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This paper presents a fully bladed flexible rotor and outlines the associated stability analysis. From an energetic approach based on
the complete energies and potentials for Euler-Bernoulli beams, a system of equations is derived, in the rotational frame, for the
rotor. This later one is made of a hollow shaft modelled by an Euler-Bernoulli beam supported by a set of bearings. It is connected
to a rigid disk having a rotational inertia. A full set of flexible blades is also modelled by Euler-Bernoulli beams clamped in the disk.
The flexural vibrations of the blades as well as those of the shaft are considered. The evolution of the eigenvalues of this rotor, in
the corotational frame, is studied. A stability detection method, bringing coalescence and loci separation phenomena to the fore,
in case of an asymmetric rotor, is undertaken in order to determine a parametric domain where turbomachinery cannot encounter
damage. Finally, extensive parametric studies including the length and the stagger angle of the blades as well as their flexibility are
presented in order to obtain robust criteria for stable and unstable areas prediction.

Copyright © 2006 N. Lesaffre et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, a simplified model of a fully bladed flexible

Rotor dynamics is a very particular and rich field of mechan-
ics, where plenty of phenomena [1-4] can be responsible
for the instabilities of rotating structures. A common par-
ticular interest of the rotating machinery industry is to un-
derstand correctly the vibration phenomena and to predict
the dynamic behaviour of flexible bladed rotors. Effectively,
a sufficient knowledge of the vibration phenomena is essen-
tial for considering adequate means to reduce or eliminate
vibrations and for designing rotating machinery. Thus, the
instability of propellers due to the interaction between the
dynamics of the blades and that of the engine suspension is
a well-known phenomenon and has attracted the interest of
Crandall and Dugundji [5]. This kind of instability may also
occur in bladed rotors, like those present in turbomachinery
[6].

The master of such structure is fundamental for indus-
try due to the fact that instabilities of bladed rotors can cause
severe damage. In order to avoid these problems, engineers
need therefore to find suitable devices to eliminate instabil-
ities. Unfortunately, this kind of study is quite complex and
must be performed using numerical models [7, 8]. However,
to obtain a closed-form solution suitable for a stability anal-
ysis, it is possible to resort to simplified models [9-11].

rotor is firstly presented. In a second part, a stability analysis
and parametric studies are investigated in order to detect the
stable and unstable regions of this structure in case of asym-
metries. The paper closes with a discussion of some topics of
future interest and some conclusions.

2. MODEL FORMULATION

The rotor considered in this study has been developed on an
energetic approach based on the same kind of approxima-
tion as the one described by Sinha [9]. It consists of a shaft
modelled by an Euler-Bernoulli beam, connected to a rigid
disk modelled by a concentrated mass with rotational iner-
tia. Several Euler-Bernoulli beams are clamped in the disk
and model the blades. The shaft is set on bearings at multiple
locations, as indicated in Figure 1.

Two degrees of freedom are considered for the shaft: two
orthogonal translations u(z, t) and v(z, t) in the disk’s plane,
and one degree of freedom for each blade defining its deflec-
tion #(s, t), as illustrated in Figure 2.

A Rayleigh-Ritz approximation is used to express the
degrees of freedom of these different parts. Thus, they
are expressed by a sum of shape functions multiplied by
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FiGUure 1: Model of flexible bladed rotor [9].

y axis
(rotating frame)

X axis
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FiGURE 2: Front view of the bladed disk.

time-dependent coefficients:

wz) = Un(D)+ S Un(O)Win(2),
m=1
V@) = Vo) + S Vit Winl2), (1)
m=1
n(s,t) = Zo: (Xn(t))j(yn(s))j;
n=1

where z is the axis of the shaft and s the axis along the blade.
In these expressions, U,(t) and V,(¢) are rigid body trans-
lations of the shaft. 7, and n are the number of modes
considered to express its motion and the flexure of the jth
blade, respectively. In this Rayleigh-Ritz approach, the shape
functions have only to verify the geometric boundary con-
ditions of the problem, so the shape functions of the blades
must verify

Yn(o) =0, Y}”l(o) =0, (2)

where prime denotes differentiation versus space coordi-
nates, because they are clamped in the rigid disk. Thus, the
chosen expression for the shape function of the blade deflec-
tion is

Y,(s) = ays +sin (Bns), (3)

with 8, = 2n — 1)n/(2L), and a, = —f3,.

Concerning the shaft, since it is supported by bearings,
its shape function has no geometric boundary conditions to
verify. It can thus be defined by

Wn(z) =1 — cos (amz), (4)

with a,,, = (2m — 1)7/(21). However, it could be noticed that
these functions verify

Wi(0) =0, W,,(0) =0, (5)
thus no motion is permitted at the end of the shaft (i.e., at
z=0).

An energetic method is used to develop this model, thus
potentials have to be defined for the shaft and for the blades
as well. The model has been fully developed in the rotating
frame in order to avoid having time-dependent terms, re-
sulting from the periodicity of the rotating structure, in the
analytical formulation. Thus, the kinetic energy Tpade of the
jth blade, located at an angle ¢; = 277j/Niq in this frame, as
indicated in Figure 2 and where Ny is the total number of
blades, can be fully expressed by the following relation:

L 1 N L 1 = N
Tolade = L EPbSb ViR, (G)ds + Jo EQ§/ROIQS/ROd5> (6)

where py, and Sp, are the density and the area, respectively, of
a blade cross-section. \75/120 (G), QS/R(,, and I are the speed and
the rotation of the center of mass of a blade cross-section in
relation to the fixed frame and its inertia matrix, defined in
its inertial frame. It should be noticed that the complete ex-
pression of the kinetic energy should be considered because
in certain extreme geometric conditions, the approximated
kinetic energy can lead to unrealistic instabilities of the rotor.
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FIGURE 3: Campbell diagram for a twenty-eight-bladed rotor with blades of one meter in length.

The potential energy ving,,, associated with the elastic de-
formation of the blade, a function of dissipation Fg,,,, asso-
ciated with the internal damping of the jth blade, and a pre-
stress potential taking into account the effect of the rotational
inertia are formulated:

R>—(s+71)?

5 ]11'2(5, Hds.  (7)

— 1 t QZ
Vblade = 2 JO PuSh |:
In the same way, the kinetic energy Tshas, the potential energy
Vinty, associated with the elastic deformation of the shaft,
a function of dissipation Fg, , associated with the internal
damping of the shaft, as well as a potential Vpearings and a

function of dissipation Fg,,,.. associated with the bearings
are defined.

Xrotor = [UO VO Ul Vl Umlol leol

All expressions of the energies and potentials are given in
Appendix A as well as those of the mass, damping, and stiff-
ness matrices, in Appendix B.

3. STABILITY ANALYSIS

One of the most important objectives for turbomachinery
designers is to define dangerous operating speed ranges and
the associated stable and unstable regions of bladed rotor vi-
brations.

The stability of the flexible bladed rotor is investigated
by determining the solution A = a + ib of the characteristic
equation

det (AZMrotor + Aérotor + IN(rotor) =0. (10)

Then, Lagrange’s equations are used in order to obtain
the system of equations of the dynamic behaviour of the full
flexible bladed rotor. This system of equations can be written
under the following form:

MrotorXrotor + CrotorXrotor + KrotorXrotor = 0) (8)

where Mioors &rotor, and IN(rotOr are the mass matrix, the gener-
alized damping matrix, and the generalized stiffness matrix,
respectively. Xyotor defines the generalized degree of freedom
vector of the rotor. It contains 2o + 2 + MiotNior €lements
and has the following expression:

T
Xll X21 Xﬂ XlN(m X”lolNlm] . (9)

tot 1

It becomes unstable if any one or more of the eigenvalues’
real parts a is positive. The imaginary parts define the fre-
quencies of the system.

In this following study, we consider a shaft supported by
three isotropic bearings located at z = 0cm, z = 300 cm,
and z = 325cm. The radial stiffness and viscous damping
coefficients for these bearings are kpearing = 2 - 10/ N.m™!
and Dyearing = 2 - 10> N.s.m™!.

Figure 3 illustrates the evolution of the eigenfrequencies
of a flexible twenty-eight-bladed rotor of one meter in length,
plotted in a Campbell diagram. Figure 4 shows the evolution
of the eigenvalues in the complex plane. The evolutions of the
shaft’s eigenfrequencies, shown in Figure 3, are mainly due to
the gyroscopic effects. In the rotating frame, the downward
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F1GURE 4: Complex plane diagram for a twenty-eight-bladed rotor with blades of one meter in length.
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FIGURE 5: Zoom near extremity (1)in the complex plane diagram.

sloping lines are forward modes (precession motions in the
same sense of rotation as the own rotation of the shaft) and
the upward sloping ones are backward modes. The evolu-
tion of the blades’ eigenfrequencies (starting at 31 Hz), that
is, their stiffening, is due to the centrifugal effects included
in the prestress potential v, ... Two loci separation phenom-
ena [12, 13] appear, as illustrated by the points A and B on
Figures 3 and 4. When two eigenvalues loci approach each
other, they either cross or do not cross; often in the latter
case, even though the loci nearly intersect, in fact they do not
but rather veer away from each other with high local cur-
vature. During these veering phenomena, mode shapes and
sense of rotation are switched between the eigenvalues that
veer away from each other. The two particular cases shown
in Figure 3 do not present high local curvature and their lo-
cations on the complex plane on Figure 4 are easy to find. In
this particular simple case of loci separation, the evolution
of the eigenvalues on both Figures 3 and 4 can be correlated.

The extremities of each curve are numbered in a round. Fig-
ures 5 and 6 are zooms of the extremities (1) and (2),, respec-
tively. The curves being “continuous,” the eigenfrequencies
at QO = 0 RPM are not remarkable points. In this plane, loci
separations look obviously like loops.

This system is stable as shown in Figure 4. However, in
the particular case of a two-bladed rotor, instabilities can be
observed as illustrated in Figures 7 and 8 showing a Campbell
diagram and a decay rate plot (corresponding to the eigenval-
ues’ real parts), respectively. Figure 9 shows the evolution of
the eigenfrequencies in the complex plane. Loci separation
phenomena appear and are more present than in the latter
twenty eight-bladed rotor case.

In this case, two kinds of instabilities are observed. They
both result from an inertial asymmetry of the system. The
first and more common one is noted by (1) and occurs at the
first critical speed (intersection with the abscissa axis). The
second one, indicated by the marks 2b, 2¢, and 2d, consists
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FIGURE 6: Zoom near extremity (2) in the complex plane diagram.
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FiGurg 7: Campbell diagram for a two-bladed rotor.

in mode couplings, that is, two separated mode shapes at a
rotational speed become two mode shapes having the same
eigenfrequency but one of them being stable and the other
being unstable with its amplitude increasing with respect to
time. The points indicated by X1 and X2 do not show insta-
bilities, but since the observed phenomenon is due to asym-
metries, the length of the blades may influence mode cou-
plings, and for sufficient length, may drive the two-bladed
rotor unstable at these configurations.

Figure 10 shows a stability map for a two-bladed rotor as
a function of its rotational speed and of its blade length, and
Figure 11 shows the unstable frequencies associated. These
two pictures confirm the two kinds of instabilities, the one
noted (1) corresponding to 0 Hz (in the rotating frame) and
the ones noted 2a, 2b, 2¢, and 2d corresponding to mode
couplings. Figure 10 shows that up to 15cm (in the case of
these particular two blades), the asymmetry of the rotor is
light enough to leave the system stable, but above this blade
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FIGURE 8: Decay rate plot for a two-bladed rotor.
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FiGure 9: Complex plane diagram for a two-bladed rotor.

length, the rotor may experience several speed ranges where
it is unstable. Only the unstable frequencies different from
0Hz and corresponding to mode couplings can be seen in
Figure 11, underlying the two kinds of instabilities. Thus, the
configuration noted X1 on Figures 7 and 9 can be an unsta-
ble one if the blade length is up to 1.1 m and corresponds to
the area noted 2a in Figure 10. It is the same phenomenon
for the points noted X2 on Figures 7 and 8 which correspond
to the area (1) just before 8000 RPM, in Figure 10, for blades
longer than 1.1 m.

As explained previously, these instabilities are mainly due
to asymmetries of the system but, the flexibility of the blades
can influence these phenomena. Figures 12 and 13 show the
stability map and the unstable frequencies’ evolution, respec-
tively, in the case of a two-rigid-bladed rotor. The differences
between this case and the latter concern mainly the first insta-
bility speed range. As a matter of fact, the unstable frequen-
cies corresponding to mode couplings between 2000 RPM
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and 4000 RPM are lower than in the flexible case and the
blade length range concerned is shorter (see Figure 13, in
white ellispe). Thus, in the case of a two-rigid-bladed rotor,
the mass and inertia added by the two blades can, between
2000 RPM and 4000 RPM, lead to low-frequency modes cou-
plings between the horizontal and the vertical mode shape of
the rotor, if its blade length is between 1.1 m and 1.5 m. In the
case of flexible blades, if their eigenfrequencies are close to
those of the shaft (as in the latter example), mode couplings
can occur in this same speed range from a blade length of
1.1 m and involve mixed mode shapes.

Another parameter, the stagger angle (see Figure 14), can
influence the occurrence of instabilities. All cases studied
so far have been made with § = 60°. Figures 15 and 16
show the stability map and the unstable frequencies’ evo-
lution, respectively, as a function of the stagger angle of a
two-flexible-bladed rotor of one meter in length. The two
kinds of instabilities can also be seen here. It appears that

the higher the stagger angle is, the shorter the unstable speed
ranges are, as it could be though intuitively. However, un-
stable speed ranges can appear or disappear as a function of
this stagger angle, showing the importance of this parame-
ter.

4. CONCLUSION

A flexible fully bladed rotor has been modelled in the ro-
tating frame using an energetic approach. Campbell dia-
grams have been plotted for this structure, what would not
have been possible if the model had been made in the fixed
frame. Then, its stability has been investigated, essentially by
using complex plane diagrams. It has been shown that with-
out rotating damping, the system may experience instabili-
ties if it is strongly asymmetric, typically in the case of a two-
bladed rotor. In this case, zero hertz unstable speed ranges
have been detected at the first critical speed as well as mode
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couplings at frequencies different from zero hertz whether
the blades are flexible or not. The influence of the stagger an-
gle of the blades in the occurrences of instabilities has also
been underlined. Thus, this model of a flexible bladed ro-
tor appears to be sufficiently simple and complete from a

phenomenological point of view to be used to design rotating
machinery, to eliminate vibrations due to instabilities, and
to study easily some complicated phenomenon in rotor dy-
namics as for instance travelling wave speed coincidence or
blade-tip/casing contact.
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A. EXPRESSIONS OF THE ENERGIES AND
POTENTIALS OF THE MODEL'S ITEMS

Thlade
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FIGURE 15: Stability map of a two-flexible-bladed rotor as a function of its stagger angle and its rotational speed.
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FIGURE 16: Unstable frequencies of a two-flexible-bladed rotor as a function of its stagger angle and its rotational speed.
APPENDIX

L
+ % L puSepi2it’ (I, £)7(s, ) (s + r) sin B cos @;
+20" (1, 1) (s, t)(s + r) sin B sin ¢ } ds
L
41 J puS 120[u(l, )01, £) — a(l, oL, )
2 Jo

+ (u(l,t) cos @j + v(l, t) sin ;)
x (s, t) cos B

— (a(l,t) cos @ + (1, 1) sing;)
X 7(s, t) cos B] }ds

L
N % j ppSo Q2 (121, 1) + 02(1, ) + 12(s, 1) cos® B
0

= 2u(l, t)y(s,t) cos fsin¢;
+2v(1, t)n(s, ) cos fcos ¢} ds

X ' *(L, 1) (s +1r)* cos’ g; Lt
+0"2(L1)(s +71)*sin’ g "2 L pSe

+ 20/ (L) (L t)(s +7)* cos @jsing;lds

X {2(s+r)Q*[u(l,t) cos ¢; + v(l,t) sin g;]
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+2(s+r)Q[o(l, 1) cos @j — (L, t) sin g;]
+Q%(s+1)*}ds
1 L
+ 5 Jo puSp2(s +7)*Q
x ' (I, )u' (I, t) cos @ sin @
= 0'(L,)v' (I, t) cos g sin @;
— i (L' (I,t) cos® p;
=o' (L)' (I,t) cos® g, }ds
1 L
+ 3 Jo PpSp2(s +1)Q
x{ [, Ou' (L) + (s, )i’ (1))
X sin Bsin @;
- [’;I(S’ t)U,(l, t) + ’7(5) t)U,(l, t)]
X sin fcos @; +7(s, t) cos B} ds
1 L
5 L oSy (s +1)?
x {u(I, 1) cos® @j + v"*(1,1) sin’ ?;
+2u' (I, t)v'(I,t) cos @ sin g } ds
1 L
-3 Jo Sy Q*(s+7)
x {21(s,t)v" (1, 1) sin B sin @;
+2#(s, t)u (I,t) sin f cos @} ds
L
+ % Jo pol {12 (1,t) sin® B cos® g,

+ 0/2(1) t) Sin2 ﬁ Sil’l2 (p] + 1/'],2(5, t)
+24/(1,1)5)’ (s, ) sin B cos @
+20" (L, 1)7]' (s, t) sin Bsin @} ds

L
+ % J pulp {26 (1,1)0' (1, £) sin® B cos ¢; sin ¢} ds
0

1 L
+ 2 JO Pulp2Q2
X 0" (L) (u' (I, 1) sing; — v'(I, 1) cos ¢;)
x sin® Bsin g + 0’ (1,¢) sin f cos B sin ¢;
=o' (Lu'(I,t) cos® B}ds
1 L
+ E Jo prbZQ
x {d' (L) (u' (1, 1) sing; — v' (L, 1) cos ;)
X sin” B cos @;
+1/(1,t) sin B cos B cos ¢} ds
1 L
+ E Jo prbZQ

X A7 (s,t) cos B+ 7 (s, ) (I, t) sin B sin ;
— ' (s,t)v' (I, t) sin fcos @} ds

1 L
+ 2 L prbQZ
x {u'?(1,t) sin® Bsin® ¢; — u'(I,t) cos’ B
+v%(1,t) sin® B cos® @;
— v"?(I,t) cos® B + cos® B} ds
1 L
+ 2 JO p;,IbZQZ
X {u' (I, 1) sin B cos Bsin ¢;
—v'(I,t) cos Bsin f cos ¢;
— /(L t)v (I, t) sin® B cos @jsing;lds
1 L
N
X {i*(1,t) cos® B cos® @;
+0'2(1,t) cos’ Bsin” ¢;

+24/ (1, 0)0' (1, t) cos’ Bsin g cos @ } ds
1 L
+ E ,[0 pryZQ
X 0" (L) (u' (I, t) sing; — v'(I, 1) cos @)
X cos® Bsin; — v’ (1, 1) sin B cos Bsin ¢;
— o' (Lt)u (I, t) sin® B} ds
1 L
+ E JO pthZQ
x A (I, t) (' (1, t) sing; — v' (I, t) cos ¢;)
X cos® B cos ¢;
— ' (I,t)sinffcos fcos ¢;}ds
L
+ % J pul, 2047 (s, )it (I, ) sin B sin ¢
0
— 7' (s,t)0" (1, t) sin B cos @; }ds
l L
+5 L pul, QO
x {u'(1,t) cos? Bsin® ¢; — u'>(l, t) sin® B
+02(1,t) cos? fcos® ¢; — v (1, t) sin* B
—1'2(s, t) sin” B + sin® B} ds
1 L
-5 L ppl, 20
x {u/(1,t) sin B cos B sin ¢;
—v'(l,t) cos Bsin B cos ¢;
+u' (L)' (I, t) cos® B cos @;jsing;lds
L
- % J pul,20% {1’ (s, ) (I, 1) sin B cos @
0
+1'(s,t)v'(I,t) sin fsin @ } ds
L
+ % J pol {2 (1, 1) sin® @; + 02 (I, t) cos® g
0

=20/ (L, t)o'(I, £) sin @ cos ¢ } ds
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| (L
+3 ), 120
x {0 (L) (u' (L t) cos g + v (I, 1) sin g;)
x cos@; + 0" (L, 1)y (s,t) sin S cos ¢ } ds

1 L
- 5 JVO prZZQ

x i (L 1) (u' (I, t) cos @j+v'(I,t)sing;)
x sing; + it (I, 1)y’ (s, t) sin Bsin @, } ds

1 (* 5
+3 JO PO
X {u*(I,t) cos® p;

+0v'2(1,t) sin’ @;+1(s,1) sin” B} ds

L
+ % J pul:2Q% {1’ (s, t)u/ (I, 1) sin S cos ¢
0

+1 (s,t)v" (I, t) sin Bsin @
+u' (L t)v' (I, t) cos g sin @, } ds,

1(* " 2
’Vintblade = E JO EbIb(W (57 t)) dS,

1 (* L 2
Fayo. = 2 JO WbEbIb(”/ (s,1))"ds,

1t RZ—(s+1)7,
Vevlade = 5 JO PbAbQZ[%]I’] 2(5, t)ds,

1
Tshatt = % JO PsAs(u2(Z’ t) + 02(Z> l’))dZ
1
+ J pAQ Uz, 00(z, 1) — 4z, vz, 1)) dz
0
1 l
A1 J A2 (12 (2, ) + 12 (2, 1)) dz
2 Jo
+1 Jl (1,022 t) + 1,42 (2, )} d
3 ), Pl 0z U (2, t)} dz
1
+ J psQ I 0" (z, ) (2, t) — I, i (2, )0 (2, £) }dz
0
1 (! oly
+ 2 JOPSQZ{(ISY - I)U 2(21 t)
+ (I, — "Y' (z,1)}dz
1
+2 J p P2 — 200 (z, 0 (2, 1)) dz
0
+ %MD(az(l, £+ 02(L, 1))
+ MpQ{u(l o, 6) — ll, )o(l, )}
+ %MDQZ(uZ(l, £+ 02(L, 1))
+ 20200 + I, 621 0)
+ Q{Jp, 0" (Lt)u' (Lt) — Jp, &' (L t)v' (I, 1)}
+ —QZ{(JDY B 0200 + (Jo, — J5) (1,0}

]P"l( —200' (1L, (1, 1)),

1 l rr rr
Vintgu = 5 JO EJ(u"*(z,1) + v"*(z, 1)) dz,

L : p
Fiy = E J nsEsIs(a, 2(Z> t)+0 2(Z: t))dza
0
Nb 1 5
Vbearings = Z 5 [Szx{u(Zi: t) cos Ot — U(Z,', t) sin Qt}

i=1

+ Sﬁy{u(zi, t) sin Qt + v(z;, t) cos Qt}z]
Nb
+> 5 [Bﬁx{u' (zi,t) cos Qt — v’ (i, 1) sin Qt}°
i-1

+ Bﬁy{u' (zi,t) sinQt + v (z;, t) cos Qt}z],

Z,

b

F dbearings
1

[Db {it(zi, t) cos Qt — u(z;, t)Qsin Qt

N | =

1

— 0(z, t) sin Qt — v(z;, t) Q cos Qt}z]
Nb
ZZ[DI’ {it(zi, t) sin Qt + u(z;, t) Q cos Qt
i=1

+0(zi, t) cos Qt—v(z;, t) Qsin Qt}Z].
(A1)

B. EXPRESSIONS OF THE MASS, DAMPING, AND
STIFFNESS MATRICES FOR THE ROTOR

Considering that m € [1, moi], g € [1, Miot], ¢ € [3, Mot +2],
P € [3, 1ot +2], and j € [1, Niot], the coefficients of Miotor,
Krotor) and Crotor are glven by

Mrotor(l) 1) = Ms + MD + Ntoth)
Mrotor(lr 2) =0,
Moor(1,2m + 1)
1
= [ AW (22 4 Mo W)+ NeocMy Wi (D,

Mrotor(la 2m+ 2) =0,
Mrotor(la 2"ntot tc+ (] - 1)nt0t)

L

- J PrApY._2(s)dscos Bsing;,

0
Mrotor(z) 1) =0,
Mrotor(zy 2) = Ms + MD + Ntoth:
Moior(2,2m + 1) = 0,
Mrotor(z) 2m+ 2)

1
- j PeAs Win(2)dz + MpWon(1) + NeoeMy Win (D),
0

Mrotor(z) 2"ntot +c+ (] - l)ntot)

L
= J prApY._(s)dscosBcos¢;,
0
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Mrotor(zm + 1) 1)

1
- j PeAs Win(2)dz + MpWin(1) + NeoeMy Win (D),
0

Motor(2m +1,2) = 0,
Motor(2m +1,2q + 1)

! !
= L psAW(2) W, (2)dz + Jo psks, W, (2)W,,(2)dz

+MpWy(DWin(l) + Jp, W (DW,, (D)

+ NiotMp Wq(l) Wm(l)
Niot L2

¥ Zle{rZ FLr+ ?}Wq’(l)W,’n(l) cos’ g,
=

N[O(
+ Z LppIy sin? B cos? ®; Wq'(l) w,.(D)
j=1

Nl()(
+ Z Lpyl, cos’ 8 cos? ®; W[;(l) w,.(D)
=1

N‘O‘
+ > LpyLsin® ;Wi ()W, (D),
j=1

Motor(2m + 1,2q +2)
N(l)(

2
- Z Mb{r2 +Lr+ %}W&(Z)Wr'n(l) sin @; cos ¢;
i1

N[O(
+ > Lpyly sin® fcos g; sin ¢, W (W, ()
j=1

Nl()t
+ > LpyI, cos® B cos g; sin g; W, (DW,, (1)
j=1

N[Ot
— > Lpyl, cos ¢ sin g; W (W, (D),
=1

Mrotor(zm +1,2m0 + ¢+ (] - l)ntot)
L
= - J' PoApYe 2(s)dsWy, (1) cos Bsin g;
0
L
+ J puApYe2(s)(s+ r)dsW,,(I) sin B cos ¢;
0

L
+ J pulpY! 5 (s)dsW,,(I) sin S cos ¢;,
0

Mrotor(zm +2, 1) =0,
Motor(2m +2,2)

I
- j P AW (2)dz + MpWin(1) + NeoeMy Won(D),
0

Motor(2m +2,2q + 1)

Ntot
= Z Mb{rz +Lr+

L2
j=1 )

[wiw, () sing; cosg,

NlOl

+ > Lpyly sin® fcos g; sin g, Wo(DW,, (D)
=1
Nl()[

+ > Lpyl, cos® fcos g; sin g, Wao(hw,, (1)
=1

Nl()l
— > Lpyl, cos ¢ sin g; wo (W, (D),
=1

Motor(2m +2,2q +2)

I I
= J P AW (2) W, (2)dz + J psls, W‘;(z) W,,(2)dz
0 0

+ Mp W, () Won(D) + Jo, W (D Wy, (1)

+ NiotMp Wq(l) Wm(l)

Niot 2
¥ Zle{rZ S AUAGEY
=

N(\)(
+ z LppI, sin’ B sin® ®; Wq'(l)W,;(l)
j=1

N[O[
+ Z LpyI, cos® B sin? ®; W(;(l)W,'n(l)
=1

N‘O[
+ > LpyL. cos® ;Wi ()W, (D),
j=1

Mrotor(zm + 2a thot +tc+ (] - l)ntot)
L
= J PoApYe2(s)dsW (1) cos B cos ¢
0
L
+ J PuApYe—2(s)(s + r)dsW,,(I) sin Bsin ¢;
0
L
+ J poly Y. ,(s)dsW,, (1) sin B sin ¢,
0
Mrotor(zmtot + P + (] - l)ntob 1)

L
= —J PoALY, 2(s)dscos fsing;,
0

Miotor (2101 + p+ (= Do, 2)

L
= J PrALY, 2(s)ds cos S cos ¢,
0
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Mrotor(zmtot +P + (] - 1)nt0t) Zq + 1)
L
- J PoApYp_2(s)dsWy(I) cos Bsin @
0
L
+ J PuApY, 2(s)(s + r)dsW,;(l) sin B cos ¢;
0

L
+ J pr;,Y‘[,_z(s)dsWé(l) sin B cos ¢,
0
Mrotor(zmtot +tp+ (] — D)ot 2q + 2)
L
= L PoALY,p 2(s)dsWy(1) cos B cos ¢;
L
+ J PrALYp 2(s)(s + r)dsWé(l) sin 3 sin ;
0
L
+ J pr;,Yl;,z(s)dsWé(l) sin sin @,
0
Miotor (211401 + p+(j— Dngop 2mier + ¢+ (j — 1)nior)

L L
= | Yy Yea (st | pulb ¥y oYL 5()ds,

Np
IN(rotor(l) 1) = 7MSQZ - MDS_Z2 + Z [Sb]
i=1

- MbNtotQZ)

Np

- > [p*la,

i=1

I,\érotor(ly 2) =

rotor(l 2m+1) J PsAs W, (2)dz — MpQ* W, (1)

+z [StTw,

~ NotMp Q> Wi (1),

Ny

- Z [Db]QWm (zi))

i=1

IN(rotor(l) 2m+ 2) =

IN(rotor(ly thot +c+ (] - l)ntot)

L
= J prALQ*Y 5 (s)dscos Bsing;,
0

Np

I,\(/rotor(z) 1) = Z [Dh]-Q:

i=1

Np
IN(rotor(2> 2) = _MSQ2 - MDgz + z [Sb]

i=1

- MhNtOtgzr
Ny
Kiotor(2,2m +1) = Z [Db]QWm (Z,‘),

i=1

1
IN(rotor(Zy 2m+ 2) = - J PSASQZ Win (Z)dZ - MDQ'2 Wm(l)

+Z [St 1w,

IN(rotor(za 2””tot +c+ (] - 1)”tot)

NtothQ W (l)

L
- J PrALQ*Y 5 (s)ds cos S cos ¢,
0

I
IN(rotor(zrn +1, 1) = - J PSASQZ Wm(Z)dZ - MD(22 Wm(l)

+Z stlw,

Z\ftot]\/lloQ Wi (l)

Ni

- > [DPlaW,(z),

i=1

IN(rotor(27’n +1,2) =

IN(rotor(Zm +1,2q+1)

1
- —J PALW,(2) Win(2)dz
0

- (B~ )W ()W (2)dz

=~ Mp@* Wy (OWon(D) = (Jo, =I5 ) Q2 W, (DW,, (1)

IEIW"(Z)W"(z)dz+Z [SP1W, (2:) Wi (2:)

i=1
+ZBb W, (2i) = NitMpQ2 W,y (1) W, (1)

N[O[
+ ZMsz{r +Lr+ %}W (HW,,(I) cos® ¢;
j=1
Niot
+ > LppI, 0 cos” BW, () W,,(I)
=1
Nl\)l
- z LppI,O? sin? B sin’ ®; W[;(l) w,.(D)
i1
NlOl
+ Z Lp;,I},Q2 sin? ﬁWq'(l) Ww,.(D)
i1
Niot
— > Lppl, O cos® Bsin’ g; W (hw,, (1)
i1
N[O[
— > Lpp QY cos? g W (W, (D),
=1

Krotor 2m +1,2g +2)

Ny
== > [D*1QW, (zi) Wi (2:)
i1
N[O[
+ ZMbﬂz{r +Lr+ —}W (DW,, (1) cos ¢; sin g;
j=1
N[O[
+ > LppI, Q7 sin’ Bsin g; cos ;Wi (D W, (1)
=1
Niot
+ > Lppl, 0% cos? Bsin g; cos ¢ W,
j=1
Nﬂ)‘
- z LppI,Q? cos @;jsing; Wc;(l) w,.(D),
=1

A (OW, (D)
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IN(rotor(zm + 1) 2”ntot +c+ (] - l)ntot)

L
=J PrALQ? Y 5(s)dsW,, (1) cos Bsin g
0
L
+ J PrALQ* Y 5(s)(s + r)dsW,,(I) sin S cos ¢;
0
L
+J pul, QY. (s)dsW,,(1) sin B cos ¢;
0

L
- Jo ppL QY. 5 (s)dsW,,(I) sin S cos ¢;,

Ny
IN(rotor(zm +2, 1) = Z [Db]QWm (Zi))
i=1

Kiotor 2m +2,2)

1
=- J psAsQP W, (2)dz — MpQ* W (1)
0

Np
+ 5 (8 ]Wi(21) — NetMpQ2 Wi (1),
i=1

Krotor(2m +2,2g + 1)

Np
= > [D*1QW,(z) Wi (2:)

i=1
Niot L2

+ Z MbQZ{rz +Lr + ?}Wé(l)w,;(l) cos @; sin @;
j=1
NlO(

+ Z Lppl, O sin? Bsing;cos¢; W‘;(l)W,'n(l)
j=1
Nl(\t

+ > Lpyl, 07 cos’ Bsin g cos ;W (D)W, (D)
j=1
Nl()t

— > Lpp Q¥ cos g sin ¢; W (hw,, (D),
=1

Krotor(2m +2,2q +2)
I
- L DAL W, (2) Wy (2)dz
: pol) ~2
-, (1, - ) QWi W )z

— MpQ2Wo(DWa(D) = (Jo, =I5 ) Q2 W (W, (D)

I Np
+ J ELW, ()W (2)dz + D[S 1W,(zi) Wi (2:)
0

i=1

Ny
+ > B"W, (2) Wy, (21) = NeotMpQ> Wy (W, (D)
i=1

N
tot L2 , , .
+> M;,QZ{rz +Lr+ ?}Wq(l)Wm(l) sin’ @;
=1
N[O(

+ > LppI,Q* cos* BW, (D W, (1)
j=1

NlOl
— > LpppQ? sin® fcos® @; W (W, (D)
j=1
N(O‘
+ > Lpy, 0 sin® BW (W, (D)
=1
N‘O[
- Z Lpr},Q2 cos® 8 cos? ?; Wq'(l)W,'n(l)
j=1
Nl()l
— Z LppI,Q? sin’ ®; W{;(l)W,;(l),
j=1

Krotor (2m + 2, 2myo; + ¢ + (j — Dieor)
o LL PpALQ? Y _5(s)dsW,,(I) cos B cos ®j
[ AT (6 + s (D sin Bsing,
! LL polyQ*Y 5 (s)ds W, (1) sin sin g
- [ ook s sin Bsing,
Krotor (2mior + ¢+ (j = Ditgors 1)

L
= J PrALQ*Y, 5 (s)ds cos fsin g;,
0

I,\érotor(zrntot +c+ (] - l)ntotr 2)

L
- J PrALQPY, 5 (s)ds cos f cos ¢,
0
IN(rotor(zmtot tc+ (] — Dors 2q + 1)

= LL oAV Yy 2(s)ds Wy (1) cos Bsin ¢;
+ LL PrALQ*Y ) 5(s)(s +1)dsW (1) sin B cos ¢
[ty 025w D sin peose,
— LL phIzQZYz’,,z(s)dsWé(l) sin 8 cos ¢,
Krotor (211101 + ¢ + (j — 1)1yo, 29 +2)
- LL POAVQRY, 2 (9)dsW, (1) cosBeos g,
n JOL PrALQ*Y ) 5(s)(s + r)dsW (1) sin B sin @;
[ty 02 s 0 sin sing,
_ LL P LY, (s)ds W (1) sin Bsin g,
Krotor (2110t + p + (j = 1)tiot, 21ior + ¢ + (j — 1)11ger)

L
=— J PrALQ?Y ), 5(s) Y o (s)ds cos® B
0
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L
+ Jo EpI, Y, ()Y 5 (s)ds
L 2 2
+[ =y v s
L
; j L QYL (5)Y)_(s)ds sin’ B
0

L
- Jo pp.Q? Y;,Z(S)Y},Z(s)ds sin’ B,

Ny

(N:rotor(L 1) = Z [Db]:

i=1
Crotor(1,2) = —2M,Q — 2MpQ — 2M}, Nioi Q,

Ny

,(V:rotor(lyzm + 1) = Z [Db]Wm(Z,'),
i=1

Crotor(1,2m +2)
I
= —ZJ psAsQW,,(2)dz — 2MpQ W, (1)
0

- 2NtothQWm(l),

6rotor(la thot +c+ (] - l)ntot)
L
= —ZJ PrA QY 2(s)ds cos cos ¢,
0

Crotor(2,1) = 2M,Q + 2MpQ + 2M Nt Q,

Ny

,(V:rotor(z) 2) = Z [Db])

i=1

Crotor(2,2m +1)

I
=2 J psAsSQW,,,(2)dz + 2Mp QW (1)
0

+ 2Nt MpQ W, (1),

Ny
Crotor(2,2m+2) = > [DV]W,(z),

i=1

&rotor(za thot tct+ (] - l)ntot)

L
=-2 J PrAQY, 2(s)dscos Bsing;,
0

&rotor(zm"' L,1) = [Db]Wm(Zi)’

MZ

1

E:rotor(zrn +1,2)

1
- ‘ZJ P AQWin(2)dz — 2MpQ W (D)
0

- ZNtochQWm(l)>

Crotor(2m +1,2g + 1)

_ z [DY1W, (2) Wi (2:) { RELOW, ()W) (2)dz,

Crotor(2m +1,2q +2)

I
=2 J PAQW, (2) Wi (2)dz

Ips (L, + L) QW) () W;,(2)dz

= 2MpQW,(DWu(1) = 2(Jp, +Jp,) QW (DW,, (D)

Jps POW, (2) W) (2)dz + T QW ()W, (1)

= 2Niot My QW (D)W, (1)
Nlol

— > Lpp,Qsin® BW, (DW,, (1)
j=1

N[O[
+ Z LppIpQ cos? ﬁW,;(l) w,.(I)
=1

Niot

— Z LppI, Q) coszﬁW(;(l)W,;,(l)
j=1
NlOl

+ Z LpyI,Q sinzﬁWq'(l) Ww,.(D)
j=1

Nlol
= 2 Lo AW (DW,, (D),
j=1

E:rotor(zm +1,2m + ¢+ (] - l)ntot)

L
=-2 I PrA QY 2(s)dsWiy, (1) cos S cos ¢;

—ZJ oIy QY. 5 (s)dsW,,(I) sin Bsin ¢;,

Crotor 2m +2,1)

I
=2 J psAQW,,(2)dz + 2MpQW,, (1)
0

+ ZNtochQWm(l)>

Ny
Crotor(2m +2,2) = > [DP W (21),
i=1

Crotor(2m +2,29 + 1)
1
—2 J PAQW, (2) W (2)dz
0
1
+2 J pa(ll, + 1) QW) ()W, (2)dz
0

+ 2MpQW, () W(1)
+2(Jp, +Jp,) QW (D)W, (D)

J I QW, (2) W, (2)dz — T QW (D W, (1)
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+ 2NiotMp QW (D W, (1)

N[Ot

+ > LppTyQsin® W (W, (D)
=1
Niot

- Z LppIp Q) cos? ﬁW;(l) w,, (1)
j=1
Nl(\t

+ Z LpyI, Q2 cosZﬂWq'(l)W,'n(l)
j=1

Nm(
— > LppI,Qsin® W, ()W, (1)
j=1

Nlm
+ > Lo LOW, (W, (D),
j=1

Crotor(2m +2,2q +2)
Ny 1
= > [DPIW,(z;) Wi (zi) + L NsEsLQW, (2) W, (2)dz,
i=1
Erotor(zm +2,2m0r + ¢+ (] - l)ntot)
L
= —ZJ PrA QY 2(s)dsWy, (1) cos Bsin @
0
L
+2 J poly QY. 5 (s)dsW,, (1) sin B cos ¢,
0
érotor(zmtot +c+ (] — Do, 1)
L
= ZJ PoAQY, 5(s)dscosfcosg;,
0
6rotor(zrntot tct+ (] - l)ntotr 2)
L
= ZI PrAQY, 5(s)ds cos fsin @;,
0
érotor(zmtot +c+ (] - 1)ntoty 2m + 1)
L
=2 J PrA QY 5(s)dsWy(1) cos fcos ¢;
0
L
+2 J pthQYI;,Z(s)dsWé(l) sin Bsin ¢;,
0
6rotor(zrntot tct+ (] - l)ntotr 2m+ 2)
L
=2 J PrAQY, 5 (s)dsW (1) cos Bsing;
0
L
-2 J prbQYl’,,z(s)dsW,;(l) sin 8 cos ¢,
0
é(zmtot +p+ (= Do, 2Myor + ¢+ (j — 1)#or)

L
= L MoEplyY ) 5 (s) Y/ 5 (s)ds.
(B.1)

NOMENCLATURE

Mot

Ntot

Ntot
MD =150 kg

r=50-10"2m
L

R=r+L

Ay =75-107m?
I, =

4,55 -1077 m*
I, =
8.93-10°m*
L=I+I,
1=350-10"2m
ro==6-10"2m
r;=55-10"2m
ps = 7833 kg/m?
B = 60°

Q

Es =200-10° Pa

E, =117-10° Pa

py = 2000 kg/m?
As = n(rd — 1)

(rg — 1)
IS =7 0 1 i
=I5, = I,
(ra —r})
ISpol = nole
r2 D
=M —+—L>
Jo D( 412
=Jp,=Jb,
2
1 r
5o ()
3
Ns
Pj
Ny
Zj

St =8h, =8

Dt =D =D"

B:l;x = Bgy =

BY = 0N.m/rad
z

N

Number of modes considered
for the shaft motion

Number of modes considered
for the blade motion

Number of blades

Mass of the disk

Mass of the shaft

Mass of one blade

Axial length of the rigid disk
Disk radius

Blade length

Blade tip radius

Blade cross-sectional area
Blade area moment of

inertia for flexure

Blade area moment of inertia in
the other direction

Blade area polar

moment of inertia

Length of the shaft

Outside radius of the shaft
Inside radius of the shaft
Mass density of the shaft material
Blade stagger angle at the tip
Rotor spin velocity

Elastic Young’s modulus of
the rotor shaft material
Elastic Young’s modulus of
the blade material

Mass density of the blade material
Shaft cross-sectional area

Shaft diametral area

moment of inertia
Shaft polar area moment
of inertia

Diametral mass moment of

inertia of the disk

Polar mass moment of
inertia of the disk

Blade damping

Shaft damping

Angular position of the jth
blade in the rotating frame
Number of discrete bearings
supporting the shaft
Bearing support locations
Stiffness in the bearing support
Viscous damping in the
bearing support

Moment (bending) stiffness
in the bearing support

Axis of the shaft

Axis along a blade
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