes 1\right\rangle
\end{aligned}
$$

This gives us the correct $F^{\prime \prime}$.
5.6. Equivalence and duality in $K K$-theory. With the Kasparov product come the following notions:

Definition 51. Let A, B be two C^{*}-algebras.

- One says that A and B are $K K$-equivalent if there exist $\alpha \in K K(A, B)$ and $\beta \in K K(B, A)$ such that:

$$
\alpha \otimes \beta=1 \in K K(A, A) \text { and } \beta \otimes \alpha=1 \in K K(B, B) .
$$

In that case, the pair (α, β) is called a $K K$-equivalence and it gives rise to isomorphisms
$K K(A \otimes C, D) \simeq K K(B \otimes C, D)$ and $K K(C, A \otimes D) \simeq K K(C, B \otimes D)$
given by Kasparov products for all C^{*}-algebras C, D.

- One says that A and B are $K K$-dual (or Poincaré dual) if there exist $\delta \in K K(A \otimes B, \mathbb{C})$ and $\lambda \in K K(\mathbb{C}, A \otimes B)$ such that:

$$
\lambda{\underset{B}{\otimes}}_{\otimes} \delta=1 \in K K(A, A) \text { and } \lambda \underset{A}{\otimes} \delta=1 \in K K(B, B) .
$$

In that case, the pair (λ, δ) is called a $K K$-duality and it gives rise to isomorphisms

$$
K K(A \otimes C, D) \simeq K K(C, B \otimes D) \text { and } K K(C, A \otimes D) \simeq K K(B \otimes C, B \otimes D)
$$

given by Kasparov products for all C^{*}-algebras C, D.
We continue this paragraph with classical computations illustrating these notions.
5.6.1. Bott periodicity. Let $\beta \in K K\left(\mathbb{C}, C_{0}\left(\mathbb{R}^{2}\right)\right)$ be represented by the Kasparov module:

$$
(\mathcal{E}, \pi, C)=\left(C_{0}\left(\mathbb{R}^{2}\right) \oplus C_{0}\left(\mathbb{R}^{2}\right), 1, \frac{1}{\sqrt{1+c^{2}}}\left(\begin{array}{cc}
0 & c_{-} \\
c_{+} & 0
\end{array}\right)\right)
$$

where c_{+}, c_{-}are the operators given by pointwise multiplication by $x-\imath y$ and $x+\imath y$ respectively and $c=\left(\begin{array}{cc}0 & c_{-} \\ c_{+} & 0\end{array}\right)$.

Let $\alpha \in K K\left(C_{0}\left(\mathbb{R}^{2}\right), \mathbb{C}\right)$ be represented by the Kasparov module:

$$
(\mathcal{H}, \pi, F)=\left(L^{2}\left(\mathbb{R}^{2}\right) \oplus L^{2}\left(\mathbb{R}^{2}\right), \pi, \frac{1}{\sqrt{1+D^{2}}}\left(\begin{array}{cc}
0 & D_{-} \\
D_{+} & 0
\end{array}\right)\right)
$$

where $\pi: C_{0}\left(\mathbb{R}^{2}\right) \rightarrow \mathcal{L}\left(L^{2}\left(\mathbb{R}^{2}\right) \oplus L^{2}\left(\mathbb{R}^{2}\right)\right)$ is the action given by multiplication of functions and the operators D_{+}and D_{-}are given by

$$
\begin{aligned}
& D_{+}=\partial_{x}+\imath \partial y \\
& D_{-}=-\partial_{x}+\imath \partial y
\end{aligned}
$$

and $D=\left(\begin{array}{cc}0 & D_{-} \\ D_{+} & 0\end{array}\right)$.
Theorem 52. α and β provide a $K K$-equivalence between $C_{0}\left(\mathbb{R}^{2}\right)$ and \mathbb{C}
This is the Bott periodicity theorem in the bivariant K-theory framework.
Proof. Let us begin with the computation of $\beta \otimes \alpha \in K K(\mathbb{C}, \mathbb{C})$. We have an identification:

$$
\begin{equation*}
\mathcal{E} \underset{C_{0}\left(\mathbb{R}^{2}\right)}{\otimes} \mathcal{H} \simeq \mathcal{H} \oplus \mathcal{H} \tag{5.6}
\end{equation*}
$$

where on the right the first copy of \mathcal{H} stands for $\mathcal{E}_{0} \underset{C_{0}\left(\mathbb{R}^{2}\right)}{\otimes} \mathcal{H}_{0} \oplus \mathcal{E}_{1} \underset{C_{0}\left(\mathbb{R}^{2}\right)}{\otimes} \mathcal{H}_{1}$ and the second for $\mathcal{E}_{0} \underset{C_{0}\left(\mathbb{R}^{2}\right)}{\otimes} \mathcal{H}_{1} \oplus \mathcal{E}_{1} \underset{C_{0}\left(\mathbb{R}^{2}\right)}{\otimes} \mathcal{H}_{0}$. One checks directly that under this identification the following operator

$$
G=\frac{1}{\sqrt{1+D^{2}}}\left(\begin{array}{cccc}
0 & 0 & D_{-} & 0 \tag{5.7}\\
0 & 0 & 0 & -D_{+} \\
D_{+} & 0 & 0 & 0 \\
0 & -D_{-} & 0 & 0
\end{array}\right)
$$

is an F-connection. On the other hand, under the identification (5.7), the operator $C \otimes 1$ gives:

$$
\frac{1}{\sqrt{1+c^{2}}}\left(\begin{array}{cccc}
0 & 0 & 0 & c_{-} \tag{5.8}\\
0 & 0 & c_{+} & 0 \\
0 & c_{-} & 0 & 0 \\
c_{+} & 0 & 0 & 0
\end{array}\right)
$$

It follows immediately that $\beta \otimes \alpha$ is represented by:

$$
\begin{equation*}
\delta=\left(\mathcal{H} \oplus \mathcal{H}, 1, \frac{1}{\sqrt{1+c^{2}+D^{2}}} \mathcal{D}\right) \tag{5.9}
\end{equation*}
$$

where $\mathcal{D}=\left(\begin{array}{cc}0 & \mathcal{D}_{-} \\ \mathcal{D}_{+} & 0\end{array}\right) ; \mathcal{D}_{+}=\left(\begin{array}{cc}D_{+} & c_{-} \\ c_{+} & -D_{-}\end{array}\right)$and $\mathcal{D}_{-}=\mathcal{D}_{+}^{*}$. Observe that, denoting by ρ the rotation in \mathbb{R}^{2} of angle $\pi / 4$:

$$
\begin{aligned}
\left(\begin{array}{cc}
\rho^{-1} & 0 \\
0 & \rho
\end{array}\right)\left(\begin{array}{cc}
0 & \mathcal{D}_{-} \\
\mathcal{D}_{+} & 0
\end{array}\right)\left(\begin{array}{cc}
\rho & 0 \\
0 & \rho^{-1}
\end{array}\right) & =\left(\begin{array}{cc}
0 & \rho^{-1} \mathcal{D}_{-} \rho^{-1} \\
\rho \mathcal{D}_{+} \rho & 0
\end{array}\right) \\
& =\left(\begin{array}{cccc}
0 & 0 & \imath\left(\partial_{y}-y\right) & -\partial_{x}+x \\
0 & 0 & \partial_{x}+x & -\imath\left(\partial_{y}+y\right) \\
\imath\left(\partial_{y}+y\right) & -\partial_{x}+x & 0 & 0 \\
\partial_{x}+x & \imath\left(-\partial_{y}+y\right) & 0 & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
0 & x-\partial_{x} \\
x+\partial_{x} & 0
\end{array}\right) \otimes 1+1 \otimes\left(\begin{array}{cc}
0 & \imath\left(\partial_{y}-y\right) \\
\imath\left(\partial_{y}+y\right) & 0
\end{array}\right)
\end{aligned}
$$

Of course

$$
\delta \sim_{h}\left(\mathcal{H} \oplus \mathcal{H}, 1, \frac{1}{\sqrt{1+c^{2}+D^{2}}}\left(\begin{array}{cc}
0 & \rho^{-1} \mathcal{D}_{-} \rho^{-1} \\
\rho \mathcal{D}_{+} \rho & 0
\end{array}\right)\right)
$$

and the computation above shows that δ coincides with the Kasparov product $u \otimes u$ with $u \in K K(\mathbb{C}, \mathbb{C})$ given by:

$$
u=\left(L^{2}(\mathbb{R})^{2}, 1, \frac{1}{\sqrt{1+x^{2}+\partial_{x}^{2}}}\left(\begin{array}{cc}
0 & x-\partial_{x} \\
x+\partial_{x} & 0
\end{array}\right)\right)
$$

A simple exercise shows that $\partial_{x}+x: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ is essentially self-adjoint with one dimensional kernel and zero dimensional cokernel, thus $1=u=u \otimes u \in$ $K K(\mathbb{C}, \mathbb{C})$.

Let us turn to the computation of $\alpha \otimes \beta \in K K\left(C_{0}\left(\mathbb{R}^{2}\right), C_{0}\left(\mathbb{R}^{2}\right)\right)$: it is a Kasparov product over \mathbb{C}, thus it commutes:

$$
\begin{equation*}
\alpha \otimes \beta=\tau_{C_{0}\left(\mathbb{R}^{2}\right)}(\beta) \otimes \tau_{C_{0}\left(\mathbb{R}^{2}\right)}(\alpha) \tag{5.10}
\end{equation*}
$$

but the two copies of $C_{0}\left(\mathbb{R}^{2}\right)$ above are not the same (the first one comes from α, the second from β : think about it as functions of the variable x for the first and of the variable y for the second) and we can not factorize directly $\tau_{C_{0}\left(\mathbb{R}^{2}\right)}$ in the right hand side of (5.10) in order to use the value of $\beta \otimes \alpha$. This is where a classical argument, known as the rotation trick of Atiyah, is necessary:
Lemma 53. Let $\phi: C_{0}\left(\mathbb{R}^{2}\right) \otimes C_{0}\left(\mathbb{R}^{2}\right) \rightarrow C_{0}\left(\mathbb{R}^{2}\right) \otimes C_{0}\left(\mathbb{R}^{2}\right)$ be the flip automorphism: $\phi(f)(x, y)=f(y, x)$. Then:

$$
[\phi]=1 \in K K\left(C_{0}\left(\mathbb{R}^{2}\right) \otimes C_{0}\left(\mathbb{R}^{2}\right), C_{0}\left(\mathbb{R}^{2}\right) \otimes C_{0}\left(\mathbb{R}^{2}\right)\right)
$$

Proof of the lemma. Let us denote by I_{2} the identity matrix of $M_{2}(\mathbb{R})$. Use a continuous path of isometries of \mathbb{R}^{4} connecting $\left(\begin{array}{cc}0 & I_{2} \\ I_{2} & 0\end{array}\right)$ to $\left(\begin{array}{cc}I_{2} & 0 \\ 0 & I_{2}\end{array}\right)$. This gives a homotopy $\phi \sim_{h}$ Id.

Now

$$
\begin{align*}
\alpha \otimes \beta & =\tau_{C_{0}\left(\mathbb{R}^{2}\right)}(\beta) \otimes \tau_{C_{0}\left(\mathbb{R}^{2}\right)}(\alpha)=\tau_{C_{0}\left(\mathbb{R}^{2}\right)}(\beta) \otimes[\phi] \otimes \tau_{C_{0}\left(\mathbb{R}^{2}\right)}(\alpha) \tag{5.11}\\
& =\tau_{C_{0}\left(\mathbb{R}^{2}\right)}(\beta \otimes \alpha)=\tau_{C_{0}\left(\mathbb{R}^{2}\right)}(1)=1 \in K K\left(C_{0}\left(\mathbb{R}^{2}\right), C_{0}\left(\mathbb{R}^{2}\right)\right)
\end{align*}
$$

5.6.2. Self duality of $C_{0}(\mathbb{R})$. With the same elements as before, we get:

Corollary 54. The algebra $C_{0}(\mathbb{R})$ is Poincaré dual to itself.
Other examples of Poincaré dual algebras will be given later.
Proof. The automorphism ψ of $C_{0}(\mathbb{R})^{\otimes^{3}}$ given by $\psi(f)(x, y, z)=f(z, x, y)$ is homotopic to the identity thus:

$$
\begin{align*}
\beta \underset{C_{0}(\mathbb{R})}{\otimes} \alpha & =\tau_{C_{0}(\mathbb{R})}(\beta) \otimes \tau_{C_{0}(\mathbb{R})}(\alpha)=\tau_{C_{0}(\mathbb{R})}(\beta) \otimes[\psi] \otimes \tau_{C_{0}(\mathbb{R})}(\alpha) \tag{5.12}\\
& =\tau_{C_{0}(\mathbb{R})}(\beta \otimes \alpha)=\tau_{C_{0}(\mathbb{R})}(1)=1 \in K K\left(C_{0}(\mathbb{R}), C_{0}(\mathbb{R})\right)
\end{align*}
$$

Exercise 55. Let

$$
\begin{aligned}
\beta_{c} & =\left(C_{0}(\mathbb{R}) \otimes C_{1}, 1, \frac{x}{\sqrt{x^{2}+1}} \otimes \varepsilon\right) \in K K\left(\mathbb{C}, C_{0}(\mathbb{R}) \otimes C_{1}\right) \\
\alpha_{c} & =\left(L^{2}\left(\mathbb{R}, \Lambda^{*} \mathbb{R}\right), \pi, \frac{1}{\sqrt{1+\Delta}}(d+\delta)\right) \in K K\left(C_{0}(\mathbb{R}) \otimes C_{1}, \mathbb{C}\right)
\end{aligned}
$$

where $(d+\delta)(a+b d x)=-b^{\prime}+a^{\prime} d x, \Delta=(d+\delta)^{2}$ and $\pi(f \otimes \varepsilon)$ sends $a+b d x$ to $f(b+a d x)$.
Show that β_{c}, α_{c} provide a $K K$-equivalence between \mathbb{C} and $C_{0}(\mathbb{R}) \otimes C_{1}$ (Hints: compute directly $\beta_{c} \otimes \alpha_{c}$, then use the commutativity of the Kasparov product over \mathbb{C} and check that the flip of $\left(C_{0}(\mathbb{R}) \otimes C_{1}\right)^{\otimes 2}$ is 1 to conclude about the computation of $\alpha_{c} \otimes \beta_{c}$).
5.6.3. A simple Morita equivalence. Let $\imath_{n}=\left(M_{1, n}(\mathbb{C}), 1,0\right) \in E\left(\mathbb{C}, M_{n}(\mathbb{C})\right)$ where the $M_{n}(\mathbb{C})$-module structure is given by multiplication by matrices on the right. Note that $\left[\imath_{n}\right]$ is also the class of the homomorphism $\mathbb{C} \rightarrow M_{n}(\mathbb{C})$ given by the left up corner inclusion. Let also $\jmath_{n}=\left(M_{n, 1}(\mathbb{C}), m, 0\right) \in E\left(M_{n}(\mathbb{C}), \mathbb{C}\right)$ where m is multiplication by matrices on the left. Then immediately:

$$
\imath_{n} \otimes \jmath_{n} \sim_{h}(\mathbb{C}, 1,0) \text { and } \jmath_{n} \otimes \imath_{n} \sim_{h}\left(M_{n}(\mathbb{C}), 1,0\right)
$$

thus \mathbb{C} and $M_{n}(\mathbb{C})$ are $K K$-equivalent and this is an example of a Morita equivalence. The map in K-theory associated with $\jmath: \cdot \otimes \jmath_{n}: K_{0}\left(M_{n}(\mathbb{C})\right) \rightarrow \mathbb{Z}$ is just the trace homomorphism. Consider similarly the Kasparov elements $\imath \in E(\mathbb{C}, \mathcal{K}(\mathcal{H}))$ associated to the homomorphism $\imath: \mathbb{C} \rightarrow \mathcal{K}(\mathcal{H})$ given by the choice of a rank one projection and $\jmath=(\mathcal{H}, m, 0) \in E(\mathcal{K}(\mathcal{H}), \mathbb{C})$ where m is just the action of compact operators on \mathcal{H} : they provide a $K K$-equivalence between \mathcal{K} and \mathbb{C}.
5.6.4. $C_{0}(\mathbb{R})$ and C_{1}. We leave the proof of the following result as an exercise:

Proposition 56. The algebras $C_{0}(\mathbb{R})$ and C_{1} are $K K$-equivalent.
Hint for the proof: Consider

$$
\widetilde{\alpha}=\left(L^{2}\left(\mathbb{R}, \Lambda^{*} \mathbb{R}\right), m, \frac{1}{\sqrt{1+\Delta}}(d+\delta)\right) \in K K\left(C_{0}(\mathbb{R}), C_{1}\right)
$$

where d, δ, Δ are defined in the previous exercise, $m(f)(\xi)=f \xi$, and the C_{1}-right module structure of $L^{2}\left(\mathbb{R}, \Lambda^{*} \mathbb{R}\right)$ is given by $(a+b d x) \cdot \varepsilon=-i b+i a d x$. Consider also:

$$
\widetilde{\beta}=\left(C_{0}(\mathbb{R})^{2}, \varphi, \frac{x}{\sqrt{1+x^{2}}}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right) \in K K\left(C_{1}, C_{0}(\mathbb{R})\right)
$$

where $\varphi(\varepsilon)(f, g)=(-i g, i f)$. Prove that they provide the desired $K K$-equivalence.

Exercise 57. (1) Check that $\tau_{C_{1}}: K K(A, B) \rightarrow K K\left(A \otimes C_{1}, B \otimes C_{1}\right)$ is an isomorphism.
(2) Check that under $\tau_{C_{1}}$ and the Morita equivalence $M_{2}(\mathbb{C}) \sim \mathbb{C}$, the elements α_{c}, β_{c} of the previous exercise coincide with $\widetilde{\alpha}, \widetilde{\beta}$ and recover the $K K$ equivalence between C_{1} and $C_{0}(\mathbb{R})$.

Remark 58. At this point, one sees that $K K_{1}(A, B)=K K(A, B(\mathbb{R})),(B(\mathbb{R}):=$ $\left.C_{0}(\mathbb{R}) \otimes B\right)$ can also be presented in the following different ways:

$$
E_{1}(A, B) / \sim_{h} \simeq K K\left(A, B \otimes C_{1}\right) \simeq K K\left(A \otimes C_{1}, B\right) \simeq K K(A(\mathbb{R}), B)
$$

5.7. Computing the Kasparov product without its definition. Computing the product of two Kasparov modules is in general quite hard, but we are very often in one of the following situations.
5.7.1. Use of the functorial properties. Thanks to the functorial properties listed in 3, a lot of products can be deduced from known, already computed, ones. For instance, in the proof of the Bott periodicity (the $K K$-equivalence between \mathbb{C} and $C_{0}\left(\mathbb{R}^{2}\right)$) one had to compute two products: the first one was directly computed, the second one was deduced from the first using the properties of the Kasparov product and a simple geometric fact. Examples of this kind are numerous.
5.7.2. Maps between K-theory groups. Let A, B be two unital (if not, add a unit) C^{*}-algebras, $x \in K K(A, B)$ be given by a Kasparov module (\mathcal{E}, π, F) where F has a closed range and assume that we are interested by the map $\phi_{x}: K_{0}(A) \rightarrow K_{0}(B)$ associated with x in the following way:

$$
y \in K_{0}(A) \simeq K K(\mathbb{C}, A) ; \quad \phi_{x}(y)=y \otimes x
$$

This product takes a particular simple form when y is represented by $(\mathcal{P}, 1,0)$ with \mathcal{P} a finitely generated projective A-module (see 5.3.6):

$$
y \otimes x=(\mathcal{P} \underset{A}{\otimes} \mathcal{E}, \pi \otimes 1, F \otimes \mathrm{Id})=(\operatorname{ker}(F \otimes \mathrm{Id}), 1,0)
$$

5.7.3. Kasparov elements constructed from homomorphisms. Sometimes, Kasparov classes $y \in K K(B, C)$ can be explicitly represented as Kasparov products of classes of homomorphisms with inverses of such classes. Assume for instance that $y=$ $\left[e_{0}\right]^{-1} \otimes\left[e_{1}\right]$ where $e_{0}: \mathcal{C} \rightarrow B, e_{1}: \mathcal{C} \rightarrow C$ are homomorphisms of C^{*}-algebras and e_{0} produces an invertible element in $K K$-theory (for instance: ker e_{0} is K contractible and: B is nuclear or $\mathcal{C}, B K$-nuclear, see [48, 16]). Then computing a Kasparov product $x \otimes y$ where $x \in K K(A, B)$ amounts to lift x to $K K(A, \mathcal{C})$, that is find $x^{\prime} \in K K(A, \mathcal{C})$ such that $\left(e_{0}\right)_{*}\left(x^{\prime}\right)=x$ and restrict this lift to $K K(A, C)$, that is evaluate $x "=\left(e_{1}\right)_{*}\left(x^{\prime}\right)$. It follows from the properties of the product that $x^{\prime \prime}=x \otimes y$.

Examples 59. Consider the tangent groupoid $\mathcal{G}_{\mathbb{R}}$ of \mathbb{R} and let $\delta=\left[e_{0}\right]^{-1} \otimes\left[e_{1}\right] \otimes \mu$ be the associated deformation element: $e_{0}: C^{*}\left(\mathcal{G}_{\mathbb{R}}\right) \rightarrow C^{*}(T \mathbb{R}) \simeq C_{0}\left(\mathbb{R}^{2}\right)$ is evaluation at $t=0, e_{1}: C^{*}\left(\mathcal{G}_{\mathbb{R}}\right) \rightarrow C^{*}(\mathbb{R} \times \mathbb{R}) \simeq \mathcal{K}\left(L^{2}(\mathbb{R})\right) \simeq \mathcal{K}$ is evaluation at $t=1$ and $\mu=\left(L^{2}(\mathbb{R}), m, 0\right) \in K K(\mathcal{K}, \mathbb{C})$ gives the Morita equivalence $\mathcal{K} \sim \mathbb{C}$.

Let $\beta \in K K\left(\mathbb{C}, C_{0}\left(\mathbb{R}^{2}\right)\right)$ be the element used in paragraph 5.6.1. Then $\beta \otimes \delta$ is easy to compute. The lift $\beta^{\prime} \in K K\left(\mathbb{C}, C^{*}\left(\mathcal{G}_{\mathbb{R}}\right)\right)$ is produced using the pseudodifferential calculus for groupoids (see below) and can be presented as a family $\beta^{\prime}=\left(\beta_{t}\right)$ with:

$$
\beta_{0}=\beta ; t>0, \beta_{t}=\left(C^{*}\left(\mathbb{R} \times \mathbb{R}, \frac{d x}{t}\right), 1, \frac{1}{\sqrt{1+x^{2}+t^{2} \partial_{x}^{2}}}\left(\begin{array}{cc}
0 & x-t \partial_{x} \\
x+t \partial_{x} & 0
\end{array}\right)\right)
$$

Then after restricting at $t=1$ and applying the Morita equivalence; it just remains the index of the Fredholm operator appearing in β_{1}, that is +1 , and this proves $\beta \otimes \delta=1$.

Observe that by unicity of the inverse, we conclude that $\delta=\alpha$.
Examples 60. (Boundaries homomorphisms in long exact sequences) Let

$$
0 \rightarrow I \underset{i}{\rightarrow} A \underset{p}{\rightarrow} B \rightarrow 0
$$

be a short exact sequence of C^{*}-algebras either admitting a completely positive, norm decreasing linear section or assume that I, A, B are K-nuclear ([48]). Let $C_{p}=\left\{(a, \varphi) \in A \oplus C_{0}([0,1[, B) \mid p(a)=\varphi(0)\}\right.$ be the cone of the homomorphism $p: A \rightarrow B$ and denote by d the homomorphism: $C_{0}(] 0,1[, B) \hookrightarrow C_{p}$ given by $d(\varphi)=(0, \varphi)$ and by e the homomorphism: $I \rightarrow C_{p}$ given by $e(a)=(a, 0)$. Thanks to the hypotheses, $[e]$ is invertible in $K K$-theory. One can set $\delta=[d] \otimes[e]^{-1} \in$ $K K\left(C_{0}(\mathbb{R}) \otimes B, I\right)$ and using the Bott periodicity $C_{0}\left(\mathbb{R}^{2}\right) \underset{K K}{\sim} \mathbb{C}$ in order to identify:

$$
K K_{2}(C, D)=K K\left(C_{0}\left(\mathbb{R}^{2}\right) \otimes C, D\right) \simeq K K(C, D),
$$

the connecting maps in the long exact sequences:

$$
\begin{aligned}
\cdots & \rightarrow K K_{1}(I, D) \rightarrow K K(B, D) \xrightarrow{i^{*}} K K(A, D) \xrightarrow{p^{*}} K K(I, D) \rightarrow K K_{1}(B, D) \rightarrow \cdots \\
\cdots & \rightarrow K K_{1}(C, B) \rightarrow K K(C, I) \xrightarrow{i_{*}} K K(C, A) \xrightarrow{p_{*}} K K(C, B) \rightarrow K K_{1}(C, I) \rightarrow \cdots
\end{aligned}
$$

are given by the appropriate Kasparov products with δ.

Index theorems

6. Introduction to Pseudodifferential operators on groupoids

The historical motivation for developing the pseudodifferential calculus on groupoids comes from A. Connes, who introduced implicitly this notion for foliations. Later on, this calculus was axiomatized and studied on general groupoids by several authors [36, 37, 50].

The following example illustrate how the pseudodifferential calculus on groupoids arise in our approach of index theory. If P is a partial differential operator on \mathbb{R}^{n} :

$$
P(x, D)=\sum_{|\alpha| \leq d} c_{\alpha}(x) D_{x}^{\alpha}
$$

we may associate to it the following asymptotic operator:

$$
P(x, t D)=\sum_{|\alpha| \leq d} c_{\alpha}(x)\left(t D_{x}\right)^{\alpha}
$$

by introducing a parameter $t \in] 0,1]$ in front of each $\partial_{x_{j}}$. We use above the ordinary convention : $D_{x}^{\alpha}=\left(-i \partial_{x_{1}}\right)^{\alpha_{1}} \ldots\left(-i \partial_{x_{n}}\right)^{\alpha_{n}}$. We would like to give a (interesting) sense to the limit $t \rightarrow 0$. Of course we would not be very happy with $t D \rightarrow 0$.

To investigate this question, let us look at $P(x, t D)$ as a left multiplier on $C^{\infty}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$ rather than a linear operator on $C^{\infty}\left(\mathbb{R}^{n}\right)$:

$$
\begin{aligned}
P\left(x, t D_{x}\right) u(x, y) & =\int e^{(x-z) \cdot \xi} p(x, t \xi) u(z, y) d z d \xi \\
& =\int e^{\frac{x-z}{t} \cdot \xi} p(x, \xi) u(z, y) \frac{d z d \xi}{t^{n}} \\
& =\int e^{(X-Z) \cdot \xi} p(x, \xi) u(x-t(X-Z), x-t X) d Z d \xi
\end{aligned}
$$

In the last line we have introduced the notation $X=\frac{x-y}{t}$ and performed the change of variables $Z=\frac{z-y}{t}$.

At this point, assume that u depends also on t in the following way:

$$
u(x, y, t)=\widetilde{u}\left(y, \frac{x-y}{t}, t\right), \quad \widetilde{u} \in C^{\infty}\left(\mathbb{R}^{2 n} \times[0,1]\right)
$$

It follows:

$$
\begin{aligned}
P\left(x, t D_{x}\right) u(x, y) & =\int e^{(X-Z) \cdot \xi} p(x, \xi) \widetilde{u}(x-t X, Z, t) d Z d \xi \\
& \xrightarrow{t \rightarrow 0} \int e^{(X-Z) \cdot \xi} p(x, \xi) \widetilde{u}(x, Z, 0) d Z d \xi \\
& =P\left(x, D_{X}\right) \widetilde{u}(x, X, 0)
\end{aligned}
$$

Observations

- $P\left(x, D_{X}\right)$ is a partial differential operator in the variable X with constant coefficients, depending smoothly on a parameter x and with symbol coinciding with the one of $P\left(x, D_{x}\right)$ in the sense that: $\sigma\left(P\left(x, D_{X}\right)(x, X, \xi)=\right.$ $P(x, \xi)$. In particular, $P\left(x, D_{X}\right)$ is invariant by the translation $X \mapsto$ $X+X_{0}$. Of course, $P\left(x, D_{X}\right)$ is nothing else, up to a Fourier transform in X, than the symbol $P(x, \xi)$ of $P\left(x, D_{x}\right)$. In other words, denoting by $S_{X}\left(T \mathbb{R}^{n}\right)$ the space of smooth functions $f(x, X)$ rapidly decreasing in X
and by \mathcal{F}_{X} the Fourier transform with respect to the variable X, we have a commutative diagram:

where $P\left(x, D_{X}\right)$ acts as a left multiplier on the convolution algebra $S_{X}\left(T \mathbb{R}^{n}\right)$ and $P(x, \xi)$ acts as a left multiplier on the functions algebra $S_{\xi}\left(T^{*} \mathbb{R}^{n}\right)$ (equipped with the pointwise multiplication of functions).
- u and \widetilde{u} are related by the bijection:

$$
\begin{array}{rccc}
\phi: \quad \mathbb{R}^{2 n} \times[0,1] & \longrightarrow & \mathcal{G}_{\mathbb{R}^{2} n} \\
& \longrightarrow x, X, t) & \longmapsto & (x+t X, x, t) \text { if } t>0 \\
& (x, X, 0) & \longmapsto & (x, X, 0)
\end{array}
$$

$\left(\phi^{-1}(x, y, t)=(y,(x-y) / t, t), \phi^{-1}(x, X, 0)=(x, X, 0)\right)$. In fact, the smooth structure of the tangent groupoid $\mathcal{G}_{\mathbb{R}^{2} n}$ is defined by requiring that ϕ is a diffeomorphism. Thus $\widetilde{u} \in C^{\infty}\left(\mathbb{R}^{2 n} \times[0,1]\right)$ means $u \in C^{\infty}\left(\mathcal{G}_{\mathbb{R}^{n}}\right)$.
Thus $P\left(x, D_{X}\right)$ is another way to look at, and even, another way to define, the symbol of $P\left(x, D_{x}\right)$. What is important for us is that it appears as a "limit" of a family P_{t} constructed with P, and the pseudodifferential calculus on the tangent groupoid of \mathbb{R}^{n} will make us able to give a rigorous meaning to this limit and perform interesting computations.

The material below is taken from $[36,37,50]$. Let G be a Lie groupoid, with units space $G^{(0)}=V$ and with a smooth (right) Haar system $d \lambda$. We assume that V is a compact manifold and that the s-fibers $G_{x}, x \in V$, have no boundary. We denote by U_{γ} the map induced on functions by right multiplication by γ, that is:

$$
U_{\gamma}: C^{\infty}\left(G_{s(\gamma)}\right) \longrightarrow C^{\infty}\left(G_{r(\gamma)}\right) ; U_{\gamma} f\left(\gamma^{\prime}\right)=f\left(\gamma^{\prime} \gamma\right)
$$

Definition 61. A G-operator is a continuous linear map $P: C_{c}^{\infty}(G) \longrightarrow C^{\infty}(G)$ such that:
(i) P is given by a family $\left(P_{x}\right)_{x \in V}$ of linear operators $P_{x}: C_{c}^{\infty}\left(G_{x}\right) \rightarrow C^{\infty}\left(G_{x}\right)$ and:

$$
\forall f \in C_{c}^{\infty}(G), \quad P(f)(\gamma)=P_{s(\gamma)} f_{s(\gamma)}(\gamma)
$$

where f_{x} stands for the restriction $\left.f\right|_{G_{x}}$.
(ii) The following invariance property holds:

$$
U_{\gamma} P_{s(\gamma)}=P_{r(\gamma)} U_{\gamma}
$$

Let P be a G-operator and denote by $k_{x} \in C^{-\infty}\left(G_{x} \times G_{x}\right)$ the Schwartz kernel of P_{x}, for each $x \in V$, as obtained from the Schwartz kernel theorem applied to the manifold G_{x} provided with the measure $d \lambda_{x}$.

Thus, using the axiom [i]:

$$
\forall \gamma \in G, f \in C^{\infty}(G), \quad P f(\gamma)=\int_{G_{x}} k_{x}\left(\gamma, \gamma^{\prime}\right) f\left(\gamma^{\prime}\right) d \lambda_{x}\left(\gamma^{\prime}\right), \quad(x=s(\gamma))
$$

Next:

$$
U_{\gamma} P f\left(\gamma^{\prime}\right)=P f\left(\gamma^{\prime} \gamma\right)=\int_{G_{x}} k_{x}\left(\gamma^{\prime} \gamma, \gamma^{\prime \prime}\right) f\left(\gamma^{\prime \prime}\right) d \lambda_{x}\left(\gamma^{\prime \prime}\right), \quad(x=s(\gamma))
$$

and

$$
\begin{array}{rll}
P\left(U_{\gamma} f\right)\left(\gamma^{\prime}\right) & =\int_{G_{y}} k_{y}\left(\gamma^{\prime}, \gamma^{\prime \prime}\right) f\left(\gamma^{\prime \prime} \gamma\right) d \lambda_{y}\left(\gamma^{\prime \prime}\right), & (y=r(\gamma)) \\
\eta=\stackrel{\gamma}{ }_{\prime \prime} \gamma & \int_{G_{x}} k_{y}\left(\gamma^{\prime}, \eta \gamma^{-1}\right) f(\eta) d \lambda_{x}(\eta), & (x=s(\gamma))
\end{array}
$$

where the last line uses the invariance property of Haar systems. Thus axiom [ii] is equivalent to the following equalities of distributions on $G_{x} \times G_{x}$, for all $x \in V$:

$$
\forall \gamma \in G, \quad k_{x}\left(\gamma^{\prime} \gamma, \gamma^{\prime \prime}\right)=k_{y}\left(\gamma^{\prime}, \gamma^{\prime \prime} \gamma^{-1}\right) \quad(x=s(\gamma), y=r(\gamma))
$$

Setting $k_{P}(\gamma):=k_{s(\gamma)}(\gamma, s(\gamma))$, we get $k_{x}\left(\gamma, \gamma^{\prime}\right)=k_{P}\left(\gamma \gamma^{\prime-1}\right)$, and the linear operator $P: C_{c}^{\infty}(G) \rightarrow C^{\infty}(G)$ is given by:

$$
P(f)(\gamma)=\int_{G_{x}} k_{P}\left(\gamma \gamma^{\prime-1}\right) d \lambda_{x}\left(\gamma^{\prime}\right) \quad(x=s(\gamma))
$$

and we may consider k_{P} as a single distribution on G acting on smooth functions on G by convolution. With a slight abuse of terminology, we will refer to k_{P} as the Schwartz (or convolution) kernel of P.

We will say that P is smoothing if $k_{P} \in C^{\infty}(G)$ and is compactly supported or uniformly supported if k_{P} is compactly supported (which implies that each P_{x} is properly supported).

Let us develop some examples of G operators.
Examples 62. (1) if $G=G^{(0)}=V$ is just a set, then $G_{x}=\{x\}$ for all $x \in V$. The axiom [ii] is empty and the axiom [ii] implies that a G-operator is given by pointwise multiplication by a smooth function $P \in C^{\infty}(V)$: $P f(x)=P(x) . f(x)$.
(2) $G=V \times V$ the pair groupoid, and the Haar system $d \lambda$ is given in the obvious way by a single measure $d y$ on V :

$$
d \lambda_{x}(y)=d y \text { under the identification } G_{x}=V \times\{x\} \simeq V
$$

It follows that for any G-operator P :

$$
\operatorname{Pg}(z, x)=\int_{V \times\{x\}} k_{P}(z, y) g(y, x) d \lambda_{x}(y, x)=\int_{V} k_{P}(z, y) g(y, x) d y
$$

which proves immediately that $P_{x}=P_{y}$ are equal as linear operators on $C^{\infty}(V)$ under the obvious identifications $V \simeq V \times\{x\} \simeq V \times\{y\}$.
(3) Let $p: X \rightarrow Z$ a submersion, and $G=X \underset{Z}{\times} X=\{(x, y) \in X \times X \mid p(x)=$ $p(y)\}$ the associated subgroupoid of the pair groupoid $X \times X$. The manifold G_{x} can be identified with the fiber $p^{-1}(p(x))$. The axiom [ii] implies that for any G-operator P, we have $P_{x}=P_{y}$ as linear operators on $p^{-1}(p(x))$ as soon as $y \in p^{-1}(p(x))$. Thus, P is actually given by a family $\tilde{P}_{z}, z \in Z$ of operators on $p^{-1}(z)$, with the relation $P_{x}=\tilde{P}_{p(x)}$.
(4) Let $G=E$ be the total space of a (euclidean, hermitian) vector bundle $p: E \rightarrow V$, with $r=s=p$. The Haar system $d_{x} w, x \in V$, is given by the metric structure on the fibers of E. We have here:

$$
P f(v)=\int_{E_{x}} k_{P}(v-w) f(w) d_{x} w \quad(x=p(v))
$$

Thus, for all $x \in V, P_{x}$ is a convolution operator on the linear space E_{x}.
(5) Let $\left.\left.G=\mathcal{G}_{V}=T V \times\{0\} \sqcup V \times V \times\right] 0,1\right]$ be the tangent groupoid of V. It can be viewed as a family parametrized by $[0,1]$ of groupoids G_{t}, where $G_{0}=T V$ and $G_{t}=V \times V$ for $t>0$. A \mathcal{G}_{V}-operator is given by a family P_{t} of G_{t}-operators, and $\left(P_{t}\right)_{t>0}$ is a family parametrized by t of operators on $C_{c}^{\infty}(V)$ while P_{0} is a family parametrized by $x \in V$ of translation invariant operators on $T_{x} V$. The \mathcal{G}_{V}-operators are thus a blend of examples 2 and 4 .

We turn now to the definition of pseudodifferential operators on a Lie groupoid G.

Definition 63. A G-operator P is a G-pseudodifferential operator of order m if:
(1) The Schwartz kernel k_{P} is smooth outside $G^{(0)}$.
(2) For every distinguished chart $\psi: U \subset G \rightarrow \Omega \times s(U) \subset \mathbb{R}^{n-p} \times \mathbb{R}^{p}$ of G :

the operator $\left(\psi^{-1}\right)^{*} P \psi^{*}: C_{c}^{\infty}(\Omega \times s(U)) \rightarrow C_{c}^{\infty}(\Omega \times s(U))$ is a smooth family parametrized by $s(U)$ of pseudodifferential operators of order m on Ω.

We will use very few properties of this calculus. We content ourselves with some examples and a list of properties. The reader can find a complete presentation in [50, 49, 37, 36, 35].

Examples 64. In the previous five examples, a G-pseudodifferential operator is:
(1) an operator of pointwise multiplication by a smooth function on V;
(2) a single pseudodifferential operator on V;
(3) a smooth family parametrized by Z of pseudodifferential operators in the fibers: it is exactly the notion of [7];
(4) a family parametrized by $x \in V$ of convolution operators in E_{x} such that the underlying distribution k_{P} identifies with the Fourier transform of a symbol on E (that is, a smooth function on E satisfying the standard decay conditions with respect to its variable in the fibers);
(5) the data provided by an asymptotic pseudodifferential operator on V together with one of its complete symbol, the choice of it depending on the gluing in \mathcal{G}_{V} : it is quite close from the notions studied in [23, 8, 22]

A G-pseudodifferential operator P has a compact support if there exists a compact set $K \subset G$ such that $\operatorname{supp}(P f) \subset K \cdot \operatorname{supp}(f)$ for all $f \in C_{c}^{\infty}(G)$. It turns out that the space $\Psi_{c}^{*}(G)$ of compactly supported G-pseudodifferential operators is an involutive algebra.

The principal symbol of a G-pseudodifferential operator P of order m is defined as a function $\sigma_{m}(P)$ on $A^{*}(G) \backslash G^{(0)}$ by:

$$
\sigma_{m}(P)(x, \xi)=\sigma_{p r}\left(P_{x}\right)(x, \xi)
$$

where $\sigma_{p r}\left(P_{x}\right)$ is the principal symbol of the pseudodifferential operator P_{x} on the manifold G_{x}. Conversely, given a symbol f of order m on $A^{*}(G)$ together with the following data:
(1) A smooth embedding $\theta: \mathcal{U} \rightarrow A G$, where \mathcal{U} is a open set in G containing $G^{(0)}$, such that $\theta\left(G^{(0)}\right)=G^{(0)}$ and $\theta(\gamma) \in A_{s(\gamma)} G$ for all $\gamma \in \mathcal{U}$;
(2) A smooth compactly supported map $\phi: G \rightarrow \mathbb{R}_{+}$such that $\phi^{-1}(1)=G^{(0)}$; we get a G-pseudodifferential operator $P_{f, \theta, \phi}$ by the formula:
$u \in C_{c}^{\infty}(G), P_{f, \theta, \phi} u(\gamma)=\int_{\substack{\gamma^{\prime} \in G_{s}(\gamma), \xi \in A_{r(\gamma)}^{*}(G)}} e^{-i \theta\left(\gamma^{\prime} \gamma^{-1}\right) \cdot \xi} f(r(\gamma), \xi) \phi\left(\gamma^{\prime} \gamma^{-1}\right) u\left(\gamma^{\prime}\right) d \lambda_{s(\gamma)}\left(\gamma^{\prime}\right)$
The principal symbol of $P_{f, \theta, \phi}$ is just the leading part of f.
The principal symbol map respects products. An operator is elliptic when its principal symbol never vanishes and in that case it has a parametrix inverting it modulo $\Psi_{c}^{-\infty}(G)=C_{c}^{\infty}(G)$.

Operators of negative order in $\Psi_{c}^{*}(G)$ are actually in $C^{*}(G)$, while zero order operators are in the multiplier algebra $\mathcal{M}\left(C^{*}(G)\right)$.

All these definitions and properties extend immediately to the case of operators acting between sections of bundles on $G^{(0)}$ pulled back to G with the range map r. The space of compactly supported pseudodifferential operators on G acting on sections of $r^{*} E$ and taking values in sections of $r^{*} F$ will be noted $\Psi_{c}^{*}(G, E, F)$. If $F=E$ we get an algebra denoted by $\Psi_{c}^{*}(G, E)$.

Examples 65. (1) The family given by $P_{t}=P\left(x, t D_{x}\right)$ for $t>0$ and $P_{0}=$ $P\left(x, D_{X}\right)$ described in the introduction of this section is a G-pseudodifferential operator with G the tangent groupoid of \mathbb{R}^{n}.
(2) More generally, let V be a closed manifold. Let f be a symbol on V. We get a \mathcal{G}_{V}-pseudodifferential operator P by setting:

$$
\begin{gathered}
(t>0) \quad P_{t} u(x, y, t)=\int_{z \in V, \xi \in T_{x}^{*} V} e^{\frac{\exp _{x}^{-1}(z)}{t}} \cdot \xi \\
P_{0} u(x, \xi) u(z, y) \frac{d z d \xi}{t^{n}} \\
\int_{Z \in T_{x} V, \xi \in T_{x}^{*} V} e^{(X-Z) \cdot \xi} f(x, \xi) u(x, Z) d Z d \xi
\end{gathered}
$$

Moreover, P_{1} is a pseudodifferential operator on the manifold V which admits f as a complete symbol.

7. Index theorem for smooth manifolds

The purpose of this last lecture is to present a proof of the Atiyah-Singer index theorem using deformation groupoids and show how it generalizes to conical pseudomanifolds. The results presented here come from recent works of the authors together with a joint work with V. Nistor [19, 20, 18], we refer to [19, 20] for the proofs.

The $K K$-element associated to a deformation groupoid

Before going to the description of the index maps, let us describe a useful and classical construction [13, 27].
A smooth groupoid G is called a deformation groupoid if:

$$
\left.\left.G=G_{1} \times\{0\} \cup G_{2} \times\right] 0,1\right] \rightrightarrows G^{(0)}=M \times[0,1]
$$

where G_{1} and G_{2} are smooth groupoids with unit space M. That is, G is obtained by gluing $\left.\left.\left.\left.G_{2} \times\right] 0,1\right] \rightrightarrows M \times\right] 0,1\right]$ which is the groupoid G_{2} over M parameterized by $] 0,1]$ with the groupoid $G_{1} \times\{0\} \rightrightarrows M \times\{0\}$.

In this situation one can consider the saturated open subset $M \times] 0,1]$ of $G^{(0)}$. Using the isomorphisms $\left.\left.C^{*}\left(\left.G\right|_{M \times] 0,1]}\right) \simeq C^{*}\left(G_{2}\right) \otimes C_{0}(] 0,1\right]\right)$ and $C^{*}\left(\left.G\right|_{M \times\{0\}}\right) \simeq C^{*}\left(G_{1}\right)$, we obtain the following exact sequence of C^{*}-algebras:

$$
0 \longrightarrow C^{*}\left(G_{2}\right) \otimes C_{0}([0,1]) \xrightarrow{i_{M \times j 0,1]}} C^{*}(G) \xrightarrow{e v_{0}} C^{*}\left(G_{1}\right) \longrightarrow 0
$$

where $i_{M \times] 0,1]}$ is the inclusion map and $e v_{0}$ is the evaluation map at 0 , that is $e v_{0}$ is the map coming from the restriction of functions to $\left.G\right|_{M \times\{0\}}$.
We assume now that $C^{*}\left(G_{1}\right)$ is nuclear. Since the C^{*}-algebra $\left.\left.C^{*}\left(G_{2}\right) \otimes C_{0}(] 0,1\right]\right)$ is contractible, the long exact sequence in $K K$-theory shows that the group homomorphism $\left(e v_{0}\right)_{*}=\cdot \otimes\left[e v_{0}\right]: K K\left(A, C^{*}(G)\right) \rightarrow K K\left(A, C^{*}\left(G_{1}\right)\right)$ is an isomorphism for each C^{*}-algebra A.
In particular with $A=C^{*}(G)$ we get that $\left[e v_{0}\right]$ is invertible in $K K$-theory: there is an element $\left[e v_{0}\right]^{-1}$ in $K K\left(C^{*}\left(G_{1}\right), C^{*}(G)\right)$ such that $\left[e v_{0}\right] \otimes\left[e v_{0}\right]^{-1}=1_{C^{*}(G)}$ and $\left[e v_{0}\right]^{-1} \otimes\left[e v_{0}\right]=1_{C^{*}\left(G_{1}\right)}$.
Let $e v_{1}: C^{*}(G) \rightarrow C^{*}\left(G_{2}\right)$ be the evaluation map at 1 and $\left[e v_{1}\right.$] the corresponding element of $K K\left(C^{*}(G), C^{*}\left(G_{2}\right)\right)$.
The $K K$-element associated to the deformation groupoid G is defined by:

$$
\delta=\left[e v_{0}\right]^{-1} \otimes\left[e v_{1}\right] \in K K\left(C^{*}\left(G_{1}\right), C^{*}\left(G_{2}\right)\right)
$$

We will see several examples of this construction in the sequel.

The analytical index

Let M be a closed manifold and consider its tangent groupoid:

$$
\left.\left.\mathcal{G}_{M}^{t}:=T M \times\{0\} \cup M \times M \times\right] 0,1\right] \rightrightarrows M \times[0,1]
$$

Let us construct the associated $K K$-element.
Using the partition $M \times[0,1]=M \times\{0\} \cup M \times] 0,1]$ into saturated open and closed subsets of the units space of the tangent groupoid, we get the following short exact sequence of C^{*}-algebras:

$$
0 \rightarrow C^{*}\left(\left.\mathcal{G}_{M}^{t}\right|_{M \times] 0,1]}\right) \xrightarrow{i} C^{*}\left(\mathcal{G}_{M}^{t}\right) \xrightarrow{e_{0}^{M}} C^{*}\left(\left.G_{M}^{t}\right|_{M \times\{0\}}\right) \rightarrow 0
$$

where i comes from the inclusion of functions and e_{0}^{M} is the evaluation map at 0. Moreover $\left.\left.\left.\left.C^{*}\left(\left.\mathcal{G}_{M}^{t}\right|_{M \times] 0,1]}\right)=C^{*}(M \times M \times] 0,1\right]\right) \simeq \mathcal{K}\left(L^{2}(M)\right) \otimes C_{0}(] 0,1\right]\right)$ and $C^{*}\left(\left.G_{M}^{t}\right|_{M \times\{0\}}\right)=C^{*}(T M) \simeq C_{0}\left(T^{*} M\right)$. Thus we have

$$
\left.\left.0 \rightarrow \mathcal{K}\left(L^{2}(M)\right) \otimes C_{0}(] 0,1\right]\right) \rightarrow C^{*}\left(\mathcal{G}_{M}^{t}\right) \xrightarrow{e_{0}^{M}} C_{0}\left(T^{*} M\right) \rightarrow 0
$$

Since the C^{*}-algebras involved here are nuclear, we can apply the six terms exact sequence associated to this exact sequence of C^{*}-algebras. We get that $\left(e_{0}^{M}\right)_{*}$ is invertible or in other words that $\left[e_{0}^{M}\right] \in K K\left(C^{*}\left(\mathcal{G}_{M}^{t}\right), C_{0}\left(T^{*} M\right)\right)$ is invertible and admits an inverse (with respect to the Kasparov product) $\left[e_{0}^{M}\right]^{-1} \in$ $K K\left(C_{0}\left(T^{*} M\right), C^{*}\left(\mathcal{G}_{M}^{t}\right)\right)$ 。
Let $e_{1}^{M}: C^{*}\left(\mathcal{G}_{M}^{t}\right) \rightarrow C^{*}\left(\left.\mathcal{G}_{M}^{t}\right|_{M \times\{1\}}\right) \simeq \mathcal{K}\left(L^{2}(M)\right)$ be the evaluation map at 1 . We define:

$$
\partial_{M}:=\left[e_{0}^{M}\right]^{-1} \otimes\left[e_{1}^{M}\right] \in K K\left(C_{0}\left(T^{*} M\right), \mathcal{K}\right) \simeq K K\left(C_{0}\left(T^{*} M\right), \mathbb{C}\right)
$$

The analytical index is then [13]

$$
\begin{array}{rlrl}
\operatorname{Inda}_{M}:=\left(e_{1}^{M}\right)_{*} \circ\left(e_{0}^{M}\right)_{*}^{-1}: & K K\left(\mathbb{C}, C_{0}\left(T^{*} M\right)\right) \rightarrow \quad K K\left(\mathbb{C}, \mathcal{K}\left(L^{2}(M)\right)\right. \\
& \simeq K_{0}\left(C_{0}\left(T^{*} M\right)\right) & \simeq \mathbb{Z}
\end{array}
$$

or in terms of Kasparov product

$$
I n d a_{M}=\cdot \otimes \partial_{M}
$$

Using the notion of pseudodifferential calculus for \mathcal{G}_{M}^{t}, it is easy to justify that this map is the usual analytical index map. Indeed, let $f(x, \xi)$ be an elliptic zero order symbol and consider the \mathcal{G}_{M}^{t}-pseudodifferential operator, $P_{f}=\left(P_{t}\right)_{0 \leq t \leq 1}$, defined as in example 65. Then f provides a K-theory class $[f] \in K_{0}\left(C^{*}(T M)\right) \simeq$ $K_{0}\left(C_{0}\left(T^{*} M\right)\right)$ while P provides a K-theory class $[P] \in K_{0}\left(C^{*}\left(\mathcal{G}_{M}^{t}\right)\right)$ and:

$$
\left(e_{0}^{M}\right)_{*}([P])=[f] \in K_{0}\left(C^{*}(T M)\right)
$$

Thus:

$$
[f] \otimes\left[e_{0}^{M}\right]^{-1} \otimes\left[e_{1}^{M}\right]=\left[P_{1}\right] \in K_{0}(\mathcal{K})
$$

and $\left[P_{1}\right]$ coincides with $\operatorname{Ind}\left(P_{1}\right)$ under $K_{0}(\mathcal{K}) \simeq \mathbb{Z}$.
Since P_{1} has principal symbol equal to the leading part of f, and since every class in $K_{0}\left(C_{0}\left(T^{*} M\right)\right)$ can be obtained with a zero order elliptic symbol, the claim is justified.
To be complete, let us explain that the analytical index map is the Poincaré dual of the homomorphism in K-homology associated with the obvious map: $M \rightarrow$ $\{\cdot\}$. Indeed, thanks to the obvious homomorphism $\Psi: C^{*}(T M) \otimes C(M) \rightarrow$ $C^{*}(T M)$ given by multiplication, ∂_{M} can be lifted into an element $D_{M}=\Psi_{*}\left(\partial_{M}\right) \in$ $K K\left(C^{*}(T M) \otimes C(M), \mathbb{C}\right)=K^{0}\left(C^{*}(T M) \otimes C(M)\right)$, called the Dirac element. This Dirac element yields the well known Poincaré duality between $C_{0}\left(T^{*} M\right)$ and $C(M)$ ($[14,30,19]$), and in particular it gives an isomorphism:

$$
\cdot \underset{C^{*}(T M)}{\otimes} D_{M}: K_{0}\left(C^{*}(T M)\right) \xrightarrow{\simeq} K^{0}(C(M))
$$

whose inverse is induced by the principal symbol map.
One can then easily show the following proposition:
Proposition 66. Let $q: M \rightarrow \cdot$ be the projection onto a point. The following diagram commutes:

The topological index

Take an embedding $M \rightarrow \mathbb{R}^{n}$, and let $p: N \rightarrow M$ be the normal bundle of this embedding. The vector bundle $T N \rightarrow T M$ admits a complex structure, thus we have a Thom isomorphism:

$$
T: K_{0}\left(C^{*}(T M)\right) \xrightarrow{\simeq} K_{0}\left(C^{*}(T N)\right)
$$

given by a $K K$-equivalence:

$$
T \in K K\left(C^{*}(T M), C^{*}(T N)\right)
$$

T is called the Thom element [29].
The bundle N identifies with an open neighborhood of M into \mathbb{R}^{n}, so we have the excision map:

$$
j: C^{*}(T N) \rightarrow C^{*}\left(T \mathbb{R}^{n}\right)
$$

Consider also: $B: K_{0}\left(C^{*}\left(T \mathbb{R}^{n}\right)\right) \rightarrow \mathbb{Z}$ given by the isomorphism $C^{*}\left(T \mathbb{R}^{n}\right) \simeq$ $C_{0}\left(\mathbb{R}^{2 n}\right)$ together with Bott periodicity.
The topological index map Ind_{t} is the composition:

$$
K\left(C^{*}(T M)\right) \xrightarrow{T} K\left(C^{*}(T N)\right) \xrightarrow{j_{*}} K\left(C^{*}\left(T \mathbb{R}^{n}\right)\right) \xrightarrow[\simeq]{\underline{\longrightarrow}} \mathbb{Z}
$$

This classical construction can be reformulated with groupoids.
First, let us give a description of T, or rather of its inverse, in terms of groupoids. Recall the construction of the Thom groupoid. We begin by pulling back $T M$ over N in the groupoid sense:

$$
\begin{gathered}
\text { Let : } \quad{ }^{*} p^{*}(T M)=N \underset{M}{N} T M \times N \not{ }_{M} N \rightrightarrows N . \\
\text { Let : } \left.\left.\quad \mathcal{T}_{N}=T N \times\{0\} \sqcup^{*} p^{*}(T M) \times\right] 0,1\right] \rightrightarrows N \times[0,1]
\end{gathered}
$$

This Thom groupoid and the Morita equivalence between ${ }^{*} p^{*}(T M)$ and $T M$ provides the $K K$-element:

$$
\tau_{N} \in K K\left(C^{*}(T N), C^{*}(T M)\right)
$$

This element is defined exactly as ∂_{M} is. Precisely, the evaluation map at 0 , $\tilde{e}_{0}: C^{*}\left(\mathcal{T}_{N}\right) \rightarrow C^{*}(T N)$ defines an invertible $K K$-element. We let $\tilde{e}_{1}: C^{*}\left(\mathcal{T}_{N}\right) \rightarrow$ $C^{*}\left({ }^{*} p^{*}(T M)\right)$ be the evaluation map at 1 . The Morita equivalence between the groupoids $T M$ and ${ }^{*} p^{*}(T M)$ leads to a Morita equivalence between the corresponding C^{*}-algebra and thus to a $K K$-equivalence $\mathcal{M} \in K K\left(C^{*}\left({ }^{*} p^{*}(T M)\right), C^{*}(T M)\right)$. Then

$$
\tau_{N}:=\left[\tilde{e}_{0}\right]^{-1} \otimes\left[\tilde{e}_{1}\right] \otimes \mathcal{M}
$$

We have the following:
Proposition 67. [20] If T is the KK-equivalence giving the Thom isomorphism then:

$$
\tau_{N}=T^{-1}
$$

This proposition also applies to interpret the isomorphism $B: K_{0}\left(C^{*}\left(T \mathbb{R}^{n}\right)\right) \rightarrow \mathbb{Z}$. Indeed, consider the embedding $\cdot \hookrightarrow \mathbb{R}^{n}$. The normal bundle is just $\mathbb{R}^{n} \rightarrow \cdot$ and we get as before:

$$
\tau_{\mathbb{R}^{n}} \in K K\left(C^{*}\left(T \mathbb{R}^{n}\right), \mathbb{C}\right)
$$

Using the previous proposition we get: $B=\cdot \otimes \tau_{\mathbb{R}^{n}}$.
Remark also that $\mathcal{T}_{\mathbb{R}^{n}}=\mathcal{G}_{\mathbb{R}^{n}}$.
Finally the topological index:

$$
\operatorname{Ind}_{t}=\tau_{\mathbb{R}^{n}} \circ j_{*} \circ \tau_{N}^{-1}
$$

is entirely described with (deformation) groupoids.

The equality of the indices

Everything in our presentation of index maps is given by Kasparov products with:
(1) classes of homomorphisms coming from restrictions/inclusions between groupoids,
(2) inverses of such classes,
(3) explicit Morita equivalences.

This implies the commutativity of:

Thus we recover:

$$
\operatorname{Ind}_{a}=\operatorname{Ind}_{t}
$$

8. The case of pseudomanifolds with isolated singularities

As we explained earlier, the proof of the K-theoretical form of the Atiyah-Singer presented in these lectures extends very easily to the case of pseudomanifolds with isolated singularities. This is achieved as soon as one uses the correct notion of tangent space of the pseudomanifold and for a pseudomanifold X with one conical point (the case of several isolated singularities is similar), this is the noncommutative tangent space defined in section 1.5:

$$
T^{\mathrm{S}} X=X^{-} \times X^{-} \cup T \overline{X^{+}} \rightrightarrows X^{\circ}
$$

It will replace in the sequel the ordinary tangent space of a smooth manifold. Moreover, it gives rise to another deformation groupoid which will replace the ordinary tangent groupoid of a smooth manifold:

$$
\left.\left.\mathcal{G}_{X}^{t}=T^{S} X \times\{0\} \cup X^{\circ} \times X^{\circ} \times\right] 0,1\right] \rightrightarrows X^{\circ} \times[0,1]
$$

We call \mathcal{G}_{X}^{t} the tangent groupoid of X. It can be provided with a smooth structure such that $T^{\mathrm{S}} X$ is a smooth subgroupoid. Moreover both are amenable so their reduced and maximal C^{*}-algebras coincide and are nuclear.

With these choices of $T^{\mathrm{S}} X$ as a tangent space for X and of \mathcal{G}_{X}^{t} as a tangent groupoid, one can follow step by step all the constructions made in the previous section.
8.1. The analytical index. Using the partition $\left.\left.X^{\circ} \times[0,1]=X^{\circ} \times\{0\} \cup X^{\circ} \times\right] 0,1\right]$ into saturated open and closed subsets of the units space of the tangent groupoid, we define the $K K$-element associated to the tangent groupoid of X :

$$
\partial_{X}:=\left[e_{0}\right]^{-1} \otimes\left[e_{1}\right] \in K K\left(C^{*}\left(T^{\mathrm{S}} X\right), \mathcal{K}\right) \simeq K K\left(C^{*}\left(T^{\mathrm{S}} X\right), \mathbb{C}\right)
$$

where $e_{0}: C^{*}\left(\mathcal{G}_{X}^{t}\right) \rightarrow C^{*}\left(\left.\mathcal{G}_{X}^{t}\right|_{X^{\circ} \times\{0\}}\right) \simeq C^{*}\left(T^{\mathrm{S}} X\right)$ is the evaluation at 0 and $e_{1}: C^{*}\left(\mathcal{G}_{X}^{t}\right) \rightarrow C^{*}\left(\left.\mathcal{G}_{X}^{t}\right|_{X^{\circ} \times\{1\}}\right) \simeq \mathcal{K}\left(L^{2}(X)\right)$ is the evaluation at 1.

Now we can define the analytical index exactly as we did for closed smooth manifolds. Precisely the analytical index for X is set to be the map:

$$
\operatorname{Ind}_{a}^{X}=\cdot \otimes \partial_{X}: K K\left(\mathbb{C}, C^{*}\left(T^{\mathrm{S}} X\right)\right) \rightarrow K K\left(\mathbb{C}, \mathcal{K}\left(L^{2}\left(X^{\circ}\right)\right)\right) \simeq \mathbb{Z}
$$

The interpretation of this map as the Fredholm index of an appropriate class of elliptic operators is possible and done in [32].
8.2. The Poincaré duality. Continuing the analogy with smooth manifolds, we explain in this paragraph that the analytical index map for X is Poincaré dual to the index map in K-homology associated to the obvious map : $X \rightarrow\{$.$\} .$
The algebras $C(X)$ and $C^{\bullet}(X):=\{f \in C(X) \mid f$ is constant on $c L\}$ are isomorphic. If g belongs to $C^{\bullet}(X)$ and f to $C_{c}\left(T^{\mathrm{S}} X\right)$, let $g \cdot f$ be the element of $C_{c}\left(T^{\mathrm{S}} X\right)$ defined by $g \cdot f(\gamma)=g(r(\gamma)) f(\gamma)$. This induces a *-morphism

$$
\Psi: C(X) \otimes C^{*}\left(T^{\mathrm{S}} X\right) \rightarrow C^{*}\left(T^{\mathrm{S}} X\right)
$$

The Dirac element is defined to be

$$
D_{X}:=[\Psi] \otimes \partial_{X} \in K K\left(C(X) \otimes C^{*}\left(T^{\mathrm{S}} X\right), \mathbb{C}\right)
$$

We recall
Theorem 68. [19] There exists a (dual-Dirac) element $\lambda_{X} \in K K(\mathbb{C}, C(X) \otimes$ $\left.C^{*}\left(T^{\mathrm{S}} X\right)\right)$ such that

$$
\begin{gathered}
\lambda_{X} \underset{C(X)}{\otimes} D_{X}=1_{C^{*}\left(T^{\mathrm{s} X)}\right.} \in K K\left(C^{*}\left(T^{\mathrm{s} X)}, C^{*}\left(T^{\mathrm{s}} X\right)\right),\right. \\
\lambda_{X} \underset{C^{*}\left(T^{\mathrm{s}} X\right)}{\otimes} D_{X}=1_{C(X)} \in K K(C(X), C(X))
\end{gathered}
$$

This means that $C(X)$ and $C^{*}\left(T^{\mathrm{S}} X\right)$ are Poincaré dual.
Remark 69. The explicit construction of λ_{X}, which is heavy and technical, can be avoided. In fact, the definitions of $T^{\mathrm{S}} X, \mathcal{G}_{X}^{t}$ and thus that of D_{X}, can be extended in a very natural way to the case of an arbitrary pseudomanifold and the proof of the Poincaré duality can be done using a recursive argument on the depth of the stratification, starting with the case depth $=0$, that is with the case of smooth closed manifolds. This is the subject of [18].

The theorem implies that:

$$
\begin{array}{ccc}
K K\left(\mathbb{C}, C^{*}\left(T^{\mathrm{S}} X\right)\right) \simeq K_{0}\left(C^{*}\left(T^{\mathrm{S}} X\right)\right) & \rightarrow & K(C(X), \mathbb{C}) \simeq K^{0}(C(X)) \\
x & \mapsto & x \underbrace{\otimes}_{C^{*}\left(T^{\mathrm{S}} X\right)} D_{X}
\end{array}
$$

is an isomorphism. It is explained in [32] how to in interpret its inverse as a principal symbol map, and one also get the analogue of proposition 66:

Proposition 70. Let $q: X \rightarrow$ be the projection onto a point. The following diagram commutes:

8.3. The topological index.

Thom isomorphism Take an embedding $X \hookrightarrow c \mathbb{R}^{n}=\mathbb{R}^{n} \times\left[0,+\infty\left[/ \mathbb{R}^{n} \times\{0\}\right.\right.$. This means that we have a map which restricts to an embedding in the usual sense $\left.X^{\circ} \rightarrow \mathbb{R}^{n} \times\right] 0,+\infty\left[\right.$ and which sends c to the image of $\mathbb{R}^{n} \times\{0\}$ in $c \mathbb{R}^{n}$. Moreover we ask the embedding on $\left.X^{-}=L \times\right] 0,1[$ to be of the form $j \times$ Id where j is an embedding of L in \mathbb{R}^{n}.

Such an embedding provides a conical normal bundle. Precisely, let p: N $\rightarrow X^{\circ}$ be the normal bundle associated with $\left.X^{\circ} \hookrightarrow \mathbb{R}^{n} \times\right] 0,+\infty\left[\right.$. We can identify $\left.N^{\circ}\right|_{X-} \simeq$ $\left.\left.N^{\circ}\right|_{L} \times\right] 0,1[$, and set :

$$
N=\left.\left.\bar{c} N^{\circ}\right|_{L} \cup N^{\circ}\right|_{X^{+}} .
$$

Thus N is the pseudomanifold with an isolated singularity obtained by gluing the closed cone $\left.\bar{c} N^{\circ}\right|_{L}:=\left.N^{\circ}\right|_{L} \times[0,1] /\left.N^{\circ}\right|_{L} \times\{0\}$ with $\left.N^{\circ}\right|_{X+}$ along their common boundary $\left.N^{\circ}\right|_{L} \times\{1\}=\left.N^{\circ}\right|_{\partial X+}$. Moreover $p: N \rightarrow X$ is a conical vector bundle. The Thom groupoid is then:

$$
\left.\left.\mathcal{T}_{N}=T^{\mathrm{S}} N \times\{0\} \sqcup^{*} p^{*}\left(T^{\mathrm{S}} X\right) \times\right] 0,1\right]
$$

It is a deformation groupoid. The corresponding $K K$-element gives the inverse Thom element:

$$
\tau_{N} \in K K\left(C^{*}\left(T^{\mathrm{S}} N\right), C^{*}\left(T^{\mathrm{S}} X\right)\right)
$$

Proposition 71. [20] The following map is an isomorphism.

$$
K\left(C^{*}\left(T^{\mathrm{S}} N\right)\right) \xrightarrow{\bullet \Delta \tau_{N}} K\left(C^{*}\left(T^{\mathrm{S}} X\right)\right)
$$

Roughly speaking, the inverse of $\cdot \otimes \tau_{N}$ is the Thom isomorphism for the "vector bundle" $T^{\mathrm{S}} N$ "over" $T^{\mathrm{S}} X$. One can show that it really restricts to usual Thom homomorphism on regular parts.
Excision The groupoid $T^{\mathrm{S}} N$ is identified with an open subgroupoid of $T^{\mathrm{S}} c \mathbb{R}^{n}$ and we have an excision map:

$$
j: C^{*}\left(T^{\mathrm{S}} N\right) \rightarrow C^{*}\left(T^{\mathrm{S}} \mathbb{R}^{n}\right)
$$

Bott element Consider $c \hookrightarrow c \mathbb{R}^{n}$.
The (conical) normal bundle is $c \mathbb{R}^{n}$ itself. Remark that $\mathcal{G}_{c \mathbb{R}^{n}}^{t}=\mathcal{T}_{c \mathbb{R}^{n}}$. Then

$$
\tau_{c \mathbb{R}^{n}} \in K K\left(C^{*}\left(T^{\mathrm{S}} c \mathbb{R}^{n}\right), \mathbb{C}\right)
$$

gives an isomorphism:

$$
B=\left(\cdot \otimes \tau_{c \mathbb{R}^{n}}\right): K_{0}\left(C^{*}\left(T^{\mathrm{S}} c \mathbb{R}^{n}\right)\right) \rightarrow \mathbb{Z}
$$

Definition 72. The topological index is the morphism

$$
\operatorname{Ind}_{t}^{X}=B \circ j_{*} \circ \tau_{N}^{-1}: K_{0}\left(C^{*}\left(T^{\mathrm{S}} X\right)\right) \rightarrow \mathbb{Z}
$$

One can make exactly the same proof as in the smooth case to get
Theorem 73.

$$
\operatorname{In} d_{a}^{X}=\operatorname{In} d_{t}^{X}
$$

References

[1] R. Almeida and P. Molino. Suites d'Atiyah et feuilletages transversalement complets. C.R.A.S. série I, 300 (1):13-15, 1985.
[2] C. Anantharaman-Delaroche and J. Renault. Amenable groupoids, volume 36 of Monographies de L'Enseignement Mathématique [Monographs of L'Enseignement Mathématique]. L'Enseignement Mathématique, Geneva, 2000. With a foreword by Georges Skandalis and Appendix B by E. Germain.
[3] W. Arveson. An invitation to C^{*}-algebras. Springer-Verlag, New York, 1976. Graduate Texts in Mathematics, No. 39.
[4] M. Atiyah. K-theory. New York and Amsterdam, 1967.
[5] M. Atiyah. Collected Works, vol. 2, 4. Oxford sciences publicatins, 1988.
[6] M. Atiyah and I. Singer. The index of elliptic operators I, III. Annals of Math., 87:484-530,546-604, 1968.
[7] M. Atiyah and I. Singer. The index of elliptic operators IV. Annals of Math., 93 :119-138, 1971.
[8] J. Block and J. Fox. Asymptotic pseudodifferential operators and index theory. Contemp. math., 105:1-31, 1990.
[9] J.P. Brasselet, G. Hector, and M. Saralegi. Théorème de de Rham pour les variétés stratifiées. Ann. Global Analy. Geom., 9(3):211-243, 1991.
[10] A. Connes. Sur la théorie non commutative de l'intégration. In Springer, editor, Algèbres d'opérateurs, volume 725 of Lecture Notes in Math., pages 19-143, 1979.
[11] A. Connes. A survey of foliations and operators algebras. In providence AMS, editor, Operator algebras and applications, Part 1, volume 38 of Proc. Sympos. Pure Math., pages 521-628, 1982.
[12] A. Cannas da Silva and A. Weinstein. Geometric Models for Noncommutative Algebras. Berkeley Math. Lecture Notes series, 1999.
[13] A. Connes. Noncommutative Geometry. Academic Press, 1994.
[14] A. Connes and G. Skandalis. The longitudinal index theorem for foliations. Publ. R.I.M.S. Kyoto Univ., 20:1139-1183, 1984.
[15] M. Crainic and R.L. Fernandes. Integrability of Lie brackets. An. of Math., 157:575-620, 2003.
[16] J. Cuntz and G. Skandalis. Mapping cones and exact sequences in $K K$-theory. J. Operator Theory, 15(1):163-180, 1986.
[17] C. Debord. Holonomy groupoids for singular foliations. J. of Diff. Geom., 58:467-500, 2001.
[18] C. Debord and J.-M. Lescure. k-duality for stratified pseudo-manifolds. Preprint 2007.
[19] C. Debord and J.-M. Lescure. k-duality for pseudomanifolds with isolated singularities. J. Functional Analysis, 219(1):109-133, 2005.
[20] C. Debord, J.-M. Lescure, and V. Nistor. Index theorem for stratified pseudo-manifolds. preprint arXiv:math/0609438 To appear in J. Reine Angew. Math., 2006.
[21] J. Dixmier. Les C^{*}-algèbres et leurs représentations. Gauthier-Villars, 1969.
[22] G. Elliott, T. Natsume, and R. Nest. The Atiyah-Singer index theorem as passage to the classical limit in quantum mechanics. Comm. Math. Phys., 182(3):505-533, 1996.
[23] E. Getzler. Pseudodifferential operators on supermanifolds and the Atiyah-Singer index theorem. Commun. Math. Phys., 92:163-178, 1983.
[24] M. Goresky and R. MacPherson. Intersection homology theory. Topology, 19:135-162, 1980.
[25] N. Higson. On the technical theorem of kasparov. Journal of functional analysis, 1987.
[26] N. Higson. A primer on $k k$-theory. Proceedings of Symposia in Pure Mathematics, 1990.
[27] M. Hilsum and G. Skandalis. Stabilité des C^{*}-algèbres de feuilletages. Ann. Inst. Fourier, 33:201-208, 1983.
[28] Bruce Hughes and Shmuel Weinberger. Surgery and stratified spaces. In Surveys on surgery theory, Vol. 2, volume 149 of Ann. of Math. Stud., pages 319-352. Princeton Univ. Press, Princeton, NJ, 2001.
[29] G.G. Kasparov. The operator K-functor and extensions of C^{*}-algebras. Izv. Akad. Nauk SSSR, Ser. Math., 44:571-636, 1980.
[30] G.G. Kasparov. Equivariant KK-theory and the Novikov conjecture. Invent. math., 91:147201, 1988.
[31] Mahmood Khoshkam and Georges Skandalis. Crossed products of C^{*}-algebras by groupoids and inverse semigroups. J. Operator Theory, 51(2):255-279, 2004.
[32] Jean-Marie Lescure. Elliptic symbols, elliptic operators and Poincaré duality on conical pseudomanifolds. To appear in the Journal of K-Theory.
[33] Kirill C. H. Mackenzie. General theory of Lie groupoids and Lie algebroids, volume 213 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 2005.
[34] John N. Mather. Stratifications and mappings. In Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971), pages 195-232. Academic Press, New York, 1973.
[35] B. Monthubert. Groupoids and pseudodifferential calculus on manifolds with corners. J. Funct. Anal., 199(1):243-286, 2003.
[36] B. Monthubert and F. Pierrot. Indice analytique et groupoïde de Lie. C.R.A.S Série 1, 325:193-198, 1997.
[37] V. Nistor, A. Weinstein, and P. Xu. Pseudodifferential operators on differential groupoids. Pacific J. of Math., 181(1):117-152, 1999.
[38] A. L. T. Paterson. Groupoids, inverse semigroups, and their operator algebras, volume 170 of Progress in Mathematics. Birkhäuser Boston Inc., Boston, MA, 1999.
[39] G.K. Pedersen. C^{*}-algebras and their automorphism groups. Academic Press, 1979.
[40] J. Pradines. Théorie de Lie pour les groupoïdes différentiables. C.R.A.S., 264 :245-248, 1967.
[41] J. Pradines. Géométrie différentielle au-dessus d'un groupoïde. C.R.A.S., 266 :1194-1196, 1968.
[42] J. Pradines. Troisième théorème de Lie pour les groupoïdes différentiables. C.R.A.S., 267 :21-23, 1968.
[43] B. Ramazan. Deformation, Quantization of Lie-Poisson Manifolds. PhD thesis, Université d'Orléans, 1998.
[44] J. Renault. A groupoid approach to C^{*}-algebras, volume 793 of Lecture Notes in Math. Springer-Verlag, 1980.
[45] J. Renault. c^{*}-algebras of groupoids and foliations. Proc. Sympos. Pure Math., 38:339-350, 1982.
[46] G. Skandalis. Hilbert modules. Cours de DEA, Paris 7, 1996.
[47] G. Skandalis. Kasparov's bivariant K-theory and applications. Expositiones mathematicae, 9:193-250, 1991.
[48] Georges Skandalis. Une notion de nucléarité en K-théorie (d'après J. Cuntz). K-Theory, 1(6):549-573, 1988.
[49] S. Vassout. Feuilletages et Résidu non Commutatif Longitudinal. PhD thesis, Université Paris VI, 2001.
[50] Stéphane Vassout. Unbounded pseudodifferential calculus on Lie groupoids. J. Funct. Anal., 236(1):161-200, 2006.
[51] A. Verona. Stratified mappings-structure and triangulability, volume 1102 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1984.
[52] N. E. Wegge-Olsen. K-theory and C^{*}-algebras. Oxford Science Publications. The Clarendon Press Oxford University Press, New York, 1993. A friendly approach.

[^0]: Date: January 23, 2008.

