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Abstract

A new method for determining the overall behavior of composite materials com-
prised of nonlinear inelastic constituents is presented. Upon use of an implicit time-
discretization scheme, the evolution equations describing the constitutive behavior
of the phases can be reduced to the minimization of an incremental energy func-
tion. This minimization problem is rigorously equivalent to a nonlinear thermoe-
lastic problem with a transformation strain which is a nonuniform field (not even
uniform within the phases). In this first part of the study the variational technique
of Ponte Castañeda is used to approximate the nonuniform eigenstrains by piece-
wise uniform eigenstrains and to linearize the nonlinear thermoelastic problem. The
resulting problem is amenable to simpler calculations and analytical results for ap-
propriate microstructures can be obtained. The accuracy of the proposed scheme is
assessed by comparison of the method with exact results.

Key words: Composite, homogenization, nonlinear viscoelasticity,
elasto-viscoplasticity, variational method, random micro-structure,
Hashin-Shtrikman estimates.

1 Introduction

This study is devoted to the overall response of nonlinear composites com-
prised of phases which, when deformed, have a partly reversible and partly
irreversible behavior. This is the case of nonlinear viscoelastic constituents,
where both elastic and viscous effects are always present and coupled, and of
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elasto-viscoplastic or elasto-plastic constituents for which there exists a do-
main in stress space where the material behaves in a purely elastic manner,
and more generally of most engineering materials (Lemaitre and Chaboche,
1994).

Reversible effects are associated with a free-energy density which depends only
of the state variables of the material. It consists of all the energy available in
a given state of the system (at a given material point). The driving forces
(or thermodynamic forces) responsible for the evolution of the system, char-
acterized by changes in the state variables, are obtained by derivation of the
free-energy with respect to the state variables (Gibbs relations).

On the other hand, irreversibility is characterized by dissipation along an evo-
lution path of the system. Changes in the state variables are governed by the
aforementioned driving forces. A convenient (and commonly used) formulation
of the corresponding evolution equations for dissipative materials is based on
the assumption that they can be derived from a dissipation potential (see Rice,
1970, Halphen and Nguyen, 1975 or Germain et al., 1983, for a review). The
present study is conducted in this setting of constitutive relations which can
be deduced from two potentials, the free-energy function and the dissipation
potential.

The problem of predicting the effective response of heterogeneous materials
comprised of elasto-plastic or elasto-viscoplastic phases has been mainly ad-
dressed in the literature by numerical means (see Christman et al., 1989, Bao
et al., 1991, Fish and Shek, 1998, Gonzalez et al., 2004, to cite only a few).
However numerical simulations are not the objective of the present study but
will rather be used to assess the accuracy of the theoretical methods hereafter
proposed.

Regarding theoretical or analytical predictions, which are our main objective
here, several directions of research have been explored and it is worth men-
tioning how they differ from the present study.

(1) Elasto-plastic composites are mostly considered in the literature in the
framework of a deformation theory in which the actual incremental con-
stitutive relations for the phases are replaced by nonlinear elastic re-
lations. Within this approximation, classical micromechanical schemes,
such as the secant method, have been applied (see Chu and Hashin, 1971,
Berveiller and Zaoui, 1979, among others), as well as more recent homog-
enization techniques for nonlinear composites with one potential (see for
instance Li and Ponte Castañeda, 1993, Suquet, 1997 Bardella, 2003 and
Gonzalez et al., 2004, for particle-reinforced composites). These recent
homogenization methods are based on the existence of a single potential
and make use of the variational characterization of the local fields and of
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the effective potential. They include on the one hand rigorous bounds ob-
tained by variational methods, such as the generalization by Talbot and
Willis (1985) of the Hashin-Shtrikman technique, the variational method
of Ponte Castañeda (1992) and its subsequent interpretation as a modi-
fied secant method by Suquet (1995), Suquet (1997), and other equivalent
variational schemes based on convexity inequalities (Suquet, 1993, Olson,
1997). They also include estimates, which are exact to second-order in
the contrast of the phases, obtained by taking a Taylor expansion of the
potential (Ponte Castañeda, 1996, Ponte Castañeda, 2002). The notion
of a linear comparison composite is central in these studies.

However, the approximation on which the deformation theory of plas-
ticity is based is legitimate only when the loading is locally proportional
(i.e. at all material points in the volume element), the axes of princi-
pal stresses remaining fixed and the local stress being monotonically in-
creased with no unloading. This situation is very rarely met in composite
materials. The approximation of constant principal directions of stress at
each material point at the local level is a reasonable approximation (but
by no means an exact result) when the overall loading is itself propor-
tional but it becomes unrealistic in other circumstances when the loading
path involves a rotation of the principal axis of macroscopic stress. Simi-
larly, the assumption of monotone loading (at each local material point)
is acceptable (but not exact) as long as the macroscopic stress is ap-
plied monotonically, but is completely unrealistic under general loading
conditions with loading and unloading sequences. These limitations have
motivated the present study where the approximation of a deformation
theory is not made and where the incremental form of the actual consti-
tutive relations is taken into account.

(2) The Transformation Field Analysis (TFA) proposed by Dvorak (1992)
and implemented by different authors (Dvorak et al., 1994, Fish and Shek,
1998 among others) offers an elegant direction of research, in which the
incremental form of the constitutive relations is preserved. In this ap-
proach, the plastic strain (or more generally the transformation strain
which can be due to various effects such as thermal effects, plasticity,
phase transformation, damage....) is assumed to be uniform within each
individual phase in the composite. However, as is now well-recognized
(Suquet, 1997, Chaboche et al., 2001), this model leads to excessively
stiff predictions (which can be softened by subdividing each phase into
subdomains, at the expense of increasing the complexity of the model).
This excessive stiffness is due to the assumed uniformity of the trans-
formation strain in each phase which is unrealistic in practice (except in
very particular situations such as laminates or nonlinear inclusions in a
linear matrix). As will be shown in appendix A, the TFA can be obtained
as a special case of the present theory by enforcing the fields of internal
variables to be uniform per phase, which is a very crude approximation
from which the present study is free.
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(3) Linearization of the constitutive relations for nonlinear viscoelastic het-
erogeneous materials have been proposed by Li and Weng (1997), Mas-
son and Zaoui (1999), Brenner et al. (2002), Lévesque et al. (2004) and
Brenner and Masson (2005) (among others) to reduce the problem to a
simpler one for a linear viscoelastic comparison composite. The present
study is also based on an appropriate linearization of the constitutive re-
lations and the two parts of the paper make use of two different types of
linearization. But an essential difference with Masson and Zaoui (1999),
Brenner et al. (2002) and Brenner and Masson (2005) is that in these
previous studies, the stress history is computed at each time step from
the initial time t = 0 (and not from the previous time step) to the present
time. In other words, assume that the loading is imposed on a time in-
terval [0, T ] discretized into successive time-steps tn, tn+1... and that one
is interested in the response of the composite at tn+1, knowing the over-
all stress and strain at time tn. According to these previous studies, one
would have to determine an “equivalent” linear viscoelastic composite at
time tn+1 and compute the whole history of the stress and strain from 0
to tn+1 without using the stress and strain determined at time tn (see for
instance Lévesque et al. , 2004). By contrast, the present study is a true
step-by-step procedure and is radically different from the previous ones.
Here, the strain and internal variables in the composite are determined
at time tn+1 using the strain and internal variables at time tn and the
loading conditions at time tn+1.

(4) The special case of linear viscoelastic composites, which is a particular
case of the class of materials considered here for which the dissipation
potential is a quadratic function, deserves a special mention. There ex-
ists an abundant literature on the subject, mostly based on the corre-
spondence principle (see for instance Hashin, 1970). In this approach,
the equations governing the local state and the effective properties of
linear viscoelastic composites are, after application of the Laplace trans-
form, completely parallel to that of linear elastic composites with complex
moduli. Theoretical results and predictive schemes initially developed for
elastic composites can be therefore extended to viscoelastic composites
by the correspondence principle. One of these theoretical results is that
short memory effects in the individual constituents give rise, after homog-
enization, to long memory effects in the composite (Sanchez-Hubert and
Sanchez-Palencia, 1978 and Suquet, 1987). As a consequence of these long
memory effects, the overall stress at time t depends on the whole history
of the strain between times 0 and t. The exact effective constitutive rela-
tions require the storage at time t of an infinite number of informations
corresponding to the overall strains at all previous times. This result is
consistent with a more general result of Suquet (1987) which shows that
the exact effective relations of elasto-viscoplastic composites requires, in
general, the knowledge at time t of an infinite number of internal vari-
ables. This theoretical result is of limited practical use since a realistic
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effective constitutive relation should require only the knowledge of a finite
(and hopefully limited) number of informations. But this exact result has
the merit of highlighting the complexity of the homogenization procedure
when the local constituents exhibit both elastic and dissipative effects.
Reducing the size of necessary information cannot be achieved exactly in
general, but only within certain approximations. Therefore the question
which we are left with is not that of finding an exact theory (too am-
bitiou)s, but that of finding a set of approximations leading to accurate
results and to an easy implementation.

The paper is organized as follows. The constitutive relations of the individual
constituents are presented in section 2.1. An incremental variational principle
for a time-discretized version of the resulting evolution equations is derived in
section 2.2 at the local level and in section 3.2 at the level of the composite.
Variational incremental principles for dissipative, or elasto-plastic systems,
have been known for some time but have received for some time only little
attention. One of the first occurrence of such a variational principle in a form
close to the one that will be used here, can be found in Mialon (1986) for rate-
independent systems (other variational approaches can be found in Simo and
Hughes, 1998, chapter 4 and the references herein). Mialon (1986) established
a variational principle for bodies comprised of generalized standard materials
and used it to derive several computational algorithms for elasto-plasticity
with (or without) hardening. These algorithms (but not the variational prin-
ciples themselves) were subsequently applied to homogenization problems in
plasticity by Marigo et al. (1987). Recently (and independently) variational
principles similar in spirit to that of Mialon, but much more general in the
sense that they apply also to rate-dependent elasto-viscoplastic materials at fi-
nite strains, have been derived by Ortiz and Stainier (1999).A renewed interest
for incremental variational principles followed this paper, which not only gave
new directions for the time integration of rate-dependent or rate-independent
dissipative structures, but also opened new perspectives in the understand-
ing of the formation of microstructures in elastoplastic materials (Ortiz and
Repetto, 1999). The importance of these more recent variational principles
in homogenization of nonlinear materials has also been recognized by Miehe
(2002) and Miehe et al. (2002) who made several computational applications
of these principles to finite strain plasticity of composites or polycrystals with
evolving microstructures.

In the present study, these variational principles are used to derive approxi-
mate but almost analytical schemes for the prediction of the global response
and first and second-order statistics of the local fields in nonlinear dissipative
composites. The method is general and applies both to nonlinear viscoelastic
constituents, where elastic and viscous effects are always coupled, and elasto-
viscoplastic constituents (where there exists a domain in stress space inside
which the material behaves in a purely elastic manner). For brevity, the the-
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ory is illustrated here only in the case of nonlinear viscoelastic materials, but
applications to elasto-viscoplastic materials do exist and will be published
separately.

The exact and time-discretized effective constitutive relations are recalled in
section 3. The time-discretization allows us to reduce the problem with two
potentials to the minimization of a single potential for a nonlinear thermoe-
lastic body subjected to nonuniform eigenstrains (not even uniform within
each individual phase). The proposed approximation consists in replacing
the nonuniform eigenstrains by piecewise uniform (within in each individ-
ual phase) eigenstrains and in linearizing the thermoelastic composite. This
is done by a procedure close to the modified secant method of Suquet (1995)
(equivalent to the variational method of Ponte Castañeda (1992)). The re-
sulting thermoelastic problem is therefore a classical problem for a N -phase
composite. The accuracy of the proposed scheme is assessed in section 5 by
comparing the predictions of the scheme with exact results for two or three-
dimensional microstructures.

2 Individual constituents

2.1 Generalized standard materials

The composite materials considered in this study are comprised of individual
constituents exhibiting a dissipative behavior which can be modelled in the
more general framework of constitutive relations deriving from two thermo-
dynamic potentials. The main ingredients for such a model are threefold :

a) A finite number of internal variables α which, in addition to the observable
strain ε, describe the internal state of the material. Attention is limited here
to infinitesimal strains.

b) A free-energy function w(ε, α) which gives, for each possible state (ε, α)
of the system (material) the energy available to trigger its evolution. The
driving forces associated with the state variables are :

σ =
∂w

∂ε
(ε, α), A = −

∂w

∂α
(ε, α). (1)

c) A dissipation potential ϕ(α̇) which relates the evolution of the internal vari-
ables α to the driving forces :

A =
∂ϕ

∂α̇
(α̇), or equivalently α̇ =

∂ϕ∗

∂A
(A), (2)
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where ϕ∗ is the Legendre transform of ϕ. When the two potentials w and ϕ are
convex functions of their arguments (ε, α) and α̇ respectively), the material
governed by (1) and (2) is said to be a generalized standard material (Halphen
and Nguyen, 1975, Germain et al., 1983).

Upon elimination of A between (1) and (2), the constitutive relations of the
materials under consideration can be re-written as a system of two coupled
equations, one of them being a differential equation in time :

σ =
∂w

∂ε
(ε, α),

∂w

∂α
(ε, α) +

∂ϕ

∂α̇
(α̇) = 0. (3)

Most classical nonlinear viscoelastic or elasto-viscoplastic models can be for-
mulated in this general framework by appropriate choices of the potentials w
and ϕ (Germain et al., 1983, Lemaitre and Chaboche, 1994).

2.2 Incremental potential

The present section presents the extension to rate-dependent systems of the
variational principle of Mialon (1986) and Ortiz and Stainier (1999) in the
simplified framework of infinitesimal strains and of a fully implicit time-
integration scheme.

The time derivative in (3) can be approximated by a difference quotient after
use of an implicit Euler-scheme. The time interval of study [0, T ] is discretized
into time intervals t0 = 0, t1, ...., tn, tn+1, ..., tN = T . The time step tn+1 − tn
is denoted by ∆t (its dependence on n is omitted for simplicity). The time-
derivative of a function f at time tn+1 is replaced by the difference quotient
(f(tn+1) − f(tn))/∆t and the constitutive relations are written at the end of
the time step. This time-discretization procedure applied to (3) leads to the
discretized system :

σn+1 =
∂w

∂ε
(εn+1, αn+1),

∂w

∂α
(εn+1, αn+1) +

∂ϕ

∂α̇

(
αn+1 − αn

∆t

)
= 0. (4)

Assuming that the fields σn, εn and αn are known at time tn, the unknowns
σn+1, εn+1 and αn+1 at time tn+1 solve this discretized version of the system
(3). It is readily seen by taking the derivative of J defined in (5) with respect
to α that the second equation in (4) is the Euler-Lagrange equations for the
following variational problem (with solution αn+1):

Inf
α

J(εn+1, α), J(ε, α) = w(ε, α) + ∆t ϕ
(

α − αn

∆t

)
. (5)
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Then, defining the following potential :

w∆(ε) = Inf
α

J(ε, α), (6)

we obtain the following remarkable result which gives the stress as the deriva-
tive of a single potential with respect to the strain :

σn+1 =
∂w∆

∂ε
(εn+1). (7)

J and w∆ are respectively called the incremental potential and the condensed
incremental potential of the constituent under consideration.

In order to prove that relation (7) follows from (6) and (4), we note that the
derivative of w∆ with respect to ε reads as :

∂w∆

∂ε
(ε) =

∂J

∂ε
(ε, α) +

∂J

∂α
(ε, α) :

∂α

∂ε
, (8)

where α(ε) denotes the solution of the infimum problem in (6). The last term
in (8) vanishes by virtue of the stationarity of J with respect to α, and we
are left with :

∂w∆

∂ε
(ε) =

∂J

∂ε
(ε, α) =

∂w

∂ε
(ε, α). (9)

This relation, applied with ε = εn+1 gives (7).

Remark 1 : Under the assumption that w and ϕ are convex functions of
their arguments, the incremental potential J is a convex function of (α, ε)
and the condensed incremental potential w∆ is a convex function of ε. The
latter property follows from a general result (Ekeland and Temam, 1976, for
instance)

Let Φ(u, p) be a convex function on V × Y (where V and Y are two Banach
spaces) with values in R ∪ {+∞} , and let h be defined on Y as

h(p) = Inf
u∈V

Φ(u, p).

Then h is a convex function.

In the present context, (u, p) = (α, ε), Φ = J and h = w∆.

Furthermore, when w and ϕ are twice-differentiable functions, w∆ is also twice-
differentiable and its second derivative can be expressed after a straightforward
calculation as :

∂2w∆

∂ε2
(ε) = Lεε − Lεα :

(
Lαα +

1

∆t
Lv

)−1

: Lαε, (10)
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where :

Lεε =
∂2w

∂ε2
, Lεα =

∂2w

∂ε∂α
, Lαε =

∂2w

∂α∂ε
, Lαα =

∂2w

∂α2
et Lv =

∂2ϕ

∂α̇2 .

The convexity of w∆ can alternatively be deduced from (10). Indeed, the
convexity of w and ϕ imply (all inequalities should be understood in the sense
of positivity for symmetric quadratic forms) :

Lεε − Lεα : (Lαα)−1 : Lαε ≥ 0, Lv ≥ 0,

and therefore

Lεε − Lεα :
(
Lαα +

1

∆t
Lv

)−1

: Lαε ≥ Lεε − Lεα : (Lαα)−1 : Lαε ≥ 0.

3 Composite materials. Effective behavior

3.1 Local problem

A representative volume element (r.v.e.) V of the composite is comprised of N
phases occupying domains V (r) with characteristic functions χ(r) and volume
fraction c(r). Each individual phase is governed by the differential equations (3)
with potentials w(r) and ϕ(r). The free-energy w and the dissipation potential
ϕ at position x are given by:

w(x, ε, α) =
N∑

r=1

χ(r)(x)w(r)(ε, α), ϕ(x, α̇) =
N∑

r=1

χ(r)(x)ϕ(r)(α̇). (11)

The r.v.e. V is subjected to a path of macroscopic strain E(t) and the local
problem which is solved by the local fields σ(x, t), ε(x, t) and α(x, t) reads
as :

σ =
∂w

∂ε
(ε, α),

∂w

∂α
(ε, α) +

∂ϕ

∂α̇
(α̇) = 0 for (x, t) ∈ V × [0, T ],

div σ = 0 for (x, t) ∈ V × [0, T ],

〈ε(t)〉 = E(t) + boundary conditions on ∂V.






(12)
All fields σ, ε, α depend on x and t. The bracket 〈.〉 denotes spatial averaging
over V . For definiteness, periodic boundary conditions are imposed on the
boundary of V .

The homogenized or effective response of the composite along the path of
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prescribed strain {E(t), t ∈ [0, T ]} is the history of average stress {Σ(t), t ∈
[0, T ]} where Σ(t) = 〈σ(x, t)〉.

3.2 Effective incremental potential

Upon discretization of the time interval [0, T ], the discretized version of the
local problem (12) can be written with the help of (7) as :

σn+1 =
∂w∆

∂ε
(εn+1), div σn+1 = 0, in V,

〈εn+1〉 = En+1 + boundary conditions on ∂V.





(13)

where the incremental potentials J and w∆ read as :

J(ε, α, x) =
N∑

r=1

(
w(r)(ε, α) + ∆t ϕ(r)

(
α − αn(x)

∆t

))
χ(r)(x),

w∆(ε, x) = Inf
α

J(ε, α, x).





(14)

The average stress Σn+1 = 〈σn+1〉 satisfies :

Σn+1 =
∂w̃∆

∂E
(En+1) , (15)

where the effective energy w̃∆ has the variational characterization :

w̃∆ (En+1) = Inf
〈ε〉=En+1

〈w∆(ε)〉 = Inf
〈ε〉=En+1

〈
Inf
α

J(ε, α)
〉

. (16)

To prove the validity of (15), we compute the derivative of w̃∆ with respect
to E :

∂w̃∆

∂E
(En+1) =

〈
∂J

∂ε
:

∂ε

∂E

〉
+

〈
∂J

∂α
:

∂α

∂E

〉
. (17)

The second term vanishes (stationarity of J with respect to α) and the first
term gives, thanks to the relation σ = ∂J/∂ε and Hill’s lemma :

〈
σn+1 :

∂ε

∂E

〉
= 〈σn+1〉 :

〈
∂ε

∂E

〉
= 〈σn+1〉 = Σn+1.

Thanks to this variational characterization, the homogenization of the evo-
lution problem (12) is reduced to the variational problem (16). The latter
problem amounts to finding the effective energy w̃∆ of a composite material
with one potential w∆. Two important things are worth noticing about this
condensed potential :
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1. The condensed potential w∆ is not explicitly known and is certainly non-
quadratic.

2. The condensed potential w∆ depends on x not only through the charac-
teristic functions χ(r)(x) but also through the fields α(x) and αn(x). In
other words w∆(ε) cannot be put under the familiar form (11).

The first point makes the variational problem (16) strongly reminiscent of the
problem of nonlinear composites composed of N different phases governed by
a single potential. However the second point shows that the problem at hand
is more complicated than the latter one. Even the full incremental potential J
does not depend only on the phase r but also depends on the internal variable
αn at time tn which may be completely inhomogeneous, even within each
single phase.

3.3 Orientation for the rest of the study

Two objectives will be pursued in the rest of this study :

1. First, in order to make contact with recent work on nonlinear composite
materials with a single nonquadratic potential, one has to approximate the
potentials w∆ or J which depend on the position through αn(x), by po-
tentials in the form (11). This is more easily achieved with J than with
w∆. The approximation consists in replacing in the expression (14) the field
αn(x) in phase r by an effective internal variable α(r)

n which remains to be
defined. The resulting problem is then close to that for a N -phase nonlinear
composite, but not completely identical since there remains an additional
minimization over the field α.

A first natural guess for the effective internal variable α(r)
n could be to

consider the fields αn(x) and α(x) to be piecewise uniform within each
individual phase. As shown in appendix A, this choice leads precisely to
the Transformation Field Analysis (TFA) of Dvorak (1992). However, it has
been observed in the literature (Suquet, 1997, Chaboche et al., 2001) that
the TFA may lead to inaccurate results in certain circumstances. Therefore
the present approach goes beyond piecewise uniform fields of internal vari-
ables and accounts for the first and the second moments of these variables
in each individual phases.

2. Second, a strategy has to be chosen in order to approximate J in the vari-
ational problem (16) by a quadratic function. As is known from the study
of nonlinear composites with only one potential, several procedures with
different degree of complexity and accuracy are available to this effect. Two
of them, which have proven to be flexible and efficient in the latter context,
have been explored in the present study. The first approach, presented in
section 4 derives from the variational method of Ponte Castañeda (1992)
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and its variant called the modified secant method (Suquet, 1995, Ponte
Castañeda and Suquet, 1998). It makes use of an isotropic linear compar-
ison composite. In the present context the linear comparison composite is
comprised of isotropic, linearly viscoelastic phases.

The second approach, presented in the second part of this study, is based
on a generalization, due to Lahellec and Suquet (2004), of the second-order
method of Ponte Castañeda (1996). It makes use of an anisotropic linear
comparison composite and is presented in the second part of this study.

As will be seen the two above steps, finding an effective internal variable
for each phase and linearizing the constitutive relations, are not completely
independent.

3.4 Working assumptions

For simplicity, several working assumptions will be made in the following.
They are assumed to hold for each individual constituent in the composite.

H1: The internal state variable α is a symmetric, traceless, second-order ten-
sorial variable which can be seen as the inelastic strain.

H2: The free energy w(r) is a quadratic function of ε and α.

For further simplicity it will be assumed that w(r) can be written as :

w(r)(ε, α) =
1

2
(ε − α) : L(r) : (ε − α), (18)

where the fourth-order tensor L(r) has minor and major symmetries :

L
(r)
ijkh = L

(r)
jikh = L

(r)
khij.

H3: The dissipation potential ϕ, which is a convex function of α̇, is assumed
to be a function of the sole invariant α̇eq :

ϕ(r)(α̇) = φ(r)(α̇eq) where α̇eq =
(

2

3
α̇ : α̇

)1/2

, (19)

It is further assumed that φ(r) can be written as

φ(r)(α̇eq) = f (r)(α̇2
eq

),

where f (r) is a concave function of its scalar argument.
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The secant viscosity ηsct of the constituent is defined as :

∂ϕ(r)

∂α̇
(α̇) = 2η

(r)
sct (α̇eq)α̇, (20)

and can be expressed in terms of the functions φ(r) and f (r) by the relations :

η
(r)
sct (α̇eq) =

1

3

φ′(r)(α̇eq)

α̇eq

=
2

3
f ′(r)(α̇2

eq). (21)

Remark 2 : Assumption H3 is met by standard potentials. For the sake of
simplicity we shall restrict our attention to simple potentials with no account
of hardening effects. Consider for instance the power-law potential:

ϕ(r)(α̇) =
σ

(r)
0 ε̇0

(m + 1)

(
α̇eq

ε̇0

)m+1

, with f (r)(x) =
σ

(r)
0

(m + 1)ε̇m
0

(x)
m+1

2 . (22)

The associated constitutive relations describe a nonlinear viscoelastic behaviour
and read as:

ε̇ = M (r) : σ̇ +
3

2
ε̇0

(
σeq

σ
(r)
0

)n
s

σeq

, M (r) =
(
L(r)

)−1
, n =

1

m
. (23)

The limiting case m = 0 (or equivalently n → +∞) corresponds to rate-
independent elastoplasticity with yield stress σ0.

Similarly, a simple constitutive model for elasto-viscoplasticity is obtained
when the potential ϕ is chosen in the form :

ϕ(r)(α̇) = R(r)α̇eq +
σ

(r)
0 ε̇0

(m + 1)

(
α̇eq

ε̇0

)m+1

. (24)

The corresponding constitutive relations read as :

ε̇ = M (r) : σ̇ +
3

2
ε̇0

(
(σeq − R(r))+

σ
(r)
0

)n
s

σeq

, (25)

R(r) is the threshold below which the material behaves elastically and beyond
which the strain-rate contains a viscous part.

As can be seen, the two potentials (22) and (24) have very similar forms
although the second one has an elastic domain. Both potentials can be handled
in almost the same manner (with the present variational method), except
for the numerical implementation where, for the second potential, it is more
convenient to work with the inverse of the secant viscosity rather than with
the secant viscosity itself. For brevity, the theory will be illustrated in section
5 only for nonlinear viscoelasticity.
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Remark 3 : Free-energy potentials more general than (18) should be con-
sidered to account for hardening effects (isotropic and kinematic hardening).
This is possible within the very same framework but is left for future work.
We would like to concentrate here on the simplest forms of the potentials.

4 Estimation of the effective incremental potential by a variational
method

In this section the determination of the effective incremental potential w̃∆ (16)
is reduced to a simpler problem involving only a N -phase linear comparison
composite by means of a method inspired by the variational procedure of
Ponte Castañeda (1992).

4.1 Variational procedure

The idea of the variational method is to add and subtract to the original
potential J which is difficult to homogenize, an energy J0 (that for the linear
comparison composite) which is more amenable to homogenization, while the
difference J − J0 can still be estimated. Unlike the incremental potential J ,
the energy J0 of the linear comparison composite is chosen to be quadratic
and piecewise uniform,

J0(x, ε, α) =
N∑

r=1

J
(r)
0 (ε, α)χ(r)(x),

where

J
(r)
0 (ε, α) = w(r)(ε, α) +

η
(r)
0

∆t
(α − α(r)

n ) : (α − α(r)
n ). (26)

In this expression η
(r)
0 and α(r)

n are uniform in phase r and will be chosen
appropriately in the sequel. Note that J0 is the incremental potential for a
linear viscoelastic comparison composite.

Let ∆J be the difference between J and J0 :

∆J(α) =
N∑

r=1



∆t ϕ(r)
(

α − αn

∆t

)
−

η
(r)
0

∆t
(α − α(r)

n ) : (α − α(r)
n )



χ(r)(x).

(27)
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Then (16) can be re-written as:

w̃∆ (E) = Inf
〈ε〉=E

[
Inf
α

〈J0(ε, α) + ∆J(α)〉
]

≤ Inf
〈ε〉=E

[
Inf
α

〈J0(ε, α)〉 +
〈
Sup

α

∆J(α)
〉]

.
(28)

The last expression, where the supremum of ∆J over α is taken, provides a
rigorous upper bound for w̃∆. This upper bound can be too stiff in certain
circumstances as reported in Lahellec and Suquet (2006).

To improve on this prediction, it is worth noting that Ponte Castañeda and
Willis (1999) and Ponte Castañeda (2002) have observed, in a different but
similar context, that sharper estimates can be obtained by requiring only
stationarity of the “error function” (here ∆J) with respect to its argument
(here α) :

w̃∆ (E) ≈ Inf
〈ε〉=E

[
Inf
α

〈J0(ε, α)〉 +
〈
Stat

α
∆J(α)

〉]
. (29)

We emphasize that the resulting expression has no upper bound character and
is only an estimate (hopefully accurate) of w̃∆.

4.2 Linear viscoelastic constituents

To show how the method works independently of the nonlinearity associated
with a general potential ϕ, let us first begin with the situation where the
individual constituents are linearly viscoelastic, following the lines of Lahellec
and Suquet (2006) where additional results may be found. In this case, the
dissipation potential ϕ is a quadratic function :

ϕ(r)(α̇) = η(r)α̇ : α̇, (30)

and the stationarity condition, Stat
α

∆J(α), becomes :

Stat
α

N∑

r=1


η(r)

∆t
(α − αn) : (α − αn) −

η
(r)
0

∆t
(α − α(r)

n ) : (α − α(r)
n )


χ(r)(x).

The solution α of the above stationarity problem satisfies in phase r :

2η(r) α − αn

∆t
= 2η

(r)
0

α − α(r)
n

∆t
, (31)

and therefore can be expressed in phase r as :

α(x) =
αn(x) − θ(r)α(r)

n

1 − θ(r)
, (32)
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where θ(r) = η
(r)
0 /η(r). With this relation, the last term in (29) can be evaluated

and the resulting estimate for w̃∆ reads :

w̃∆ (E) ≈ Inf
〈ε〉=E

[
Inf
α

〈J0(ε, α)〉
]

+
N∑

r=1

c(r)

〈
η(r)θ(r)

∆t(θ(r) − 1)
(αn − α(r)

n ) : (αn − α(r)
n )

〉

r

(33)

where 〈.〉r denotes the spatial average over phase r and where θ(r) and α(r)
n

remain to be determined.

4.2.1 Determination of θ(r) and α(r)
n .

The estimate (33) can be optimized with respect to θ(r) and α(r)
n . Stationarity

of the right-hand side of (33) with respect to these variables yields

∂

∂θ(r)

〈
J

(r)
0 (ε, α) +

η(r)θ(r)

∆t(θ(r) − 1)
(αn − α(r)

n ) : (αn − α(r)
n )

〉

r

= 0,

which implies, by virtue of the expression (26) of J
(r)
0 :

θ(r) = 1 ±

√√√√√

〈
(αn − α(r)

n ) : (αn − α(r)
n )
〉

r〈
(α − α(r)

n ) : (α − α(r)
n )
〉

r

. (34)

The sign in the above expression is left undetermined at this stage. It turns
out that taking the sign + corresponds to solving the problem (28) with a
supremum. The sign − corresponds to an infimum and therefore to a rigorous
lower bound for the effective condensed potential w̃∆.

Similarly, the stationarity condition over α(r)
n reads :

∂

∂α
(r)
n

〈
J

(r)
0 (ε, α) +

η(r)θ(r)

∆t(θ(r) − 1)
(αn − α(r)

n ) : (αn − α(r)
n )

〉

r

= 0

⇒ α(r)
n =

〈αn〉r + (θ(r) − 1) 〈α〉r
θ(r)

, (35)

The two relations (34) and (35) show that the two unknowns θ(r) and α(r)
n de-

pend only on the first and on the second moment of αn (information available
from time tn) and on the first and the second moment of α over the phase r
which remain to be determined.
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4.2.2 Minimization of J0(ε, α).

Once θ(r) and α(r)
n are known through the relations (34) and (35), the function

J0 is completely specified and can be minimized, first with respect to α and
then, after averaging, with respect to ε. The field α, solution of the infimum
problem in (33), can be expressed in phase r, after due account of the form

(26) of J
(r)
0 , as :

α(x) =

(
2η(r)θ(r)

∆t
K + L(r)

)−1

:

[
K : L(r) : ε(x) +

2η(r)θ(r)

∆t
α(r)

n ,

]
(36)

where K is the fourth-order tensor associated with the projection over devia-
toric tensors (we recall that α is traceless), L(r) is the fourth-order tensor of
elastic moduli in phase r and ε is the strain field solution of the minimization
problem of the incremental potential among all admissible strain fields com-
patible with an average strain E. Substituting (36) into the expression of J

(r)
0

yields

Inf
α

J
(r)
0 (ε, α) =

1

2
ε : L

(r)
0 : ε + ρ

(r)
0 : ε + f

(r)
0 , (37)

where the tensors L
(r)
0 and ρ

(r)
0 are uniform in phase r and given by :

L
(r)
0 = L(r) − L(r) : K :

(
2η(r)θ(r)

∆t
K + L(r)

)−1

: K : L(r),

ρ
(r)
0 = −L(r) :

(
2η(r)θ(r)

∆t
K + L(r)

)−1
2η(r)θ(r)

∆t
α(r)

n

f
(r)
0 =

η(r)θ(r)

∆t
α(r)

n :

(
2η(r)θ(r)

∆t
K + L(r)

)−1

: L(r) : α(r)
n .





(38)

It is useful to define for further reference 1 :

w
(r)
0 (ε) = Inf

α
J

(r)
0 (ε, α),

which is the free-energy of a linear thermoelastic phase. Then the relation (33)
yields the following estimate for w̃∆ :

w̃∆ (E) = w̃0 (E) +
N∑

r=1

c(r)

〈
η(r)θ(r)

∆t(θ(r) − 1)
(αn − α(r)

n ) : (αn − α(r)
n )

〉

r

, (39)

where w̃0 is the effective energy of the auxiliary thermoelastic composite

w̃0 (E) = Inf
〈ε〉=E

N∑

r=1

c(r)
〈
w

(r)
0 (ε)

〉

r
. (40)

1 Note that, in order to avoid confusions, the present notations are slightly different
from those used in Lahellec and Suquet (2006). The free energy of the thermoelastic

composite, denoted here by w
(r)
0 , was denoted by w

(r)
∆ in (Lahellec and Suquet, 2006).
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The effective response of the composite at time tn+1, as predicted by the
present model, reads as :

Σ =
∂w̃∆

∂E
(E) =

∂w̃0

∂E
(E). (41)

There are apparently more terms in the derivative of w̃∆ than the sole deriva-
tive of w̃0 but these additional terms cancel out by virtue of the stationarity
conditions on θ(r), α(r)

n and α.

Remark 4 : Note an important consequence of the relation (41), whose va-
lidity is not limited to linear viscoelastic constituents: the macroscopic stress
can be computed from the macroscopic strain, either by derivation of the
condensed potential w̃∆, or by derivation of the effective energy w̃0 of the
thermoelastic composite. In other words the stress in the actual composite
coincides with the stress in the thermoelastic composite.

4.3 The general nonlinear case

Let us come back now to the general case where ϕ is a nonquadratic potential.
In order to express the stationarity of the “gap function” ∆J given by (27)
with respect to α, we note (as in Suquet, 1995) that the concavity of f (r)

yields :

〈
ϕ(r)

(
α − αn

∆t

)〉

r
=

〈
f (r)

(
(α − αn)2

eq

∆t2

)〉

r

≤ f (r)

(〈
(α − αn)2

eq

∆t2

〉

r

)
. (42)

Therefore 〈∆J〉r is bounded from above by

∆t f (r)

(〈
(α − αn)2

eq

∆t2

〉

r

)
−

〈
η

(r)
0

∆t
(α − α(r)

n ) : (α − α(r)
n )

〉

r

Stationarity of the above expression with respect to α gives :

2η(r) α − αn

∆t
= 2η

(r)
0

α − α(r)
n

∆t
, (43)

where η(r) is the “effective secant viscosity” of phase r,

η(r) = η
(r)
sct


α − αn

(r)

∆t


 with α − αn

(r)
=
〈
(α − αn)2

eq

〉1/2

r
, (44)

and where the function η
(r)
sct is given by the relation (21).

Note that the optimality condition (43) coincides with the optimality condition
(31) provided that the η(r)’s are chosen equal to the secant viscosities of the
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phases. The problem for general nonlinear phases is therefore reduced to that
of section (4.2) for linear viscoelastic phases with the noticeable difference
that the present η(r)’s depend on the field α which itself depends on the η(r)’s.
Not surprisingly, the consistency condition for these two unknowns leads to a
nonlinear problem which is solved iteratively.

4.4 Local fields in the individual phases

The relation (41) implies that the average stress in the dissipative compos-
ite at time tn+1 coincides with the average stress in the linear thermoelastic
composite defined by (38) :

Σ =
n∑

r=1

c(r)
[
L

(r)
0 : 〈ε〉r + ρ

(r)
0

]
= 〈σ〉 , (45)

where ε and σ denote the local strain and stress fields in the auxiliary ther-
moelastic problem. It is therefore quite natural to approximate the actual
stress and strain fields in the actual composite by the same fields in the linear
thermoelastic composite.

The way in which the field of internal variables is approximated by the pro-
cedure requires a clarification. Two different variational problems have been
solved for α leading to two (apparently) different expressions (32) and (36)
for α. Which one is to be used for a proper approximation of α? For clarity,
let α∗ denote the solution (32) of the stationarity problem Stat

α
∆J(α) and

α∗∗ the solution (36) of the infimum problem Inf
α

J0(ε, α). Interestingly, it

follows from the stationarity conditions for θ(r) and α(r)
n , that the first and

second moments over each phase of α∗ and α∗∗ coincide. Indeed, it follows
from the expression of ∆J and straightforward algebra that :

∂

∂α
(r)
n

〈
J

(r)
0 (ε, α∗∗) + ∆J(α∗)

〉

r
= 0 ⇒ 〈α∗∗〉r = 〈α∗〉r , (46)

∂

∂θ(r)

〈
J

(r)
0 (ε, α∗∗) + ∆J(α∗)

〉

r
= 0 ⇒ 〈α∗∗ : α∗∗〉r = 〈α∗ : α∗〉r , (47)

Therefore, θ(r) and α(r)
n , which depend only on the first and second moments

of α as can be seen from the expressions (34) and (35), are defined unam-
biguously. Consequently there is no ambiguity on the linear thermoelastic
composite. The relation (36) can be used to define the approximate field of
internal variables α. There remains an ambiguity on the full field α(x), but
its first and second moments are defined unambiguously and this is all what
matters in order for the scheme to be implemented.

Remark 5 : For further use, an alternative expression of the secant viscosities
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can be derived by means of the relations (46) and (47). Indeed, it follows from
(32) that

α − αn
(r)

=
θ(r)

|1 − θ(r)|
αn − α

(r)
n

(r)

.

Therefore

η(r) = η
(r)
sct


α − αn

(r)

∆t


 =

θ(r) 6=1
η

(r)
sct

(
θ(r)

|1 − θ(r)|∆t
αn − α

(r)
n

(r)
)

. (48)

Remark 6 : θ(r) and α(r)
n given by (34) and (35) depend on the first and

second moment of the field of internal variables α, which can be expressed
through (36) in terms of the first and second moments of the strain field ε.

4.5 Effective response of the composite

The procedure for determining the effective response of the composite can be
summarized as follows.

1. At time tn, the first moment 〈αn〉r and the second moment 〈αn : αn〉r of
the internal variables are known for each individual phase r.

2. The nonlinear equations (35) and (34) are solved for θ(r) and α(r)
n by a

modification of the hybrid method of Powell (1970). In the present study use
has been made of the MINPACK library (HYBRD1 routine).

At each step of this iterative procedure the residues of equations (35) and (34)
are obtained by the following procedure :

2.1 The secant viscosities η(r) are known from (48) and the linear thermoelastic
composite is known from (38).

2.2 The first and second moments of the strain in the thermoelastic composite
are evaluated either by an exact (numerical) computation, or by means of a
predictive scheme appropriate for the microstructure of the composite. In the
latter case, they can be deduced from the relations (69), (70) and (62). These
moments depend on the thermoelastic constants (38).

2.3 The first and second moment per phase of the unknown field of internal
variable α at time tn+1 are computed by means of the relations (36) from the
first and second moment of the strain field ε computed at step 3.

2.4 The residues are computed using equations (35) and (34).

3. Finally, after convergence is reached, the macroscopic stress Σn+1 can be
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obtained as the stress in the thermoelastic composite (see remark 4) by taking
the average of the microscopic stress field :

Σn+1 = 〈σn+1〉 =
N∑

r=1

c(r)
[
L

(r)
0 : 〈ε〉r + ρ

(r)
0

]
. (49)

Details about the rate of convergence of the algorithm are given in section 5.2.

4.6 An intermediate model for evaluating the approximation of the “effective
internal variable”

As already noted in section 3.3, the reduction from the fully nonlinear incre-
mental potential to the viscoelastic incremental potential (26) involves two
separate approximations. The first one is the linearization corresponding to
the introduction of the secant viscosity η

(r)
0 . The second approximation con-

sists in replacing the inhomogeneous field αn(x) by an “effective internal vari-
able” (EIV) α(r)

n in each individual phase. In order to evaluate the influence
of each approximation separately, an intermediate model where linearization
is the only approximation made, can be proposed. It consists in adding and
subtracting to the original incremental potential the following function :

J int
0 (ε, α, x) =

N∑

r=1



w(r)(ε, α) +
η

(r)
0

∆t
(α − αn(x)) : (α − αn(x))



χ(r)(x).

(50)
Note that the full field αn(x) enters the expression of this potential whereas
it was approximated by α(r)

n in (26).

A procedure analogous to that followed in section 4.3 can be developed with
the above approximate potential. The stationarity condition (43) is replaced
by

η
(r)
0 = η

(r)
sct



α − αn
(r)

∆t



 with α − αn
(r)

=
〈
(α − αn)2

eq

〉1/2

r
, (51)

and the expression (36) for the field of internal variables in phase r is replaced
by :

α(x) =

(
2η(r)θ(r)

∆t
K + L(r)

)−1

:

[
K : L(r) : ε(x) +

2η(r)θ(r)

∆t
αn(x)

]
. (52)

The free-energy of the thermoelastic composite can be expressed as :

wint
0 (ε, x) = Inf

α
J int

0 (ε, α, x),
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where

J int
0 (ε, α, x) =

N∑

r=1

[
1

2
ε : L

(r)
0 : ε + ρint

0 (x) : ε + f int
0 (x)

]
χ(r)(x), (53)

where the elastic moduli L
(r)
0 are uniform in each phase but where the thermal

stress ρint
0 and the initial energy f int

0 are fields given in phase r as :

ρint
0 (x) = −L(r) :

(
2η(r)θ(r)

∆t
K + L(r)

)−1
2η(r)θ(r)

∆t
αn(x),

f int
0 (x) =

η(r)θ(r)

∆t
αn(x) :

(
2η(r)θ(r)

∆t
K + L(r)

)−1

: L(r) : αn(x).

Because of the spatial dependence of ρint
0 , the thermoelastic problem

Inf
〈ε〉=E

〈
wint

0 (ε)
〉

is not a problem for N -phase thermoelastic composite and its solution cannot
be expressed analytically. This problem has to be solved numerically with due
account of the fact that αn is a field.

This model is therefore of limited practical interest, but it is useful in under-
standing the error introduced by the “effective internal variable” α(r)

n in the
“full” model summarized in section 4.5. It will be implemented in section 5.

5 Applications

In this section, the accuracy of the model presented in section 4 is assessed
by comparing its prediction with the exact (computed numerically) response
of specific classes of microstructures.

It is important to note that there are two levels of approximation involved in
the practical implementation of the present model.

(1) A first approximation (which is in fact two-fold) is made in the relation
(29) where the exact effective incremental potential is replaced by an

approximate potential involving a secant viscosity η
(r)
0 and an effective

internal variable α(r)
n for each phase. This set of approximations is central

in the present study and is the one that we would like to evaluate.
(2) The second approximation lies in the evaluation of the effective energy

of the thermoelastic composite (40). This energy can be either evaluated
exactly (numerically)in which case there is (almost) no error introduced,
or by means of an analytical model in which case an error is introduced if
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the analytical scheme is not exact for the composite microstructure under
consideration.

We would like to concentrate on the first approximation and avoid any addi-
tional error which could be introduced at the stage of evaluating the effective
energy of the thermoelastic composite. To this aim, two different approaches
have been pursued. First, when there is no exact analytical scheme for the
microstructure under consideration, the thermoelastic problem can be solved
exactly, i.e numerically. This is the approach followed in section 5.1 where a
simple three-dimensional microstructure is considered for which no analytical
scheme predicting exactly the thermoelastic properties is available. Both the
fully nonlinear problem and the thermoelastic problem (40) are solved by the
Finite Element Method (FEM).

A second option to avoid approximations in the resolution of the thermoelastic
problem, is to consider microstructures for which accurate predictive schemes
are available. These microstructures are often complex and constructed iter-
atively or asymptotically. The microstructures considered in section 5.3 are
fair approximations of composite cylinder assemblages for which one of the
Hashin-Shtrikman bound can be considered to be an accurate result when the
individual phases are linear and isotropic.

The focus here is on two-phase composites composed of inclusions dispersed
in a surrounding matrix. The inclusion phase is identified as phase 1, whereas
the continuous phase, called the matrix, is identified as phase 2.

5.1 Three-dimensional elastically-reinforced composites

5.1.1 Computational method, microstructure and loading

Full-field computations are performed using the Finite Element Method. A
simplified volume element consisting of a cylindrical block of matrix containing
an inclusion at its center is considered as an approximation to a periodic
distribution of inclusions. The applied loading is a uniaxial tensile stress :

Σ(t) = Σ33(t)e3 ⊗ e3. (54)

The problem is axisymmetric and solved using axisymmetric finite elements
on the quarter of a vertical section of the unit cell (figure 1b). The boundary
conditions are symmetry conditions (zero shear on all sides of the domain, zero
normal displacement on z = 0 and r = 0 and uniform horizontal and vertical
displacements α and β on the sides r = 1 and z = 1 of the domain. The vertical
displacement β is increased at a constant rate β̇ = Ė33 = 10−2s−1, whereas
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Fig. 1. Three-dimensional microstructure. (a): Periodic unit-cell (right) approxi-
mated by a cylindrical circular unit-cell (left). (b) Two-dimensional mesh used in
the computations.

the horizontal displacements α is adjusted iteratively within each time-step to
ensure that the average stress in the unit cell is a uniaxial tension in the form
(54).

The inclusions are linearly elastic, whereas the matrix is nonlinear viscoelastic
with a power-law dissipative potential in the form (22). The following material
data were used :

– Fibers : E = 400 GPa, ν = 0.2.
– Matrix : E = 70 GPa, ν = 0.3, σ0 = 480 MPa, ε̇0 = 10−2s−1.

The rate-sensitivity exponent m of the matrix was varied from 0.1 to 1.

5.2 Discussion of the results

The response of the microstructure of figure 1 under monotone uniaxial tension
is shown in figure 2a, b and c for m = 1, 0.2 and 0.1 respectively. The overall ax-
ial stress is plotted as a function of the overall axial strain. Four sets of results
are shown. The exact nonlinear simulations are shown as solid lines labelled
“Exact(FEM)”. The predictions of the intermediate model of section 4.6 where
the thermoelastic problem is solved “exactly” using the FEM without making
the approximation of an “effective internal variable” are shown as dashed lines
and labelled “SEC(FEM)”. The predictions of the full model summarized in
section 4.5 where in addition to the secant linearization, the approximation
of the field αn by an “Effective Internal Variable” (EIV) in each phase is
made, are shown as dotted lines and labelled “SEC(EIV+FEM). Finally, the
effective energy of the thermoelastic composite can be estimated using the
lower Hashin-Shtrikman bound for isotropic composites. More specifically use
is made of the relation (68) in appendix B, where the effective tensor L̃ is
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Fig. 2. Axisymmetric unit cell. Elastic particles in an nonlinear viscoelastic matrix.
Particle volume fraction c(1) = 0.25. Effective response of the composite for (a):
m = 1, (b): m = 0.2, (c): m = 0.1.(d): Sensitivity of the predicted response to the
time-step ∆t for m = 0.1.
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given by the appropriate Hashin-Shtrikman (HS) bound. The corresponding
prediction is shown in long-dashed lines and labelled as “SEC(EIV+HS)”.

The following observations can be made :

(1) All curves can be schematically decomposed into three different regimes.
The first regime corresponds to the initial response of the composite which
is purely elastic. In this regime the only potential which matters is the
free-energy and the effective response of the composite can be obtained
by homogenization of a single quadratic potential. A good match in this
first regime indicates that the elastic properties of the composite are
accurately predicted. In the third part of the curve, corresponding to
(relatively) large deformations, the response of the composite is purely
dissipative and therefore governed by the homogenized dissipation poten-
tial of the composite, when elastic effects are neglected. In between those
two regimes there is an intermediate, or transient, regime corresponding
to the zone where both elastic and dissipative effects are coupled. This
regime has precisely motivated the development of the present model.
Obviously, the agreement between the model and the exact results can-
not be satisfactory in this regime if it is not satisfactory in the other two
regimes. As will be seen, the error in this regime is indeed smaller than
in the asymptotic regime.

(2) The error due to the EIV approximation, measured as the difference
between SEC(FEM) and SEC(EIV+FEM), is seen to be small at all rate-
sensitivity exponents. Therefore the replacement of the full field αn by an
effective internal variable α(r)

n , after due account of the field fluctuations,
is legitimate. The great advantage of this substitution is that it leads to
a variational problem for a N -phase thermoelastic composite, which is,
often, amenable to analytical resolution.

(3) The error introduced by the linearization step, reflected for instance in
the difference between the “exact” curve Exact(FEM) and the “secant”
predictions SEC(FEM), leads to an overestimation of the response of the
composite. This is due to the inequality in (42).

(4) Use of the HS lower bound, which leads to an underestimation of the
effective energy of the linear thermoelastic composite, tends to compen-
sate the error due to the linearization scheme. A similar compensation of
errors has already been observed for nonlinear composites governed by a
single potential (see for instance Moulinec and Suquet, 2003).

(5) The exact response of the composite shows that, roughly speaking, the
size of the transient regime (where both elastic and dissipative effects
are coupled) depends strongly on the rate-sensitivity exponent m and
increases with increasing m.
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5.2.1 Influence of the time-step

To evaluate the influence of the time-step on the accuracy of the predictions,
the model SEC(EIV+HS) has been used with different time steps ranging from
0.01s to 0.2s (the macroscopic strain-rate was 10−2s−1). The corresponding
predictions of the present model in the transient regime are shown in figure
2d. As can be seen the time-step has very little influence on the results and
no influence on the asymptotic response.

5.3 Two-dimensional composites

5.3.1 Microstructures

The class of microstructures considered in this section approaches the com-
posite cylinder assemblage of Hashin for which one of the Hashin-Shtrikman
bound is an accurate approximation (it gives an exact result for the effective
bulk modulus and a sharp estimate for the shear modulus). It has previ-
ously been used by Moulinec and Suquet (2003), Moulinec and Suquet (2004)
and Idiart et al. (2006) in studies assessing the accuracy of different homog-
enization methods for nonlinear composites governed by a single potential.
It consists of the assemblage of self-similar cylinders generated by a method
described in (Moulinec and Suquet, 2003). Ideally an infinite number of sizes
would be required to achieve exactly a composite cylinder assemblage so as to
fill-in the whole space. To keep the computational complexity of the problem
accessible, only three different sizes of cylinders have been considered. Two
different volume fractions c(1) = 0.21 and c(1) = 0.41 have been investigated.
Using results in Moulinec and Suquet (2003) or Idiart et al. (2006) only one
configuration has been considered for each volume fraction, the configuration
which appeared to be the more representative of the average of the results ob-
tained in those previous studies. The corresponding microstructures are shown
in figure 3.

5.3.2 Material data

The individual constituents are nonlinear viscoelastic with a power-law dissi-
pation potential in the form (22) having the same exponent in both phases.
The elasticity of each phase is isotropic and characterized by a Young’s mod-
ulus E and a Poisson ratio ν. The material data are as follows :

– Fibers : E = 100 GPa, ν = 0.45 σ0 = 5 (hard fibers) or σ0 = 0.2 GPa (weak
fibers), ε̇0 = 10−2 s−1,

– Matrix : E = 100 GPa, ν = 0.45, σ0 = 1 GPa, ε̇0 = 1 s−1.
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(a) (b)

Fig. 3. Composite cylinder assemblages. (a): c(1) = 0.21, (b) c(1) = 0.41.

The rate-sensitivity exponent m varies from 1 to 0.1 and is identical in both
phases.

5.3.3 Loading conditions

The loading applied to the representative volume element is an imposed macro-
scopic in-plane shear strain :

E(t) = E11(t) (e1 ⊗ e1 − e2 ⊗ e2) , (55)

with a constant strain-rate Ė11 = 5 10−1 s−1.

5.3.4 Computational methods

Exact results: The method used in the full-field numerical simulation is based
on Fast Fourier Transforms (see Moulinec and Suquet (1994) and Moulinec
and Suquet (1998) for a presentation of the method). More details about the
application of this method to nonlinear viscoelastic composites can be found
in Idiart et al. (2006) section 4.

Proposed approximate model: Use has been made of the algorithm described
in section 4.5. The effective properties of the linear comparison thermoelas-
tic composite are obtained using the relevant Hashin-Shtrikman estimate. As
shown in Moulinec and Suquet (2003) this bound is an accurate, but not ex-
act, prediction of the linear elastic properties of the microstructures shown in
figure 3.
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A major consequence of the use of the Hashin-Shtrikman prediction, is that
the strain field, as estimated by this model, does not fluctuate in the inclusion
phase. Within this model, the field of internal variables α is therefore uniform
in the inclusion phase at all times :

α =< α >1, αn =< αn >1, in phase 1.

According to its expression (44), the secant viscosity of the inclusion phase
reduces to

η(1) = η
(1)
sct

(
(< α >1 − < αn >1)eq

∆t

)
.

The equations (34) and (35) reduce to :

θ(1) = 1, α(1)
n =< αn >1 .

Consequently, the only true unknowns in the problem are θ(2), α(2)
n and <

α >1.

In all examples investigated in the present study, the iterative algorithm of
section 4.5 has always converged to a solution. We believe that this solution is
unique (at least in rate-dependent problems) but we have no proof of this as-
sertion. Convergence is reached when the relative errors between two iterates
for θ(2), α(2)

n and < α >1 is less than a given threshold (typically 10−8). With
this criterion and for the examples of section 5.3, m = 0.2, c(1) = 0.41, conver-
gence was attained in 20 to 50 iterations (typically), the slowest convergence
being observed in the transient regime where elastic and viscous effects are of
the same order of magnitude.

5.3.5 Discussion of the results

The responses of the two microstructures of figure 3 under monotone shear
deformation are shown in figures 4 and 5 where the overall stress is plotted as
a function of the overall strain. The full-field simulations are shown as solid
lines whereas the predictions of the present model are shown as dashed lines.

As in the three-dimensional case, the main trends of the stress-strain curve
for these composites under monotone deformation at constant strain-rate are
typically an initial linear-elastic response for incipient strains, then a transient
part and finally a plateau corresponding to the purely viscous response of the
composite. This plateau is characterized by a stress Σ∞

11.

Figure 4 corresponds to the case of “hard” fibers (σ1
0/σ

2
0 = 5), whereas figure 5

corresponds to “weak” fibers (σ1
0/σ

2
0 = 0.2). In both figures two rate-sensitivity

exponents are considered, m = 1 (corresponding to linear viscoelasticity) and
m = 0.2. The following comments can be made :
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(1) In the linear case (m = 1) the error introduced by the model is essentially
due to the HS bound. There is an additional error introduced by the EIV
approximation, when the heterogeneous field αn is replaced by a piecewise
uniform effective internal variable, but this additional error is small as
already seen in section 5.1.

(2) In all cases the largest error is found in the asymptotic regime. It is
therefore possible to better quantify the error introduced by the model
by comparing the asymptotic stresses Σ∞

11. This is done in figure 6 where
the asymptotic stress is plotted as a function of the nonlinearity expo-
nent. The accuracy of the model in the asymptotic regime is essentially
dictated by the choice of the linearization scheme for the dissipation po-
tential ϕ and is not much influenced by the other approximations made by
the model (time-discretization, stationarity conditions, effective internal
variable).

(3) Regarding the linearization technique, it is now well-recognized that the
“modified secant method” used here (which is a special case of the vari-
ational procedure of Ponte Castañeda) has the advantage of simplicity
but can lead to significant errors for large contrast between the phases
or high volume fraction of the constituents. This is especially true for
fiber-weakened composites as can be seen in figure 6c and d. The error
remains acceptable for fiber-reinforced composites, but is mainly due to a
“compensation of errors” between the underestimation brought by the HS
lower bound and the overestimation due to the linearization scheme itself
(contained in inequality (42)). Improving on the “secant linearization” is
the objective of part II of this study (companion paper).

6 Conclusion

This paper is devoted to the effective response of composites, or more gen-
erally of heterogeneous materials, whose individual constituents exhibit both
reversible and irreversible effects in their mechanical behavior. The main find-
ings are:

(1) Upon time-discretization of the constitutive differential equations, an in-
cremental variational principle has been derived, by means of which the
problem can be reduced to the minimization of a single nonquadratic
incremental potential.

(2) The spatial dependence of the incremental potential stems not only from
the variation of the potential from phase to phase, as is naturally the case
in heterogeneous systems, but also from the dependence of this incremen-
tal potential on the field of internal variables at the previous time-step
which is nonuniform even within each phase.

(3) A strategy, inspired by the variational procedure of Ponte Castañeda, has
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Fig. 4. Response of fiber–reinforced (hard fibers) nonlinear viscoelastic composites
under monotone loading for different volume fractions and different nonlinearity
exponents m.(a): c(1) = 0.21, m = 1.(b): c(1) = 0.21, m = 0.2. (c): c(1) = 0.41,
m = 1.(d): c(1) = 0.41, m = 0.2.
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Fig. 5. Response of fiber–weakened (weak fibers) nonlinear viscoelastic composites
under monotone loading for different volume fractions and different nonlinearity
exponents m.(a): c(1) = 0.21, m = 1.(b): c(1) = 0.21, m = 0.2. (c): c(1) = 0.41,
m = 1.(d): c(1) = 0.41, m = 0.2.
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Fig. 6. Asymptotic macroscopic stress Σ∞
11 as a function of the nonlinearity exponent
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been used to linearize the nonquadratic condensed potential and also to
define an “effective internal variable” per phase at each time-step.

(4) Comparisons with full-field simulations show that the present model is
good as long as the variational procedure is accurate in the purely dis-
sipative setting, when elastic deformations are neglected. If this is the
case, the present model accounts in a very satisfactory manner for the
coupling between reversible and irreversible effects and is therefore an
accurate model for treating nonlinear viscoelastic and elasto-viscoplastic
materials.

(5) In certain situations, the variational procedure is not accurate in the
purely dissipative limit and examples of such situations are given. They
motivate the second part of this study in which a more refined scheme,
still based on the condensed variational potential derived in this first part,
but with a different linearization strategy based on an anisotropic linear
viscoelastic composite, is proposed.
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Li, G., Ponte Castañeda, P., 1993. The effect of particle shape and stiffness on
the constitutive behavior of metal-matrix composites. Int. J. Solids Struct.
30, 3189–3209.

Li, J., Weng, G., 1997. A secant-viscosity approach to the time-dependent
creep of an elastic-viscoplastic composite. J. Mech. Phys. Solids 45, 1069–
1083.

Marigo J.J., Mialon P., Michel J.C., Suquet P., 1987? Plasticité et ho-
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Nonlinear Homogenization and Its Application to Composites, Polycrystals
and Smart Materials. NATO Sciences Series II, vol 170. Klüwer Acad. Pub.,
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Appendix A: Link with the Transformation Field Analysis (TFA)

In an attempt to approximate w∆ by a piecewise uniform potential, the trial
field α involved in the variational problem (16) can be chosen to be uniform
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within each phase :

α(x, t) =
N∑

r=1

α(r)(t)χ(r)(x). (56)

In particular :

αn(x) =
N∑

r=1

α(r)
n χ(r)(x), (57)

with a similar expression for αn+1 (for simplicity the index n+1 will be omitted
in the sequel). The restriction brought by (56) on the choice of the trial fields
α leads to an upper bound for w∆ and therefore to an upper bound for the
effective incremental potential J̃ at each time step. The resulting prediction
will be stiffer than the actual response of the composite.

The stationarity conditions with respect to α(r) in the variational problem
(16) read as :

〈[
∂w(r)

∂α
(ε(x), α(r)) +

∂ϕ(r)

∂α̇

(
α(r) − α(r)

n

∆t

)]
χ(r)(x)

〉
= 0, (58)

while the conditions expressing the stationarity with respect to ε read as :

σ(x) =
∂w(r)

∂ε
(ε(x), α(r)) in phase r. (59)

It follows from (58) and from the fact that α(r) and α(r)
n are independent of

x, that :

A
(r) =

∂ϕ(r)

∂α̇

(
α(r) − α(r)

n

∆t

)
= −

〈
∂w(r)

∂α
(ε(x), α(r))

〉

r

.

As a consequence of assumption (H2), σ is a linear function of ε and α with
uniform moduli in phase r. Therefore, the average stress σ(r) over phase r is
related to the average strain ε(r) and to α(r) by the same relation. The final set
of evolution equations for the model obtained under the specific assumption
(56) reads as :

σ(r) =
∂w(r)

∂ε
(ε(r), α(r)), A

(r) = −
∂w(r)

∂α
(ε(r), α(r)). (60)

A
(r) =

∂ϕ(r)

∂α̇
(α̇(r)), or equivalently α̇(r) =

∂ϕ(r)∗

∂A
(A(r)), (61)

This is exactly the set of equations used in the TFA.
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Appendix B: Effective thermoelastic energy for N-phase and two-
phase composites

Consider a N -phase thermoelastic composite whose phase r is characterized
by the energy

w(r)(ε) =
1

2
ε : L

(r) : ε + ρ(r) : ε + f (r).

Its effective energy reads (Willis, 1981) :

w̃ (E) =
1

2
E : L̃ : E + ρ̃ : E + f̃ , (62)

where :

L̃ = 〈L〉 +
N−1∑

r=1

c(r)
(
L

(r) − L
(N)
)

:
(
A(r) − I

)
, (63)

ρ̃ = 〈ρ〉 +
N−1∑

r=1

c(r)
(
A(r) − I

)T
:
(
ρ(r) − ρ(N)

)
, (64)

f̃ = 〈f〉 +
N−1∑

r=1

c(r)
(
ρ(r) − ρ(N)

)
: a(r). (65)

These expressions simplify further for two-phase composites (N = 2). Ac-
cording to Levin’s relations (Levin, 1967), the localization operators can be
explicitly expressed in terms of the effective stiffness L̃ of the composite:

A(1) = I +
1

c(1)

(
L

(1) − L
(2)
)−T

:
(
L̃ − 〈L〉

)T
, (66)

a(1) =
1

c(1)

(
L

(1) − L
(2)
)−1

:
(
L̃ − 〈L〉

)
:
(
L

(1) − L
(2)
)−1

:
(
ρ(1) − ρ(2)

)
. (67)

It follows from these relations that the effective thermoelastic energy of the
composite can be expressed in terms of the effective stiffness of the composite
only :

w̃(E) = 〈f〉 + 〈ρ〉 : E + 1
2
E : 〈L〉 : E

+1
2

[
E + (∆L)−1 : ∆ρ

]
:
(
L̃ − 〈L〉

)
:
[
E + (∆L)−1 ∆ρ

]
,

(68)

where

∆L = L
(1) − L

(2), ∆ρ = ρ(1) − ρ(2).
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Appendix C: First and second moments of the strain field in a ther-
moelastic composite

The first moments of the strain field ε in each phase of a linear thermoelastic
composite can be expressed as (see for instance Willis, 1981) :

〈ε〉r = A(r) : E + a(r). (69)

A(r) is the strain localization tensor giving the average strain in phase r due
to the macroscopic strain E in the absence of thermal stresses (ρ(r) = 0).
Similarly, a(r) is the average strain in phase r due to the thermal stresses
(E = 0). Both tensors depend on the elastic moduli of the phases and on
the microstructure of the composite. Explicit expressions corresponding to
specific microstructures can be found in the literature. These tensors can also
be evaluated numerically.

The second moment of the strain field is obtained by derivation of the effective
energy of the composite with respect to the elastic moduli L

(r) of the individ-
ual phases (see for instance Ponte Castañeda and Suquet, 1998, Buryachenko,
2001 or Ponte Castañeda, 2002) :

〈ε ⊗ ε〉r =
2

c(r)

∂w̃0

∂L
(r)

(70)

Detailed expressions for the effective energy in two-phase composites are given
in appendix B.
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