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Abstract

This study is devoted to the modelling of ductile damage in uranium dioxide. This polycrystalline material contains
two populations of voids of well separated size. The problem addressed here is the prediction of the effective flow
surface of a Gurson material containing randomly oriented oblate voids. The case of spherical voids is considered
first and the variational approach of Gurson is generalized by adding a compressible component to his original
velocity field. The case of aligned oblate voids is then considered and a suitable generalization of a velocity field
due to Gologanu et al [6] is proposed. The extension to randomly oriented voids is achieved by averaging over all
orientations. In each case, rigorous upper bounds and approximate estimates are derived and compared (in the
case of spherical voids) with Finite Element simulations.

To cite this article: P.-G. Vincent et al., C. R. Mecanique ***** (2007).

Résumé

Endommagement ductile de matériaux poreux contenant deux populations de cavités. Cette note
est consacrée à l’étude de l’endommagement ductile dans l’oxyde d’uranium. Ce matériau polycristallin présente
deux familles de cavités de taille très différente. Le problème est abordé ici comme la recherche d’un critère de
plasticité pour un matériau de Gurson contenant des cavités ellipsöıdales aplaties distribuées aléatoirement. Dans
un premier temps, le cas des cavités sphériques est examiné. La démarche variationnelle de Gurson est reprise
en ajoutant une composante compressible au champ de vitesse de Gurson. Cette démarche est ensuite étendue
aux ellipsöıdes aplatis et alignés en reprenant et en complétant un champ de vitesse proposé par Gologanu et
al [6]. Enfin l’extension aux ellipsöıdes orientés aléatoirement se fait par une prise de moyenne appropriée sur
les orientations. Dans chaque cas, des bornes supérieures rigoureuses ainsi que des estimations sont proposées et
comparées (seulement dans le cas des cavités sphériques) avec des calculs par éléments finis. Pour citer cet article :
P.-G. Vincent et al., C. R. Mecanique ***** (2007).
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1. Introduction

The present work is devoted to the mechanical behavior of uranium dioxide (UO2) studied by the
French “Institut de Radioprotection et de Sûreté Nucléaire” (IRSN) to assess the safety of fuel rods
under accident conditions. UO2 is a polycrystalline material which, when highly irradiated, exhibits a
microstructure with two populations of voids of rather different sizes and shapes as schematically depicted
in Figure 1 (micrographs of the actual material can be found in [3]). The smallest voids are intragranular
and almost spherical in shape. The largest voids are elongated and located at grain boundaries (see
Figure 1). At high temperature the ceramic matrix is ductile and under accident conditions the increase
in pressure in the voids can cause the voids to grow and to coalesce, eventually leading to the formation
of a macroscopic crack. This process is very similar to that of ductile rupture in metals (Leblond [9]) and
the present study is an attempt to analyze damage evolution in UO2 by similar means.

Figure 1. Left: polycrystalline structure of UO2 showing intergranular lenticular and intragranular voids. Right: close-up on
the spherical intragranular voids.

Three different scales are relevant in this problem. The microscopic scale corresponds to the single grain
level where the spherical pores can be distinguished (Figure 1 right). At the mesoscopic (or intermediate)
scale (Figure 1 left) the smallest voids are “smeared out” and the different grains appear as different
domains with different orientations of the same porous material. Then, at the macroscopic scale all voids
are smeared out and the polycrystal is seen as a homogeneous material. The objective of this study is
to derive an expression for the effective (macroscopic) yield surface of such bi-porous materials when the
sound material at the microscopic scale is a ductile ideally plastic von Mises material (with yield stress
σ0).

Let V denote a representative volume element of this material at the mesoscopic scale. V consists of a
domain M occupied by the (porous) matrix (the smallest voids being smeared out), the remaining domain
V −M being occupied by the large voids. Two different measures of porosity corresponding to the different
scales involved in the problem should be distinguished. At the mesoscopic scale (single grain scale) the
volume fraction of the smallest voids is denoted by fb. At the macroscopic scale (polycrystal) the volume
fraction of the largest voids in V is denoted by fe. The total porosity f is obtained by considering the
volume fraction of the sound material and reads as f = fe + fb − fefb.

At the mesoscopic scale the plastic flow of the porous matrix, with porosity fb, is assumed to be
governed by the Gurson-Needleman-Tvergaard (GTN) yield function:

Email addresses: pierre-guy.vincent@irsn.fr (Pierre-Guy Vincent), yann.monerie@irsn.fr (Yann Monerie),
suquet@lma.cnrs-mrs.fr (Pierre Suquet).
1 Corresponding author.
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q3

(
σeq

σ0

)2

+ 2q1fbcosh

(
3

2

σm

σ0

)
− 1 − (q1fb)

2
= 0, (1)

where σm and σeq denote the usual hydrostatic stress and equivalent stress. The original Gurson yield
function corresponds to q1 = q3 = 1 [7]. The qi’s are adjustable parameters introduced by Tvergaard
and Needleman (see for instance [18]) to fit the yield function (1) with numerical simulations. The most
popular choices in the literature are q1 ranging from 1.25 to 1.5 and q3 = 1, but Leblond et al [8] have
introduced q3 = 1 + 2/3fb to satisfy a nonlinear variational upper bound for porous ductile materials.

In this study an expression for the effective yield surface of porous materials, consisting of a GTN
matrix and containing ellipsoidal cavities, is derived. A variational approach is adopted to characterize
the effective dissipation potential of the (bi-)porous material. Upper bounds for the effective strain-rate
potential of the representative volume element can be obtained from the variational principle:

Φ(Ė) = inf
v ∈K(Ė)

1

|V |

∫

M

ϕ(ε(v)) dV with K(Ė) ≡ {v |v = Ė · x on ∂V }, (2)

where Ė is the overall strain-rate and ϕ is the matrix dissipation potential which will be specified in due
time.

To make the problem more amenable to analytical calculations, the representative volume element V
under consideration is seen as an assemblage of self-similar hollow spheroids (axisymmetric ellipsoids)
which are identical copies, after dilatation and rotation, of a unit hollow ellipsoid as shown in Figure 2.
This unit hollow ellipsoid, denoted by Ω, contains at its center an ellipsoidal cavity ω. The outer and
inner surfaces are confocal ellipsoids.

V
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ω

z
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b
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Figure 2. (a) Assemblage of ellipsoids. (b) Single hollow ellipsoid.

This paper is organized as follows. Section 2 is devoted to the case where the large voids are spherical.
Rigorous upper bounds and estimates are derived. In particular an estimate in the form of a generalized
Gurson’s yield function is proposed in equation (14). The resulting predictions are compared with Finite
Element simulations. The approximation which is made in the velocity field consisting in a uniform
dilatation in the matrix, does not affect significantly the response of such a bi-porous material. The case
of oblate ellipsoidal voids in a Gurson matrix is addressed in section 3. The velocity field of Gologanu et

al [6] is recalled first and used in section 3.2 to derive an estimate for a single hollow ellipsoid. The case
of randomly oriented oblate ellipsoidal voids is considered in section 3.3 where an upper bound for the
effective potential is derived. Finally an estimate of the yield function for a Gurson material containing
randomly oriented ellipsoidal voids is derived in section 3.4.
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2. Spherical voids

Let us consider first the case where the largest pores are spherical. The unit volume element is a hollow
sphere with internal and external radii a1 and a2 respectively.

The problem of a hollow sphere made of a Gurson matrix under hydrostatic loading has been inves-
tigated analytically by Perrin and Leblond [13,14,15], but remains widely open for more general loading
conditions. A variational approach is followed here.

2.1. Incompressible matrix: single hollow sphere and assemblage

Let us briefly recall the derivation (due to Perrin [14]) of Gurson’s yield function when there is no
small voids (fb = 0). In this case the matrix potential reduces to ϕ(ε̇) = σ0ε̇eq. Using the variational
principle (2) with a velocity field which combines the exact velocity under hydrostatic loading and a
homogeneous and purely deviatoric deformation field, namely:

vG(Ė) = Ėm
a3
2

r2
er + D.x, D = Ė − Ėmi, (3)

where i is the second-order identity tensor, the effective potential for the unit-volume element is found
to be bounded from above by:

Φ(Ė) ≤ 1

|Ω|

∫

Ω−ω

ϕ(ε(vG)) dΩ ≤ σ0

|Ω|

∫ r=a2

r=a1

S(r)

√
1

S(r)

∫ 2π

φ=0

∫ π

θ=0

ε̇2
eqdS dr (4)

where ε̇ = ε(vG), S(r) = 4πr2 and dS = r2 sin θ dθ dφ (spherical coordinates r, θ, φ). After a few algebraic
manipulations, one finally obtains [2]:

Φ(Ė) ≤ ΦG(Ė) = σ0

∫ 1

fe

√
4Ė2

m

y2
+ Ė2

eq dy,

where ΦG is the dissipation potential associated with the yield surface (1) with q1 = q3 = 1 and fe instead
of fb.

2.2. Compressible GTN matrix: upper bound for the single hollow sphere and the assemblage

When the matrix obeys the GTN yield function (1), the dissipation potential entering the variational
principle (2) reads:

ϕ(ε̇) = σ0

∫ 1

q1fb

√
4ε̇2

m

y2
+

ε̇2
eq

q3
dy. (5)

Use is made of a compressible velocity field in the form

v = Ax + vG
(
Ė − Ai

)
. (6)

The velocity field (6) has a uniform dilatation-rate in the matrix ε̇m = A. The following upper bound for
the effective potential is then obtained from the variational principle:

Φ(Ė) ≤ inf
A

1

|Ω|

∫

Ω−ω

σ0




∫ 1

q1fb

√
4A2

y2
+

ε2
eq(v

G)

q3
dy



 dΩ. (7)
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Applying the Cauchy-Schwarz inequality on each concentric sphere, one obtains:

Φ(Ė) ≤ inf
A

σ0

|Ω|

∫ 1

q1fb

∫ r=b

r=a

S(r)

√
4A2

y2
+

1

S(r)

∫ 2π

φ=0

∫ π

θ=0

ε2
eq(v

G)

q3
dS dr dy,

and finally

Φ(Ė) ≤ inf
A

σ0

∫ 1

q1fb

∫ 1

fe

√
4A2

y2
+

4

q3

(Ėm − A)2

z2
+

Ė2
eq

q3
dz dy. (8)

The right-hand side of (8) provides a rigorous upper-bound to the effective potential of a unit-volume
element which can be extended by a classical argument into an upper bound for the potential of any
composite sphere assemblage.

To the best of our knowledge, the minimization with respect to A in the upper bound (8) cannot be
performed in closed form. An approximation preserving the upper bound character of (8) can be obtained
by making the particular choice:

A = Ā ≡ q1fb

fe + q1fb
Ėm. (9)

It should be noted that Ā is the exact minimizer of (8) in several particular cases. First, when fb (resp.
fe) vanishes, it is easy to see that A = 0 (resp. A = Ėm) is solution of the infimum problem in (8).
Similarly, when q3 = 1 and q1fb = fe, A = 1/2Ėm is the solution of (8). Specifying A = Ā in (8) gives
the following upper bound:

Φ(Ė) ≤ σ0

∫ 1

q1fb

∫ 1

fe

√
4q2

1f
2
b

(fe + q1fb)2
Ė2

m

y2
+

4f2
e

q3(fe + q1fb)2
Ė2

m

z2
+

Ė2
eq

q3
dz dy. (10)

Remark: In the practical application that we have in mind, the two populations of voids are subjected to
internal pressures, pb in the small voids and pe in the largest voids. The variational principles (2) and (8)
must be modified accordingly by making the following replacements:

ϕ(ε̇) → ϕb(ε̇) = ϕ(ε̇) − 3pbε̇m,

1

|V |

∫

M

ϕ(ε(v)) dV → 1

|V |

[∫

M

ϕb(ε(v)) dV − 3pe

∫

V −M

ε̇m dV

]
,

Φ(Ė) → Φ(Ė) − 3peĖm + 3(1 − fe)(pe − pb)A.





(11)

Then, a minimization with respect to A has to be performed on the modified variational principle (8). It
should be emphasized that the approximate expression (9) does not hold true when the internal pressures
pe and pb are different. In the interest of space, the influence of the internal pressures will not be studied
here and is left for separate work.

2.3. Compressible GTN matrix: Gurson-like estimate for the single hollow sphere and the assemblage

The double integral in (8) and (10) can be expressed in closed form by means of the relations given
in Appendix A. However the resulting expression is too complicated to find an explicit equation for the
yield surface corresponding to the dissipation potential (10). Instead, an approximate expression can be
proposed. For this purpose it is noted that, when specialized to purely deviatoric and purely hydrostatic
conditions, the upper bound (10) gives two particular stress states located on the effective yield surface
of the material:

Σm = 0, Σeq = σ̃0 with σ̃0 = σ0(1 − fb)(1 − fe)/
√

q3 (12)
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and

Σm = p̃, Σeq = 0 with p̃ =
1

3
σ0

2√
q3(fb + fe)

(C1 + ln(C2)) , (13)

where

B1 =
√

f2
e + f2

b q3, B2 = fb

√
f2

e + q3, B3 = fe

√
1 + f2

b q3,

B4 = fbfe

√
1 + q3, C1 = 2(B1 − B2 − B3 + B4),

C2 = f
fb(1−fe)

√
q3

b f (1−fb)fe

e

(
B1 − fe

B3 − fe

)fe
(

B4 − fbfe

B2 − fbfe

)fbfe
(

B1 − fb
√

q3

B2 − fb
√

q3

)fb

√
q3
(

B4 − fbfe
√

q3

B3 − fbfe
√

q3

)fbfe

√
q3

.

The second approximation which is introduced here consists in enforcing the form (1) as an approximation
(hopefully accurate) for the effective yield surface of the bi-porous material which reads as:

1

β

(
Σeq

σ0

)2

+
1

α
cosh

(
3

2

Σm

σ0

)
− 1 = 0, with α ≡ cosh

(
3

2

p̃

σ0

)
and β ≡ α

α − 1

(
σ̃0

σ0

)2

. (14)

This yield function can be further refined by improving the prediction (12) for purely deviatoric stress.
This is done by means of a variational argument close to that developed by Suquet [17].

2.4. Variational bound and refined estimate

Coming back to the variational characterization (2), the effective potential Φ can be written as:

Φ(Ė) ≤ inf
v∈K(Ė)

σ0

|V |

∫

M

∫ 1

q1fb

√
4ε̇2

m

y2
+

ε̇2
eq

q3
dy dV.

The Cauchy-Schwarz inequality is applied first to the integral on y:

Φ(Ė) ≤ σ0

√
1 − q1fb

|V | inf
v∈K(Ė)

∫

M

(
4(1 − q1fb)

q1fb
ε̇2

m +
(1 − q1fb)

q3
ε̇2

eq

)1/2

dV,

and then to the integral on V :

Φ(Ė) ≤ σ0

√
1 − q1fb

√
1 − fe

[
inf

v∈K(Ė)

1

|V |

∫

M

(
9

2
k1ε̇

2
m +

3

2
µ1ε̇

2
eq

)
dV

]1/2

where

k1 =
8(1 − q1fb)

9q1fb
, µ1 =

2(1 − q1fb)

3q3
.

Therefore when the composite has overall isotropy:

Φ(Ė) ≤ σ0

√
1 − q1fb

√
1 − fe

(
9

2
k̃1Ė

2
m +

3

2
µ̃1Ė

2
eq

)1/2

,

where k̃1 and µ̃1 denote the effective bulk and shear moduli of a linear porous material with bulk and
shear moduli k1 and µ1 respectively.

As is now well-recognized the bounds obtained by (most) variational techniques are rather poor for
hydrostatic loadings but sharp under purely deviatoric loadings. Therefore a sharper estimate for the flow
surface of the bi-porous material can be obtained by considering the yield function (14) with (13) and:

Σm = 0, Σeq = σ̃0 σ̃0 = σ0

√
(1 − q1fb)(1 − fe)

√
3

2
µ̃1Ėeq. (15)
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In the absence of further information on the composite microstructure besides overall isotropy, the sharpest
bounds on the effective moduli k̃1 and µ̃1 are the Hashin-Shtrikman bounds (only the upper bound is
relevant here):

k̃1 ≤ 4

3
µ1

1 − fe

fe + 4µ1

3k1

, µ̃1 ≤ µ1
1 − fe

1 + 6fe
k1+2µ1

9k1+8µ1

,

and the following upper bound for Φ is obtained:

Φ(Ė) ≤ σ0
(1 − q1fb)(1 − fe)√

q3

(
4Ė2

m

fe + q1fb

q3

+
Ė2

eq

1 + fe
2q3+3q1fb

3q3+2q1fb

)1/2

, (16)

The corresponding point under purely deviatoric loading reads as :

Σm = 0, Σeq = σ̃0 , σ̃0 = σ0
(1 − q1fb)(1 − fe)√

q3

√
1

1 + fe
2q3+3q1fb

3q3+2q1fb

. (17)

The resulting estimate (14) is a rigorous upper bound for purely hydrostatic or purely deviatoric overall
stress. As can be seen in Figure 3 this estimate remains an upper bound for intermediate stress triaxiality
ratios.

2.5. Comparison with Finite Element simulations

To assess the accuracy of the upper bound (8) and of the estimate (14) with (13) and (17), the
predictions of these models for the effective yield surface of the bi-porous material are compared in Figure 3
with full-field numerical simulations obtained with the Finite Element Method. Attention is limited in
the numerical simulations to axisymmetric deformations, one quarter of a hollow sphere is meshed and
boundary conditions corresponding to uniform deformations are imposed on the outer boundary of the
hollow sphere. The matrix is a Gurson material with q1 = q3 = 1. Different radial paths in the space of
macroscopic stress are followed (a stress-driven method similar to that described in Michel et al [10] is
used).

As can be seen from Figure 3, the upper bound (8) and the estimate (14) are in good agreement. The
exact result of Perrin [14] for hydrostatic loading has been evaluated numerically and is indicated as a
vertical line in this figure. Both the upper bound (8) and the estimate are in very good agreement with
this exact result. The results of the FEM simulations are shown as full squares. As expected they lie inside
the prediction of the upper bound (8), with an excellent agreement under hydrostatic stress and a good
agreement under purely deviatoric stress. The quality of the match between the analytical equation (14)
with (13) and (17) and the FEM simulations is excellent for purely hydrostatic or deviatoric stress and
good at all other stress triaxiality ratios. The Gurson flow surface with total porosity f = fe +fb−fefb is
also shown as dashed lines. The motivation for considering the total porosity is that Perrin and Leblond
[13,15] observed for fb and fe small enough (which is the case in practice), a good agreement between their
exact result under hydrostatic loading and the corresponding prediction of the Gurson yield function with
total porosity f . The present model (8) coincides with the Gurson model with porosity f under purely
deviatoric loading conditions but differs from it under hydrostatic loading. Overall, the Gurson model
with total porosity f is in reasonable agreement with the other models. However it seems to slightly
overestimate the effective carrying capacity of the bi-porous material and its agreement with the FEM
simulations is less satisfactory than that of the other, more refined, models.

7



0
0 0.5

1

1 1.5 2 2.5

0.2

0.4

0.6

0.8

Σm

σ0

Σeq

σ0

fb = 0.1

fe = 0.1

fb = 0.01

fe = 0.1

fb = 0.01

fe = 0.01

Figure 3. Effective yield surface for a porous material with two populations of voids for different void volume fractions fb

(small voids) and fe (large voids). Upper bound (8) (crosses), estimate (14) with (13) and (12) (black solid line), estimate
(14) with (13) and (17) (thick black solid line), FEM simulations (full squares), hydrostatic point of [14] (vertical line),
Gurson yield function with total porosity f (dashed line).

2.6. Local dilatation rate and evolution of the damage parameters

The mass balance equations written at the mesoscopic and macroscopic scales respectively yield:

ḟb = 3(1 − fb)ε̇m, ḟ = 3(1 − f)Ėm, (18)

which, for the present model where ε̇m = A, yields by virtue of the relations between f , fe and fb:

ḟe = 3(1 − fe)(Ėm − A).

The first equation in (18) raises the question of the accuracy of the dilatation rate ε̇m which is approxi-
mated by A in the present approach.

The velocity field (6) corresponds to a uniform dilatation-rate throughout the matrix. This particular
choice is legitimate since it yields an admissible velocity field, but can be questioned in view of the
analytical result of Perrin and Leblond [13,15] who showed that the dilatation-rate in a porous hollow
sphere under hydrostatic loading is nonuniform. A comparison between the (uniform) dilatation rate
predicted by the minimization of (8), the estimate (9) for this dilatation rate, the exact result of [14]
and the prediction of the N -phase secant method (in the spirit of Bilger et al [1]) is shown in Figure 4
(q1 = q3 = 1).

Incorporating the exact result of [14] into a predictive scheme is not an easy task. One of the difficul-
ties is that accounting for the nonuniformity of the dilatation-rate during an evolution process requests
considering the secondary porosity fb (corresponding to the smaller voids) as a field rather than as a
parameter fb uniform throughout the matrix. Keeping track of this field along the evolution of the porous
material is a formidable task which is beyond the scope of this study. It is very likely that such porosity
fluctuations play an important role in the coalescence process, but it is our belief that the part of the
damage evolution corresponding to the cavity growth should be correctly approximated by the present
model considering that the secondary porosity remains uniform.
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Figure 4. Hollow sphere under hydrostatic tension: relative rate-growth of the damage parameters. Exact result (Perrin
[14], solid line; or equivalently N-phase secant method with N ≥ 100), predictions based on the Aoptimal minimizing (8)
(horizontal solid line) or on the approximation (9) (horizontal dashed line). (a) fe = 1 %, fb = 10 % . (b) fe = 1 %,
fb = 1 %.

To check this assertion the response of a hollow sphere, consisting of a Gurson matrix (q1 = q3 = 1,
porosity fb uniform at time t = 0 in the matrix) containing a spherical central cavity, and subjected
to hydrostatic strain-rate has been integrated in time. At each time step the change in volume of the
central cavity and the change in volume of the secondary porosity are evaluated using the evolution
equations (18). Different predictions are shown in Figure 5, the response of the hollow sphere as predicted
by the N -phase modified secant method (with N = 101 we expect these results to be almost exact under
hydrostatic loading as it was the case for a von Mises matrix [1]), the predictions of the upper bound (8)
and of the estimate (14). Surprizingly, all the predictions lie almost on top of each other, meaning that
neglecting the spatial heterogeneity of the secondary porosity fb does not affect significantly the response
of the porous material.
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Figure 5. Macroscopic response of a porous hollow sphere under hydrostatic loading. Full circles : upper bound (10) ; Black
Solid Line : estimate (14). White Squares: modified secant method (100 layers surrounding the cavity ω ; a local porosity
f i

b
is defined in each layer). (a) Initial porosities : fb = 0.1, fe = 0.2. (b) Initial porosities : fb = 0.1, fe = 0.01.

3. Oblate ellipsoidal voids

We now turn to the case where the large voids are oblate spheroids with random orientations.
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3.1. Incompressible matrix: single hollow ellipsoid.

We consider first the case where the matrix is an incompressible von Mises material (no small voids at
the microscopic scale). To simplify things further, the volume element is assumed to be a single hollow
ellipsoid. More specifically the outer and inner surfaces of this hollow domain are confocal ellipsoids and
one can introduce a continuous family of ellipsoids parametrized by a dimensionless scalar parameter λ
such that the inner surface corresponds to λ = λ1 and the outer surface corresponds to λ = λ2. The axis
of revolution of the two oblate ellipsoids is the z axis (see Appendix B for more details).

The macroscopic strain-rate is split into an axisymmetric part and a non axisymmetric part Ė
NA

:

Ė = Ė
A

+ Ė
NA

with Ė
A

=
Ėxx + Ėyy

2
(ex ⊗ ex + ey ⊗ ey) + Ėzzez ⊗ ez, Ė

NA
= Ė − Ė

A
. (19)

The velocity field in the matrix is chosen of the following form:

v(x) = vGo(x) + vNA(x) with vNA(x) = Ė
NA · x, (20)

where the velocity field vGo (recalled in Appendix B) has been proposed by Gologanu et al [6] and satisfies

vGo = Ė
A · x on ∂Ω. It follows from the variational property (2) that

Φ(Ė) ≤ σ0

|Ω|

∫

Ω−ω

ε̇eq dΩ ≤ σ0

∫ λ2

λ1

√
J (λ)

√∫ 2π

φ=0

∫ π

β=0

ε̇2
eq Jλβφ dβ dφ dλ, (21)

with

ε̇ = ε(v), ε̇2
eq = (ε̇Go

eq )2 + (ĖNA
eq )2 +

4

3
ε̇Go : Ė

NA
,

and

Jλβφ =
b(a2 sin2 β + b2 cos2 β) sin β

|Ω| , J (λ) =

∫ 2π

φ=0

∫ π

β=0

Jλβφdβ dφ =
4

3

πb
(
2a2 + b2

)

|Ω| , |Ω| =
4

3
πa2b

2
2 .

It can be shown that the integral of the cross-term in the expression of ε̇2
eq cancels out. After a few

algebraic manipulations, this inequality simplifies into:

Φ(Ė) ≤ σ0

∫ λ2

λ1

√
J (λ)

√
Ė : Q (λ) : Ė dλ (22)

where the detailed expression of the fourth-order tensor Q is given in the Appendix B.

3.2. Compressible GTN matrix: single hollow ellipsoid.

The matrix is now a GTN material whose dissipation potential ϕ is given by (5). Following the same
procedure as in section 2.2, the trial velocity field in the matrix is the sum of the incompressible velocity
field (20) and of a compressible contribution:

v(x) = Ax + vGo(x) + vNA(x) with vNA(x) = DNA · x. (23)

vGo is the velocity field of [6] (recalled in Appendix B) and satisfies vGo = DA ·x on ∂Ω where D = Ė−Ai

can be split into an axisymmetric part DA and a non-axisymmetric part DNA as in (19). The variational
principle (2), when used with this compressible trial velocity field, gives:

Φ(Ė) ≤ inf
A

1

|Ω|

∫

Ω−ω

σ0

∫ 1

q1fb

√
4A2

y2
+

ε̇2
eq

q3
dy dΩ, ε̇ = ε(v),

10



and after use of the Cauchy-Schwarz inequality:

Φ(Ė) ≤ inf
A

σ0

∫ 1

q1fb

∫ λ2

λ1

√

J2(λ)
4A2

y2
+

J(λ)

q3

∫ 2π

φ=0

∫ π

β=0

ε̇2
eq Jλβφ dβ dφ dλ dy. (24)

The last term can be computed following the same lines as in the above section:

Φ(Ė) ≤ inf
A

σ0

∫ 1

q1fb

∫ λ2

λ1

√

J2(λ)
4A2

y2
+

J(λ)

q3
D : Q (λ) : D dλ dy. (25)

3.3. Compressible GTN matrix: upper bound for the assemblage of randomly oriented hollow ellipsoids

The velocity field (23) satisfies boundary conditions of uniform deformation on the outer surface of the
hollow ellipsoid v = Ė · x on ∂Ω. These particular boundary conditions allow for the extension of this
field into a velocity field which is continuous over the entire assemblage of hollow ellipsoids (it would not
be the case with velocity fields satisfying other boundary conditions). Using the extended velocity field
into the variational principle (2) leads to an upper bound for the assemblage (R denotes a dependence
on the orientation of the quantity under consideration and

∮
is the average over all possible orientations):

Φ(Ė) ≤
∮

σ0 inf
A(R)

∫ 1

q1fb

∫ λ2

λ1

√

J2(λ)
4A2 (R)

y2
+

J(λ)

q3
D (R) : Q (R, λ) : D (R) dλ dy dR. (26)

The dilatation rate A varies from one ellipsoid to another. But having in mind that the geometry of the
assemblage is not known in detail and that we do not wish to keep track of a heterogenous dilatation-rate
field, attention is restricted to a single A, independent of R, for all the ellipsoids and uniform throughout
the assemblage (this choice preserves the upper bound character of (26)). Therefore:

Φ(Ė) ≤ σ0

∮
inf
A

∫ 1

q1fb

∫ λ2

λ1

√

J2(λ)
4A2

y2
+

J(λ)

q3
D : Q (R, λ) : D dλ dy dR.

Then, using the fact the sum of infima is bounded from above by the infimum of the sum, one gets that:

Φ(Ė) ≤ σ0 inf
A

∮ ∫ 1

q1fb

∫ λ2

λ1

√

J2(λ)
4A2

y2
+

J(λ)

q3
D : Q (R, λ) : D dλ dy dR,

and making use of the Cauchy-Schwarz inequality the following upper bound is obtained:

Φ(Ė) ≤ σ0 inf
A

∫ 1

q1fb

∫ λ2

λ1

√

J2(λ)
4A2

y2
+

J(λ)

q3

∮
D : Q (R, λ) : D dR dλ dy. (27)

Following Gatt et al [5] we note that:
∮

D : Q (R, λ) : D dR = 3QJD2
m +

3

10
QKD2

eq with QJ = Q :: J and QK = Q :: K,

where J and K are the usual fourth-order projectors over purely isotropic and purely deviatoric symmetric
second-order tensors. Finally, after a few algebraic operations, the following upper bound is obtained:

Φ(Ė) ≤ σ0 inf
A

∫ 1

q1fb

∫ λ2

λ1

√

J2(λ)
4A2

y2
+

J(λ)

q3

(
3QJ(λ)

(
Ėm − A

)2

+ J(λ)Ė2
eq

)
dλ dy, (28)

with

QJ(λ) =
4

9

bπ

|Ω| (b
2(−1+6Rα̃+3Z2 α̃)2+2a2(1−6Z2α̃+12R2α̃2+12Z2α̃2+9Z2

2 α̃2+6Z α̃(1+2Rα̃−3Z2α̃)))
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where all quantities a, b, R, Z, α̃ . . . are defined in Appendix B and depend on λ.

3.4. Compressible GTN matrix: Gurson-like estimate for the assemblage of randomly oriented hollow

ellipsoids

The final expression (28) is a rigorous upper bound for any assemblage of randomly oriented self-similar
hollow ellipsoids. It involves a minimization over A and a double integral which have to be evaluated
numerically. In practice it can be useful to have an estimate (hopefully accurate) for the effective potential
Φ or for the corresponding yield function in the space of macroscopic stresses.

For this purpose, the study of a single hollow ellipsoid with compressible matrix is reconsidered starting
from equation (24). Using a few changes of variables and approximations almost identical to that initially
proposed by Gologanu et al [6] and detailed in the Appendix C, we arrive at the following estimate for
the effective potential of a single hollow ellipsoid:

Φ(Ė) ≈ inf
A

σ
′

0

∫ 1

q1fb

∫ 1

y2/y1

√
4A2

y2
+ D : S(z) : D dy dz, (29)

where σ
′

0, the yi’s and the fourth-order tensor S are specified in Appendix C. Then, averaging this
estimate over all possible orientations and using the Cauchy-Schwarz inequality as in section 3.3, the
following estimate is obtained:

Φ(Ė) ≈ inf
A

σ0(g + 1)

∫ 1

q1fb

∫ 1

f̃

√
4A2

y2
+

(Ėm − A)2

z2

ã2

q3
+ (Ėm − A)2

b̃2

q3
+

(Ėeq)2

q3
dz dy, (30)

where ã, b̃, f̃ and g are specified in Appendix C. When the large voids are spherical, it follows from the
detailed expressions given in Appendix C that ã = 2, b̃ = 0 and g = 0. The potential (30) reduces to the
upper bound (8).

Again, the form (30) is not very convenient for practical purposes and an analytical estimate for the
associated yield function is searched for in the general form of the Gurson yield function. Under pure
deviatoric macroscopic stress the prediction of the model (30) is

Σm = 0, Σeq = σ̃0 with σ̃0 = σ0(1 − fe)(1 − q1fb)/
√

q3, (31)

irrespective of the aspect ratio of the ellipsoid. This prediction is clearly an upper bound for the actual
strength of the bi-porous material under pure shear. It is possible to improve on this upper bound by
making use of the variational bound (15). As in section 2.4, the effective moduli k̃1 and µ̃1 can be evaluated
by a linear scheme appropriate for the microstructure under consideration (for randomly oriented confocal
ellipsoids, the Ponte-Castañeda-Willis [16] bound seems to be most appropriate). The resulting expression
is too complicated to be given in closed form, but its implementation is straightforward.

In order to determine the flow stress under hydrostatic loading conditions, the following expression is
proposed for A:

A = Ā ≡ q1fb

f̃ + q1fb

Ėm. (32)

This choice for A leads under hydrostatic stress to:

Σeq = 0, Σm = p̃ with p̃ =
1

3
σ0(g + 1)I, (33)

where I is an integral whose detailed expression is given in Appendix A with

ft = f̃ , fs = q1fb, P̃ = 2

∣∣∣∣
q1fb

f̃ + q1fb

∣∣∣∣ , Q̃ =
1√
q3

∣∣∣∣∣
f̃ ã

f̃ + q1fb

∣∣∣∣∣ and R̃ =
1√
q3

∣∣∣∣∣
f̃ b̃

f̃ + q1fb

∣∣∣∣∣ .
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The approximate yield function can be written as in (14) using the above expressions for σ̃0 and p̃.
A comparison between the corresponding estimate and the upper bound (28) is shown in Figure 6. The

aspect ratio of the voids is defined as w = a1/b1 (w ≤ 1 corresponds to oblate voids). The agreement
between the bound and the estimate is very good.
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Figure 6. Effective yield surface of a Gurson material (q1 = q3 = 1) containing randomly oriented oblate ellipsoidal voids
(w = 1/5) . Comparison between the upper bound (28) (crosses), the estimate (14) (solid line) with (31) and (33) and the
estimate (14) (thick solid line) with (33) and (15) where µ̃1 is estimated with the PCW bound [16].
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Appendix A. Detailed expression of the integral I

I =

∫ 1

fs

∫ 1

ft

√
P̃ 2

y2
+

Q̃2

z2
+ R̃2 dz dy.

Introducing the notations:

B̃1 =

√
P̃ 2 + Q̃2 + R̃2, B̃2 =

√
P̃ 2 + f2

s (Q̃2 + R̃2), B̃3 =

√
Q̃2 + f2

t (P̃ 2 + R̃2)

B̃4 =

√
f2

s Q̃2 + f2
t (P̃ 2 + f2

s R̃2), B̃5 = P̃ Q̃R̃, Ãi = (P̃ 2Q̃2 − R̃2B̃2
i ), C̃i = 2B̃5B̃i, i = 1, 4,

K = Ã1Ã4 − C̃1C̃4, L = Ã1C̃4 − C̃1Ã4, M = Ã2Ã3 − C̃2C̃3, N = Ã2C̃3 + Ã3C̃2,

an analytical expression for I is obtained:

I = B̃1 − B̃2 − B̃3 + B̃4 +
P̃ Q̃

2R̃
arcsin

(
LM − NK

M2 + N2

)
+

+ln

[
 Q̃ + B̃3

ft

(
Q̃ + B̃1

)




Q̃


fs

(
ftP̃ + B̃3

)

ftP̃ + B̃4




(P̃ ft)
 P̃ + B̃2

fs

(
P̃ + B̃1

)




P̃ 


ft

(
fsQ̃ + B̃2

)

fsQ̃ + B̃4




(Q̃fs) ]
.

Appendix B. The velocity field (20) and related results

The detailed construction of the velocity field used in the variational analysis on a single hollow ellipsoid
is given here. The notations are essentially those of Gologanu et al [6]. The distance between the two foci
of the confocal ellipsoids is c =

√
b2
1 − a2

1 =
√

b2
2 − a2

2 and the hollow ellipsoidal region occupied by the
matrix can be described in cylindrical coordinates (ρ, φ, z) by:

ρ = c coshλ sinβ, φ = φ, z = c sinhλ cosβ, λ ∈ [λ1, λ2], β ∈ [0, π], φ ∈ [0, 2π]. (B.1)

The inner and outer ellipsoids correspond to λ = λ1 and λ = λ2 respectively. The surfaces λ =constant
are confocal ellipsoids with minor and major semi-axes given by:

a = c sinhλ and b = c coshλ. (B.2)

Additional relations are useful:

fe =
a1b

2
1

a2b2
2

, e2 =
c

b2
, e1 =

c

b1
and e =

c

b
. (B.3)

The incompressible velocity field proposed by Gologanu et al [6] reads as:

vGo = A(Ė)v(A) + B(Ė)v(B) with v(A) = R (λ) ρ eρ + Z (λ) z ez, v(B) = −x

2
ex − y

2
ey + z ez,

(B.4)
with

R (λ) = −ac/b2 + arcsin(c/b) and Z (λ) = 2c/a− 2 arcsin(c/b),

A(Ė) = 3Ėm/(2R2 + Z2), B(Ė) = Ėzz −AZ2, R2 = R(λ2), Z2 = Z (λ2) .
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Note that vGo = Ė
A · x on ∂Ω.

When the second-order tensor Ė is stored in vector form as:

Ė =
(

Ėxx, Ėyy, Ėzz ,
√

2Ėxy,
√

2Ėxz,
√

2Ėyz

)
,

the fourth-order tensor Q, used in section 3, reads in matrix form as:

Q (λ) = T T · 2πb

|Ω|


 I1 I2

I2 I3


 · T + J (λ) QNA, I1 =

8

9

(
3b2R2 + 2a2

(
R2 + RZ + Z2

))
,

I2 =
4

3

(
−b2R + a2Z

)
, I3 =

4a2

3
+

2b2

3
, α̃ =

1

2R2 + Z2
=

a2b
2
2

2c3
.

T is a 2×6 matrix and QNA is a symmetric 6×6 matrix whose non-zero entries are:

T11 = T12 = T13 = α̃, T21 = T22 = −α̃Z2, T23 = 1 − α̃Z2,

QNA
11 = QNA

22 = −QNA
12 =

1

3
, QNA

44 = QNA
55 = QNA

66 =
2

3
.

Remark: The nontrivial part of the Gurson velocity field (3) is the solution of the elasticity problem (under
the constraint of incompressibility) of a hollow sphere under hydrostatic loading. Following up on this
observation, a quite natural choice for a sensible velocity field in the problem of the hollow ellipsoid would
be the exact solution of an incompressible elasticity problem posed on the hollow ellipsoid. Although
very few exact results are available for such a geometry, the exact solution of the elasticity problem
corresponding to a hydrostatic deformation of the inner ellipsoid and to a uniform deformation D on the
outer ellipsoid is known (Milton [11]), with

D = Dxx(ex ⊗ ex + ey ⊗ ey) + Dzzez ⊗ ez , Dxx = −1

3
+ α(e1) − feα(e2), Dzz = −2Dxx − fe,

α(e) = −1 − e2

2e2
+

√
1 − e2

2e3
arcsin(e). (B.5)

Interestingly, this solution coincides with the field vGo when Ė = D. Therefore the velocity field of
Gologanu et al [6] illustrates once again the interest of using solutions of elasticity problems as trial fields
for ideally plastic problems (as first suggested by Gărăjeu [4] and further explored by Monchiet et al [12]).

Appendix C. Derivation of the estimates (29) and (30)

The starting point of this derivation is the relation (24). The integral

∫ 2π

φ=0

∫ π

β=0

ε2
eq(v

Go)Jλβφ dβ dφ

is evaluated following [6] by replacing cos2 β by 1/3. Then, adopting the same sequence of changes of
variables as [6] and the same approximations on ε2

eq(v
Go) in (24) leads to an estimate for Φ(Ė). The

sequence of changes of variables reads as:

x̃ = c3/(ab2) =
1

sinhλ cosh2 λ
, then ỹ =

χx̃

x̃ + 3χ/4
with χ =

√
π2 + 32/3 and finally z =

y2

ỹ
.
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The following estimate is obtained

Φ(Ė) ≈ inf
A

σ
′

0

∫ 1

q1fb

∫ 1

y2/y1

√
4A2

y2
+

A′2(D)y2
2

q3z2
+

B′2(D)

q3
+

(ĖNA
eq )2

q3
dz dy, (C.1)

with:

σ
′

0 =
16πc3σ0

9|Ω|y2
, y2 = ỹ(x̃(λ2)), y1 = ỹ(x̃(λ1)), A′

= A(D)F̄ + B(D)Ḡ, B′

= B(D)H̄,

and F̄ , Ḡ and H̄ are constants which can be found in [6]. The term

A′2(D)y2
2

z2
+ B′2(D)

can be developped by considering that H̄2 + Ḡ2y2 ≈ 1. The result reads as:

Φ(Ė) ≈ inf
A

σ
′

0

∫ 1

q1fb

∫ 1

y2/y1

√
4A2

y2
+ [F̄ 2A2(D) + 2F̄ ḠA(D)B(D)]

y2
2

q3z2
+

B2(D)

q3
+

(ĖNA
eq )2

q3
dz dy.

(C.2)
Then the term

[F̄ 2A2(D) + 2F̄ ḠA(D)B(D)]
y2
2

q3z2
+

B2(D)

q3
+

(ĖNA
eq )2

q3
,

can easily be written as D : S : D where S is a fourth-order tensor.
The next step concerns randomly oriented ellipsoids. Following the same procedure as in section 3.3

and introducing the projections of S over J and K, one obtains:

Φ(Ė) ≈ inf
A

σ
′

0

∫ 1

q1fb

∫ 1

y2/y1

√
4A2

y2
+

(Ėm − A)2

z2

ã2

q3
+ (Ėm − A)2

b̃2

q3
+

(Ėeq)2

q3
dz dy

≈ inf
A

σ0(g + 1)

∫ 1

q1fb

∫ 1

f̃

√
4A2

y2
+

(Ėm − A)2

z2

ã2

q3
+ (Ėm − A)2

b̃2

q3
+

(Ėeq)2

q3
dz dy

(C.3)

with:

f̃ =
g + fe

g + 1
, g =

4e3
2

3χ
√

1 − e2
2

, ã2 =
3

κ2(g + 1)2
(3 − 2η +

4ηZ2

χg
), b̃2 = (1 − 2

χg
Z2)

2,

Z2 =
2e2√
1 − e2

2

− 2arcsin(e2), κ =

(
2

3
+

g(1 − f)(g + 2f + gf)

3(g + 1)2(g + f)2log g+1
g+f

)−1

,

η =
κ(1 − f)(g + 1)(g + f) sinh (2κ (α2 − α1))

(g + 1)2 + (g + f)2 + 2(g + 1)(g + f) (κ(α2 − α1) sinh (2κ (α2 − α1)) − cosh (2κ (α2 − α1)))
,

with α2 = α(e2), α1 = α(e1), the function α(e) being defined in (B.5).
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