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The results of a complete study of mistuning identification on an industrial blisk are presented. The identification method used
here is based on a model-updating technique of a reduced order. This reduced-order model is built using component mode
synthesis, and mistuning is introduced as perturbations of the cantilevered-blade modes. The measured modal data are extracted
from global measurements of the blisk’s forced response. As we use a single point excitation, this measurement procedure allows
the acquisition of all the modes of a given family with a quite simple experimental set-up. A selection of the best identified modal
data is finally performed. During the mistuning identification procedure, these measured data are regularized using an eigenvector
assignment technique which reduces the influence of eventual measurement errors. An inverse problem, based on the perturbed
(mistuned) modal equation, is defined with measured modes as input and mistuning parameters as unknown. Then, the reduced-
order model is updated with the identified mistuning, we first perform a correlation on modal responses (using eigenfrequency
deviation criteria and MACs). Finally, correlation results on forced responses are presented and discussed.
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1. INTRODUCTION

Mistuning of turbomachinery bladed disks refers to small
variations of structural or geometrical properties between
each sector. These variations may result from various causes
such as manufacturing process, material inhomogeneity or
eventually wear and are then inevitable [1]. The dynamics
of mistuned bladed disks can significantly differ from the
tuned case [2, 3]. In free response, mistuning results in a
nonuniform distribution (localization) of the vibratory en-
ergy around the structure. In forced response, resonant am-
plitudes of some blades are significantly increased due to this
localization phenomenon and this can lead to high-cycle fa-
tigue, wear or rupture in the worst cases.

From these considerations, mistuning needs to be con-
sidered in the design of bladed disk and several ways of inves-
tigations can be highlighted. First, representative models of
mistuned bladed disks need to be developed; however, since
the structure is no longer assumed to be cyclically symmetric,
this assumption cannot be used in the finite element model-
ing to reduce the size of the problem. Since the full (360◦)
FE modeling and calculations cannot be applied for obvious

reasons, component mode synthesis methods are now com-
monly used. An overview of existent methods can be found
for example in [4–8], where it can be seen that the compu-
tational costs are highly reduced when using reduced-order
models as compared to FE analysis and with some good ac-
curacy. In this paper, a classical component-mode synthesis
method adapted to cyclic structures will be used in order to
build a representative model of mistuned bladed disk.

Another issue concerning the study of mistuned bladed
disks is the ability to predict the resonant response to ran-
dom mistuning distribution. This is usually done through
statistical approaches [9, 10] where the use of ROMs become
imperative as well as some good knowledge of the mistuning
data (statistic or possibilistic). This last point is the subject of
this article. In effect, mistuning can only be known through
an experimental approach.

In bladed disk assemblies, measurements on the individ-
ual blades lead to both their natural frequencies and struc-
tural properties; then, in a first approximation, the mistun-
ing of the assembled bladed disk can be known. However,
concerning one-piece structures such as blisks (integrally
bladed disks), since blades cannot be removed for individual
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measurements and mistuning identification can only be
achieved through global measurements on the whole struc-
ture followed by a global model updating procedure. Mis-
tuning of bladed disks was studied experimentally by Judge
et al. [11] who verify the localization effects and amplifica-
tion of the forced response. In recent years, several methods
of mistuning identification were developed. Judge et al. [12]
have proposed an identification technique which uses mea-
surements of a system of modes and gives the mistuning
parameters of the reduced-order model proposed by Bladh
et al. [7]. Feiner and Griffin [13, 14] have proposed a method
of identification for a whole sector of a bladed disk based on
a reduced-order modelling method called fundamental mis-
tuning model, they also proposed a completely experimental
strategy. Another method, proposed by Pichot et al. [15] and
used is this study, is also based on a component mode synthe-
sis and uses an original technique of eigenvalue assignment
[16, 17] combined with a regularization technique which
minimizes the effect of measurement errors. This method
was numerically validated in [18].

This paper presents the results of a complete investigation
of mistuning identification on an industrial blisk in which
the mistuning is not a priori known. In the first part, we will
briefly present the mistuning identification technique used as
well as an associated modelling method of mistuning bladed
disks. The complete experimental investigations, adapted to
industrial blisks in regard to its simplicity procedure, are pre-
sented followed by the identification and model updating
procedures; then, the correlation results on modal and forced
responses are presented.

2. MODEL OF MISTUNED BLADED DISKS

2.1. Cyclic symmetry reduction

The dynamic behaviour of cyclic structures (or rotationally
periodic structures) can be analysed by considering only one
reference sector and applying appropriate boundary condi-
tions with the adjacent sectors, without any approximation.
Considering a structure with N sectors, the displacements of
any sector n can be related to the displacements of the refer-
ence sector 1 by the phase angle α = 2π/N as

u(n) = ℜ

N−1∑
p=0

ei(n−1)pαu
(1)
p , (1)

where u
(1)
p is the displacements vector of the reference sector

expressed in travelling wave coordinates for the phase num-
ber p (nodal diameter).

2.2. Component-mode synthesis

The use of reduced-order modelling techniques is now com-
mon to study the impact of mistuning in turbomachinery
bladed disks. In early developments, these took the form
of lumped-parameter modelling and now component-mode
synthesis methods are widely used. Various reduced-order
models have been proposed in the literature [4, 7, 19] and,

recently, some more efficient methods have been developed
which require fewer input data [5].

The method used in this study is similar to the compo-
nent mode substitution method of Benfield and Hruda [20],
and is adapted to bladed disk modelling. The main advantage
is that mistuning can be easily introduced as a perturbation
of the cantilevered-blade modes.

Theory

Considering a bladed-disk elementary sector, we define two
substructures which are the disk and the blade (and the asso-
ciated interface). The motion of the entire bladed disk is de-
scribed using two sets of modes: disk modes with loaded in-
terface (all nodal diameters) and cantilevered-blade modes;
both of these modal families being extracted from a finite-
element analysis.

The blade component modes are derived using a Craig-
Bampton technique [21], with

(i) Φb, a truncated series of normal modes of vibration
with fixed interface as boundary conditions;

(ii) Ψ, a set of constraint modes which are the static de-
formation shapes of the blade component obtained by
imposing successively a unit displacement on one in-
terface coordinate, while holding the remaining inter-
face coordinate fixed.

The physical displacement vector of a single blade is

ub = Φbqb + Ψu j . (2)

Then, using the cyclic extension procedure derived in Sec-
tion 2.1, we can express the displacement of all blades so that

ub = Φbqb + Ψu j . (3)

The displacement of the disk component is represented
by a truncation of normal modes with loaded interface ex-
pressed in travelling wave coordinates (for all possible nodal
diameters):

ud =
N−1∑
p=0

Φ
p
dq

p
d = Φdqd . (4)

Then, considering the displacement compatibility at the
interface, one finds

ub = Φbqb + ΨΦd, jqd, (5)

where Φd, j is the restriction of the disk modes in travelling
coordinates Φd to the interface degrees of freedom.

Assembling the substructures, the bladed disk’s displace-
ments are expressed as a function of the modal coordinates
q only (with no physical displacements of the interface re-
maining) and the transformation from physical coordinates
to generalized coordinates is done using the transformation
matrix T defined as

[
ub
ud

]
= T

[
qb
qd

]
with T =

[
Φb ΨΦd, j

0 Φd

]
. (6)
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Figure 1: FE model of the blisk.

Finally, the modal matrices are expressed:

K = TT

[
Kb 0
0 Kd

]
T =

[
Kbb Kbd

Kdb Kdd

]
, (7a)

M = TT

[
Mb 0
0 Md

]
T =

[
Mbb Mbd

Mdb Mdd

]
, (7b)

where the superscript T denotes the transposition.

Application on a blisk

In this study, we focus on the blisk whose finite-element
model is depicted in Figure 1 (elementary sector). This piece
is a low-pressure compressor stage blisk provided by Snecma
and has 24 blades with a rather complex geometry. This FE
model has around 180 000 degrees-of-freedom in each sec-
tor. The natural frequencies of this blisk are plotted against
the nodal diameter in Figure 2. The eigenfrequency/nodal di-
ameter representation is typical of bladed disks analysis. In
effect, as briefly described in Section 2.1, the modes of cyclic
structures have modes of nodal diameter type which can be,
using the (exact) cyclic symmetry reduction, studied sepa-
rately. Each nodal diameter family is independent from each
other which justifies the frequency/nodal diameter plot of
Figure 2.

A reduced-order model of this blisk is then constructed
using the technique presented in the previous section; the in-
put data of this model (i.e., the modes) were chosen so that
it correctly represents the behaviour of the first two modal
families of the blisk which are the first bending modes of the
blades. This reduced-order model has now 400 dof, which
are 10 cantilevered-blade modes and from 5 to 2 disk modes
in each nodal diameter.
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Figure 2: Frequency/nodal diameter diagram.

2.3. Mistuning representation

Of interest is to build a model of mistuned bladed disk that
accurately predicts modal or forced responses of a mistuned
structures. The issue is then how to model the variations
of structural properties (mistuning) to achieve this goal. As
pointed out by Mignolet et al. [22] among others, assuming
small perturbations, an accurate knowledge of all structural
parameters is not always necessary to get good predictions
of global responses. Rather, the identification of modal char-
acteristics can be sufficient. Several types of mistuning have
been defined in the literature, depending on which modal
properties are affected by mistuning. These are the frequency,
the damping, and the shape mistunings, each of these refer-
ring to changes in the natural frequencies, damping ratio,
or deformed shapes induced by structural mistuning. Gen-
erally, only frequency mistuning of the blades is considered,
assuming the disk to be symmetric. Then, mistuning is in-
troduced as perturbations pi of the Young’s modulus of in-
dividual blades. It is introduced a posteriori in the reduced
stiffness matrix in the blades elements (7a). The perturbed
stiffness matrix of the blades is then given by

Kbb = diag
(
1 + pi

)
⊗ Kbb. (8)

3. MISTUNING IDENTIFICATION TECHNIQUE

The mistuning identification technique used for this study
was presented by Pichot et al. [15, 18, 23]. This method aims
at updating the previous mistuned reduced-order model of
bladed disk. An inverse problem is defined using the equa-
tions of the reduced-order model and, given a set of mea-
sured (mistuned) modes and natural frequencies, the proper
mistuning parameters (p vector) can be found. This inverse
problem is then solved using a direct least-square procedure.

This type of approach is quite usual in model-updating
techniques and was used in previously mentioned works on
mistuning identification; Judge’s method is also based on a
component mode synthesis ROM whereas Feiner’s method
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is based on a non-CMS fundamental mistuning model. The
main feature of Pichot’s method is the use of a particular
regularization method for the measured data. This method
uses the eigenvalue assignment technique proposed by Lim
[16, 17]. This identification method and its implementa-
tion were validated numerically in Pichot’s works and will
be briefly reviewed in this part.

3.1. Inverse problem definition

The identification is done using the mistuned eigenvalue
equation expressed in modal coordinates (superscripts r),
which is

KMΦ
r =MΦ

r
Λ
r , (9)

where Φr and Λr are matrices containing reduced eigenvec-
tors and eigenvalues (extracted from measured FRFs), and
KM is the mistuned stiffness matrix expressed using (8) for
the whole structure as

KM = KT +
N∑

i=1

pi
iK (10)

and iK is the stiffness matrix of the ith blade.
Combining (9) and (10) leads to

N∑

i=1

pi
iKΦr =MΦ

r
Λ
r − KTΦ

r , (11)

which is the basic equation of the inverse problem. The mis-
tuned eigenvectors ϕr

j and associated natural frequencies ω j

are known inputs of the problem, and the mistuning param-
eters pi are the unknowns. Next, this base-equation (11) will
first be used in a filtering procedure of the measured modes
and then to identify the mistuned parameters.

3.2. Expansion-reduction steps for measured data

The experimental data often provide fewer information than
the model (reduced-order) to be updated; for example, not
all the modes of the family of interest can be identified. As
a consequence, an expansion of these measured data is re-
quired before we should compare them with FE model’s data
to be updated. Since this expansion procedure can be com-
putationally expensive when dealing with large FE models,
we perform this expansion step on a restricted number of
nodes and degrees of freedom. We choose a subset of nodes
in the FE model so that it properly represents the deformed
shape of the mode we study. The number of nodes required
depends on the target mode; usually, about a hundred nodes
provide a rather good representation of the global deformed
shape. As an example, the retained node for the first bending
mode as represented by red lozenges in Figure 3. The expan-
sion method used is a modal expansion:

(i) we search the expanded eigenvector ϕ as a linear com-
bination of analytical (tuned) eigenvectors Φ:

ϕ =

[
ϕm

ϕe

]
= Φq =

[
Φm

Φe

]
q, (12)

Figure 3: Retained nodes ♦ for the 1st mode.

where the subscripts m and e refer to measured dofs
and other dofs, respectively,

(ii) the vector q is calculated to minimize the error be-
tween the measured eigenvector ϕx and modal projec-
tion ϕm using a least square minimization:

q = Φ
+
mϕx, (13)

where the superscript + refers to the Moore-Penrose
pseudoinverse.

To sum up, starting from the measured modes ϕx, q is
calculated through (13) and then (12) is used to obtain the
expanded modes.

The main equation (11) of the mistuning identification
problem is expressed in generalized coordinates, so the mea-
sured eigenvectors previously expanded need to be trans-
formed in modal coordinates using (6):

ϕr = Tϕ. (14)

3.3. Eigenvalue assignment and
regularization techniques

As mentioned earlier, the first step of the identification pro-
cedure is filtering of the measured data in order to increase
their representativeness. This is done through an eigendata
assignment technique of all measured modes simultaneously.
The latter, presented by Lim et al. [16, 17], is called the best
achievable eigenvectors and consists in a projection of the
measured eigenvectors on a subspace spanned by the per-
turbed model. It is combined with a regularization of mea-
sured eigenvectors in order to eliminate part of measured
modes which are not realizable with mistuned model con-
sidered. Both methods are presented in this part.

Concerning the eigenvalue assignment, we start from
(11) expressed for each j eigenvectors ϕr

j separately, and
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assuming the mistuned natural frequencies to be distinct
from the tuned ones, we find

N∑

i=1

piE
−1
j

iKϕr
j = ϕr

j , (15)

where

E j =
(
ω2

jM − KT

)
. (16)

With (15), one can notice that each eigenvector can be in-
terpreted as a sum of vectors weighted by the mistuning pa-
rameters. As a consequence, (15) is rewritten in the following
matrix form:

L jγ j = ϕr
j , (17)

where

L j =
[
E−1
j · 1K E−1

j · 2K · · · E−1
j · NK

]
, (18)

γ j =
[
p1ϕ

r
j p2ϕ

r
j · · · pNϕ

r
j

]T
. (19)

With (17), one can now notice that ϕr
j must lie in the sub-

space spanned by the columns of L j , which are only depen-
dent of the tuned system matrices and of the eigenfrequency
ω j whereas both the mistuning parameters pi and jth eigen-
vector ϕr

j are included in the vector γ j . Equation (17) is how-

ever not verified in practice because of measurements noise
or nonlinearities not taken into account in the model. As a
consequence, a regularization step is required to achieve this
condition.

Regularization consists in the projection of each mea-
sured eigenvector ϕr

j on the subspace of the possible solu-
tions for the analytical mistuned system. For this, an optimal
vector γ j is calculated to satisfy (17):

γ j = L+
j ϕ

r
j , (20)

where the superscript + refers to the Moore-Penrose pseu-
doinverse, used when performing a least square minimiza-
tion.

Then combining (18) and (20), we find the final expres-
sion of the regularized eigenvector:

ϕ
r f
j = L jL

+
j ϕ

r
j . (21)

This equation defines the best achievable eigenvector, that is,
an eigenvector which is realizable with mistuning parameters
values pi.

Then the resolution is realized with the modal matrix of
filtered eigenvectors using (11):

N∑

i=1

pi
iKΦr f =MΦ

r f
Λ
r − KTΦ

r f . (22)

Figure 4: Global experimental set-up.

3.4. Identification of mistuning parameters

To solve the final mistuning problem defined by (22), a least
square fit strategy is used (which is quite usual in model up-
dating techniques and was also used in other mistuning iden-
tification techniques [13]). The aim is to determine parame-
ters pi, so they are isolated in a vector p:

L̂p = R, (23)

where

L̂ =

⎡
⎢⎢⎢⎢⎢⎢⎣

1Kϕ
r f
1

2Kϕ
r f
1 · · · NKϕ

r f
1

1Kϕ
r f
2

2Kϕ
r f
2 · · · NKϕ

r f
2

...
...

. . .
...

1Kϕ
r f
r

2Kϕ
r f
r · · · NKϕ

r f
r

⎤
⎥⎥⎥⎥⎥⎥⎦

,

R =

⎡
⎢⎢⎢⎢⎢⎢⎣

Mϕ
r f
1 ω2

1 − KTϕ
r f
1

Mϕ
r f
2 ω2

2 − KTϕ
r f
2

...

Mϕ
r f
r ω2

r − KTϕ
r f
r

⎤
⎥⎥⎥⎥⎥⎥⎦
.

(24)

This vector p is then estimated using a least square pro-
cedure:

p = L̂+R. (25)

In the following sections, the mistuning identifica-
tion technique will be applied to the blisk presented in
Section 2.2. First, the experimental investigations and the
identification of measured data will be detailed. Then the
results of the mistuning identification will be presented and
discussed.

4. EXPERIMENTAL INVESTIGATIONS

4.1. Measurements

Experimental set-up

The experimental set-up is depicted in Figure 4. The struc-
ture of interest is the blisk described in Figures 1 and 2. As
mentioned earlier, mistuning in bladed disks refers to small
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Figure 5: Excitation and force measurement.

perturbations of the structure’s characteristics. As a conse-
quence, we tried to avoid any external sources of perturba-
tion in the experimental procedure. First, we chose a non-
contacting measurement tool, which is a laser vibrometer.
Then, we preferred a free boundary condition of the struc-
ture (with “soft” links compared to the structure natural fre-
quencies) to a clamped one which may perturb the dynamics
of the structure with an additional stiffness not taken into ac-
count in the model. It is held using soft links (rubber tighten-
ers) which represent free boundary conditions. Also note that
using velocimetry techniques eliminates the eventual mea-
surement errors due to rigid body motions.

The blisk is excited using an electromagnetic shaker at
one point located inside the rim of the blisk; a force trans-
ducer is then used to measure the input force (see Figure 5).
We ensured that the additional mass (sensor) did not per-
turb the structure. In effect, we performed tests to study the
influence of an additional (small) mass located near the exci-
tation point on the dynamical response. The conclusion was
that the perturbation (a frequency shift smaller than 0.1%) is
far smaller than the phenomenon of interest here. Also, as the
blisk is, in essence, a very weakly damped structure, this disk
excitation provides sufficient level to excite the blades modes.

This experimental set-up described here is quite simple
and this may contrast with other works that use more sophis-
ticated procedure. We can, for example, mention the works
of Feiner and Griffin [24] or Judge et al. [25] who proposed
measurements on a nonfree structure with some travelling
excitations. These methods allow to measure each modes
with different nodal diameters separately whereas the present
strategy allows the measurements of all modes simultane-
ously. Both methods have some advantages and drawbacks,
the method with travelling excitations can limit the measure-
ments errors but the experimental set-up is more important;
the single-point excitation method is more adapted to indus-
trial applications due to its simplicity.

Measurement procedure

The method model updating for mistuning identification
proposed in this paper is based on the experimental knowl-
edge of a system of modes, that is, a family of bladed disk
modes for all nodal diameters in which the deformed shape
of the blades are identical. The single-point excitation de-
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Figure 6: Wide frequency band measurement on a blade.

scribed in the previous paragraph allows the observation of
all nodal diameter modes simultaneously in the frequency
bandwidth of interest. The first step of the measurement pro-
cedure is to do a measurement on a large frequency range.
In Figure 6, a global frequency response function (FRF) on
a blade is represented and we can distinguish several groups
of peaks each of which corresponding to a family of modes.
Then, identifying the associated deformed shape, we can iso-
late a family of modes to work with. Next, a more precise
measurement was done with a small frequency step,

∆ f

f
≈ 5.10−5. (26)

One point on each blade (top-leading edge) was measured.

4.2. Modal identification

The proposed mistuning identification method uses mea-
sured modes and eigenfrequencies to update the reduced-
order model. As a consequence, a modal identification of the
experimental data is required. For a given frequency range,
the identification was done on all measured FRFs simultane-
ously. The general expression of a transfer function from a
point i to a point l is

hil(ω) =
n∑

k=1

xikxlk
ω2
k − ω2 + 2 jωζk

. (27)

The first step is to identify the poles of the functions, then an
estimation of the residues xikxlk is performed on the whole
frequency band in order to fit all of the FRFs; a nonlinear
optimization can also be performed on the poles to refine
the identification. An example of identification for the first
bending mode family is shown in Figure 7 where both mea-
sured and identified FRF (on a point of a blade) are su-
perimposed together with the identified poles (in vertical
dashed lines). The first remark is that for this first bending
mode family the modal density is rather important. In effect,
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Figure 7: Modal identification.

the chosen type of excitation (fixed, single-point excitation)
leads to a response which includes all nodal diameter modes.
Concerning the modal identification, we can see, in this ex-
ample, that more poles were identified than the real number
of modes in the frequency range. In effect, there are theo-
retically at the maximum 24 modes (corresponding to each
possible nodal diameter) in the frequency range. The addi-
tional identified poles are necessary to properly fit the ex-
perimental curves. When the mistuning identification will be
performed, a choice among this modes will be necessary; this
will be detailed further.

5. IDENTIFICATION OF MISTUNING AND
MODEL UPDATING

In this section, we applied the mistuning identification tech-
nique described in Section 3 to the bladed disk. We first focus
on the blade’s first bending mode family to update the model
and find the associate mistuning parameter.

5.1. Identification results and correlation of
modal responses

As mentioned earlier, the identification of modal data from
the measured FRFs provides more poles than necessary, some
of them have no physical signification. For the first bending
mode, the modal identification provides 31 “modes” whereas
there are theoretically 24 modes. Then we have to find the
best set of modes to be retained. To find this optimal set of
measured modes, we applied an iterative procedure. Start-
ing from an initial (arbitrary) set of 20 measured modes and
performing the mistuning identification, we find a first set
of mistuning parameter (illustrated by symbol x in Figure 9).
The average value of the mistuning is −19.70% and the stan-
dard deviation is 1.243%. The mean mistuning is quite im-
portant. In effect, the structure used for the experiments was
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Figure 8: Modal correlation: 1st iteration.

an unfinished blisk (the blade geometry was not nominal due
to an incomplete manufacturing process), which explains
that the (tuned) FE model does not properly represent the
real structure. However, the standard deviation is quite typi-
cal of bladed disks.

Then we compare the modal response of the updated
model to the identified measured modes using a modal as-
surance criterion (MAC) matrix:

MAC(u, v) =

(
uT · v

‖u‖‖v‖

)2

. (28)

In Figure 8, we compare the modal correlation of the 24
modes given by the updated model to the 20 measured
modes used for the identification (Figure 8(a)) and to the
whole set of measured modes (Figure 8(b)).

It clearly appears that some of the measured modes
that we have not initially retained for the identification (see
Figure 8(b)) have a better correlation than some we have re-
tained.

These observations, based on the modal assurance cri-
teria, were then used as an empirical criterion for the op-
timal choice of measured data. The set of retained modes
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Table 1: Statistic values of identified mistuning at each iteration.

Iteration E, mean mist. σ , standard dev.

1 19.70% 1.243%

2 19.57% 1.299%

3 19.59% 1.278%
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Figure 9: Mistuning parameters (% frequency).

is then changed, including the initially nonretained modes
that present a better correlation and removing initially re-
tained modes that have a poor correlation. A new identifi-
cation/updating procedure is then performed. This iterative
procedure leads to the elimination of some of the errors of
measurement or of identification of modal data. In Figure 9,
the mistuning parameters for each of the three iterations
are represented and Table 1 gathers the statistical data of the
identified mistuning; the global distribution of the mistuning
among the blades is quite similar. However, if the mistuning
distribution changes significantly from iteration 1 to itera-
tion 2, the changes are minor in iteration 3 (see Figure 9).
Then the iterative procedure appears to have converged.

The final modal correlation is shown in Figure 10 to-
gether with a plot (Figure 11) of the error in natural fre-
quencies (normalized values and relative error) of updated
reduced-order model and the measured ones. The results of
these final iteration are acceptable. The maximum relative
error in natural frequency does not exceed 1% which indi-
cates that global frequency dispersion is well represented by
the identification method. The modal correlation (Figure 10)
shows some good correlations for some modes; however,
some disparities appear particularly in high modal density
regions. One explanation of these differences could be, as
mentioned earlier, the quite important value of the average
mistuning. This indicates that the FE model does not prop-
erly represent the virtual tuned model of the real blisk. This
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Figure 10: Modal correlation: final iteration.

can significantly affect the efficiency identification method
and in particular the expansion and eigendata assignment
steps since the measured data are projected on an achievable
mistuned model which is derived from the tuned FE model.
This issue is referred, in the literature, as a cyclic modelling
error and maybe the use of techniques to overcome this error
would increase the performance of the present method. The
CMS-based method of Judge et al. was recently improved
by including a cyclic correction procedure in [26]; on the
other hand, the completely experimental method of Feiner
and Griffin [27] also allows to overcome this problem.

5.2. Correlation of forced responses

In this final section, we present the correlation of the forced
responses. We compare the measured FRFs to the forced
response with the one point excitation computed with the
ROM updated with the mistuning parameters previously
identified. An example of correlation is shown in Figure 12.
We can see that most of the peaks are correctly represented
and located by the updated model and that the frequency de-
viation between the two curves is small in most cases. One
can notice some differences in term of level between the ex-
periment and the updated ROM. Several facts can explain
these differences. First, the selection strategy for the identi-
fied modes described in Section 5.1 presents some difficul-
ties and potential inaccuracy in this step can explain part of
the observed discrepancies. However, the main reason may
be an incorrect modelling of the damping in the ROM. In ef-
fect, since only the frequency mistuning has been identified,
an arbitrary damping factor was introduce in the forced re-
sponse simulations. It appears, from the identified/measured
FRF, that the modal damping can vary significantly among
the modes of a given family (about 40% from the mean
value in worst cases); this, and the fact that this structure
is very weakly damped, can explain some of the level differ-
ences in Figure 12. In contrast with these results, some au-
thors (see, e.g., [13]) have presented test cases on dedicated
test structures with controlled mistuning and some updat-
ing results with better correlation. Also, both the facts that
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the structure of interest in this paper appears more complex
and that the FE model exhibits significant differences with
the real structures can explain the inferior correlation pre-
sented here. However, regarding these results, the approxi-
mation made on the damping mistuning appears acceptable
from an industrial point of view since the global dynamics
of the mistuned bladed disk is quite well estimated. In effect,
both the frequency dispersion and the amplification of the vi-
bration level in blade due to mistuning are identified at least
from a statistical point of view. This allows some statistical
studies to be conducted using these identified information.

6. CONCLUSIONS

The results of an experimental investigation to identify the
mistuning properties of a realistic industrial blisk (integrally
bladed disk) was presented. The method of mistuning iden-
tification consists in updating a reduced-order model built
using a component mode synthesis method with measure-
ments of a system of modes of the structure as input. The ex-
perimental protocol is well adapted to industrial applications
since it involves usual testing materials and since all modes
of a given family can be measured simultaneously. One fea-
ture of the updating procedure presented and used in this
paper is the regularization and eigenvalue assignment tech-
niques which ensure a better representativeness of the mea-
sured data and increase the robustness of the method to mea-
surement error.

The results of identification are acceptable regarding the
modal correlation as well as the forced response correlation.
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tuning parameters identification of a bladed disk,” Key Engi-
neering Materials, vol. 204, no. 2, pp. 123–132, 2001.

[16] T. W. Lim and T. A. L. Kashangaki, “Structural damage detec-
tion of space truss structures using best achievable eigenvec-
tors,” AIAA Journal, vol. 32, no. 5, pp. 1049–1057, 1994.

[17] T. W. Lim, “Structural damage detection using constrained
eigenstructure assignment,” Journal of Guidance, Control, and
Dynamics, vol. 18, no. 3, pp. 411–418, 1995.

[18] F. Pichot, D. Laxalde, J.-J. Sinou, F. Thouverez, and J.-P. Lom-
bard, “Mistuning identification for industrial blisks based
on the best achievable eigenvector,” Computers & Structures,
vol. 84, no. 29-30, pp. 2033–2049, 2006.

[19] R. Bladh, M. P. Castanier, and C. Pierre, “Component-mode-
based reduced order modeling techniques for mistuned bladed
disks—part 2: application,” Journal of Engineering for Gas Tur-
bines and Power, vol. 123, no. 1, pp. 100–108, 2001.

[20] W. A. Benfield and R. F. Hruda, “Vibration analysis of struc-
tures by component mode substitution,” AIAA Journal, vol. 9,
no. 7, pp. 1255–1261, 1971.

[21] R. R. Craig and M. C. C. Bampton, “Coupling of substructures
for dynamical analysis,” AIAA Journal, vol. 6, no. 7, pp. 1313–
1319, 1968.

[22] M. P. Mignolet, A. J. Rivas-Guerra, and J. P. Delor, “Identi-
fication of mistuning characteristics of bladed disks from free
response data—part 1,” Journal of Engineering for Gas Turbines
and Power, vol. 123, no. 2, pp. 395–403, 2001.

[23] F. Pichot, Identification du désaccordage des disques aubages
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