
HAL Id: hal-00214135
https://hal.science/hal-00214135

Submitted on 23 Jan 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Center manifold and multivariable approximants applied
to non-linear stability analysis

Jean-Jacques Sinou, Fabrice Thouverez, Louis Jezequel

To cite this version:
Jean-Jacques Sinou, Fabrice Thouverez, Louis Jezequel. Center manifold and multivariable approxi-
mants applied to non-linear stability analysis. International Journal of Non-Linear Mechanics, 2003,
38 (9), pp.1421-1442. �10.1016/S0020-7462(02)00080-X�. �hal-00214135�

https://hal.science/hal-00214135
https://hal.archives-ouvertes.fr


 1

Journal home page: http://www.sciencedirect.com/science/journal/00207462 
 
Center manifold and multivariable approximants applied to non-linear stability analysis 
International Journal of Non-Linear Mechanics, Volume 38, Issue 9, November 2003, Pages 1421-1442 
J. -J. Sinou, F. Thouverez and L. Jezequel 

 
 
 

CENTER MANIFOLD AND MULTIVARIABLE APPROXIMANTS APPLIED TO NON-LINEAR 
STABILITY ANALYSIS 

 
J-J. SINOU*, F. THOUVEREZ and L. JEZEQUEL. 

 
Laboratoire de Tribologie et Dynamique des Systèmes UMR CNRS 5513, 

Ecole Centrale de Lyon, 36 avenue Guy de Collongue, 69134 Ecully Cedex, France. 

 

ABSTRACT 
This paper presents a research devoted to the study of instability phenomena in non-linear model 

with a constant brake friction coefficient. This paper outlines the stability analysis and a procedure to 
reduce and  simplify the non-linear system, in order to obtain limit cycle amplitudes. The center 
manifold approach, the multivariable approximants theory, and the alternate frequency/time domain 
(AFT) method are applied. Brake vibrations, and more specifically heavy trucks grabbing are concerned. 
The modelling introduces sprag-slip mechanism based on dynamic coupling due to buttressing. The non-
linearity is expressed as a polynomial with quadratic and cubic terms. This model does not require the 
use of brake negative coefficient, in order to predict the instability phenomena. Finally, the center 
manifold approach, the multivariable approximants, and the AFT method are used in order to obtain 
equations for the limit cycle amplitudes. These methods allow the reduction of the number of equations 
of the original system in order to obtain a simplified system, without loosing the dynamics of the 
original system, as well as the contributions of non-linear terms. The goal is the validation of this 
procedure for a complex non-linear model by comparing results obtained by solving the full system and 
by using these methods. The brake friction coefficient is used as an unfolding parameter of the 
fundamental Hopf bifurcation point. 
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1 INTRODUCTION 

During the last years, the knowledge of the dynamic behaviour of systems with non-linear phenomena 
has been developed in order to exploit the full capability of structures by using systems in the non-linear 
range. Usually, the non-linear equations of motion are linearized at the steady-state operating point, and 
so a set of linearized perturbation equations is obtained. The stability was investigated by determining 
the eigenvalues of the linearized perturbation equations at each steady-state operating point. While 
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stability analyses are extremely useful in evaluating the effect of changes in various system parameters, 
they cannot evaluate limit cycles amplitudes. 
Of course, robust softwares have been developed in order to solve differential-algebraic equations 
corresponding to systems including several nonlinearities; and time history response solutions of the full 
set of non-linear equations can determine the vibration amplitude. But time history response solutions of 
the full set of non-linear equations are both time consuming and costly. For this reason, an understanding 
of the behaviour of systems having many degrees of freedom requires simplification methods in order to 
reduce the order of the system of equations, and/or eliminate as many nonlinearities as possible in the 
system of equations. Moreover, many physical systems are modeled by differential equations depending 
on a control parameter. In the study of the dynamic behaviour of such systems, bifurcation problems 
often arise within the control parameter range. 
Due to the fact that such non-linear systems occur in many disciplines of engineering and science, 
considerable work has been devoted the development of methods for the approximation of the frequency 
response of non-linear systems, and so allowing explicit reductions. One of the most popular method for 
the approximation of the frequency response of non-linear systems is based on the balance of the 
harmonic components: the harmonic balance (HB) method (Nayfeh and Mook [1]), the incremental 
harmonic balance (IHB) method (Cheung, Chen and Lau [2], Leung and Chui [3], Lau and Zhang [4], 
Pierre, Ferri and Dowell [5]) and the alternate frequency/time domain (AFT) method  (Cameron and 
Griffin [6] , Narayanan and Sekar [7]). Moreover, perturbation methods, such as the methods of multiple 
scales and averaging methods (Nayfeh and Balachandran [8]), have been used as simplification methods 
in many studies. There is a reduction in the dimension as one goes from the original system to the 
averaged system. Moreover, the normal form approach can also be used in order to eliminate as many 
non-linear terms of the non-linear equations as possible, through a non-linear change of the variables. 
These problems have already been studied by several researchers (Nayfeh and Mook [1], Brjuno[9]-[10],  
Guckhenheimer and Holmes [11], Jezequel and Lamarque[12], Iooss [13]-[14], Hsu[15]-[16] etc.). 
Moreover, one of the most important simplification method is the center manifold approach. The center 
manifold theorem (Marsden and McCracken [17]) characterises the local bifurcation analysis in the 
vicinity of a fixed point of the non-linear system. The center manifold approach reduces the original 
system to a center manifold associated with the part of the original system characterized by the 
eigenvalues with zero real parts at the bifurcation point. The center manifold may have smaller 
dimensions than that of the original system (Nayfeh [8], Guckhenheimer [11] and Knoblock [18]). 
Another way to analyse and approximate the non-linear system is the theory of Padé approximants 
(Baker and Graves-Morris [19] and Brezinski [20]). The approximants are rational approximations for 
functions defined as a formal series expansion. Padé approximants have many applications in physics, 
but this technique is not yet usually used in the approximation of the non-linear problems. 
In this paper, we propose to apply successively the center-manifold reduction, the multivariable 
approximants and the alternate frequency/time domain (AFT) method to the study of a self-excited 
system with many-degree-of-freedom, containing quadratic and cubic non-linear terms, characteristics of 
the modelling of heavy trucks grabbing. The center manifold reduction, the multivariable approximants, 
and the AFT method will be used in order to simplify and  express the the original and final solution 
respectively of the last non-linear approximated system, and also to obtain an explicit description of the 
solution by their Fourier components. 
We will first introduce some basic concepts of friction and brake noise. Next, we will present a model 
for analyses of grabbing mode vibration in automobile braking systems. The model does not use brake 
negative damping and predicts that system instability can occur with a constant brake friction 
coefficient. Finally, we will use the center manifold approach, multivariable approximants and the 
alternate frequency/time domain (AFT) method in order to predict limit cycle amplitudes. Results from 
center manifold approach, multivariable approximants, and AFT method  will be compared with results 
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obtained by the  integration of the full original system, in order to validate this global procedure that 
employs successively, in a certain order, non-linear methods for the reduction and the simplification of 
the original system. 

2 FRICTION INDUCED VIBRATION 

  A serious difficulty in the study of the stability analysis is due to the fact that the dynamic stability 
of a brake system depends on a number of factors such as friction coefficient, mechanical interaction, 
and stiffness for example.  As a result, much effort has been done in the determination of models and 
mechanisms that predict friction induced vibrations. A lot of work on the brake noise and vibration was 
published during the last years. However there has been no uniformly accepted theory to characterize the 
problem, despite the investigation of various types of vibrations, such as disk brake squeal  (Chambrette 
[21], North [22]), aircraft brake squeal (Liu and Ozbek [23]) and railway wheel squeal (Rudd [24]). In 
this way, analytical models have been proposed for the description of the dynamics of brake systems, 
including brake calliper, pads and disc: some of the more famous studies were proposed by Jarvis and 
Mills [25] (cantilever-disc models), Earles and Lee[26] (pin-disc models), and Spurr[27] (sprag-slip 
model). 
One of the most important phases in studying the brake systems is the determination of the mechanism 
of the unstable friction induced vibration in brake systems. There is no unique mathematical model and 
theory for the explanation of the mechanisms and dynamic phenomena associated with friction. 
According to Ibrahim [28]-[29], Oden and Martins[30] and Crolla [31], there are four general 
mechanisms for friction-induced system instability, and more specifically friction-induced vibration in 
disc-brake systems: stick-slip, variable dynamic friction coefficient, sprag-slip, and coupling 
mechanism. The first two approaches rely on changes in the friction coefficient with relative sliding 
speed affecting the system stability. The last two approaches used kinematic constraints and modal 
coupling in order to develop the instability. Stick-slip is a low sliding speed phenomenon caused when 
the static friction coefficient is higher than the dynamic coefficient. A simple system that has been used 
to examine the stick-slip phenomenon is a mass sliding on a moving belt as shown in Figure 1(A)(a). 
Then, sliding and sticking occur in succession. The phenomenon associated with a friction coefficient 
decreases with rubbing speed is shown in Figure 1(A)(b). Due to this negative slope, the steady state 
sliding becomes unstable and caused friction-induced vibrations. Moreover,  sprag-slip phenomenon 
occurs due to locking action of the slider into the sliding surface as defined in Figure 1(B). An important 
failure of this mechanism is the angle α  between the resulting force at the friction contact and the 
normal direction of the sliding belt. Then, researchers gradually increased the sophistication of these 
sprag slip models by developing a more generalised theory, describing the mechanism as a geometrically 
induced or kinematic constraint instability. 
In spite of numerous recent studies on the subject, the analysis of mechanism of disc brakes still presents 
a broad. Effectively, there are many types of brake vibration problems with various phenomena. 
Specialists as Crolla and Lang [31] divided them into three headings: disc brake noise, brake grabbing 
and brake drum noise. 
Generally, brake noises are divided into categories according to the sound frequency.  On the basis of 
previous brake experiments, there are many types of brake noises with various phenomena as squeal 
noise, groan noise, jerder noise, squelch noise, and pinch-out noise. Squeal noise and groan noise are the 
two important phenomena of brake noise. Technically speaking, noise is the result of a self-excited 
oscillation or dynamic instability of the brake. Squeal is accepted as being the result of such instabilities. 
For example, squeal can be due to a resonance of drums, rotors, or back plates; the frequency spectrum 
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of squeal is in the 1 – 10 kHz range. In contrast to squeal, groan occurs at very slow vehicle speed. It is 
caused by stick-slip at the rubbing surface; the frequency spectrum of groan is in the 10 – 300 Hz range. 
The most important drum brake noise is squeal. As drum brakes were gradually replaced by disc brakes 
on vehicle front axles, studies and experimental investigations gradually decreased. According to 
Kusamo [32],  the drum brake noise frequency increased with increasing brake hydraulic pressure; 
moreover, Lang [33] proposed the introduction of asymmetry into drum structure in order to reduce 
drum brake squeal. The frequency spectrum of drum brake noise is observed in the 500–4000 Hz range. 
Unlike brake noise, grabbing is a lower frequency vibration that is generally felt rather that heard, and is 
defined as a forced vibration. In order to find a solution to this friction-induced vibration and to 
minimize it, the effect of suspension and vehicle body dynamics on the transmission of grabbing to the 
driver have been investigated; the frequency spectrum of grabbing vibration is in the 10 – 100 Hz range. 

3 ANALYTICAL MODEL 

In a previous work [34], Boudot presented heavy trucks grabbing. According to experimental 
investigations, the dynamic characteristics of the whole front axle assembly is concerned, even if the 
source of grabbing is located in the braking system. The dynamic system is defined in Figure 2. We 
assume that the brake friction coefficient µ  is constant. 
 
Figure 2 : Dynamic model of braking system 
 
Grabbing vibration results from coupling between the torsional mode ( )22 m,k  of the front axle and the 
normal mode ( )11 m,k  of the brake control. In order to simulate braking system placed crosswise due to 
overhanging cuased by static force effect, we may consider the moving belt slopes with an angle θ . The 
braking force brakeF  transits through the braking command, that has non-linear behaviour. Therefore, we 
consider the possibility of having a non-linear contribution. Then, we can express this non-linear 
stiffness as a quadratic and cubic polynomial in the relative displacement: 
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This nonlinearity is applied to indicate the influence and the importance of non-linear terms in the  
understanding of the dynamic behaviour of systems with non-linear phenomena . To be more precise, the 
non-linear dynamic behaviour of the front axle assembly and the non-linear dynamic behaviour of the 
brake command are concerned. 
We assume that the tangential force T  is generated by the brake friction coefficient µ , considering the 
Coulomb’s friction law N.T µ= . 
The three equations of motion can be expressed as: 
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Using the transformations tany X θ=  and { }TYXx = , and considering the Coulomb’s friction law 
N.T µ= , the non-linear 2-degrees-of-freedom system has the form  
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[ ] { } [ ] { } [ ] { } { } { }. . . nonlinearM x C x K x F F+ + = +     (3) 

Where { }x , { }x  and { }x  are the acceleration, velocity, and displacement response 2-dimensional vector of 
the degrees-of-freedom, respectively; [ ]M  is the mass matrix, [ ]C   the damping matrix, and [ ]K   the 
stiffness matrix;{ }F  is the vector force due to brake command and { }nonlinearF  contains moreover the non-
linear stiffness terms. The base parameters are defined in Appendix A. We have 
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4 STABILITY AND HOPF BIFURCATION POINT 

The first step is the static problem; the steady state operating point for the full set of non-linear equations 
is obtained by the determination of the equilibrium point. We obtain the linearized equations of motion 
by the introduction of small perturbations at the equilibrium point into the non-linear equations. Stability 
is investigated by the determination of eigenvalues of these linearized equations for each steady-state 
operating point of the non-linear system.  

The equilibrium point { }0x  is obtained by solving the non-linear static equations for a given net brake 
hydraulic pressure; this equilibrium point satisfies the following conditions: 

{ } { } ( ){ }0nonlinearbrake0 xFFx.K +=      (9) 

Since the sprag-slip equations are non-linear, more than one steady-state operating point at a given net 
brake hydraulic pressure can be obtained. 
The stability of the system is investigated on the linearized equations by assuming small perturbations 
{ } { }TYXx =  at the equilibrium point { } { }T

000 YXx =  of the non-linear system { } { } { }xxx 0 += . 
Substituting this expression into the non-linear equations (3), and neglecting higher order terms, we 
obtain the linearized equations of motion: 
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Now, stability analyses can be performed on the linearized equations for small perturbations at the 
operating point of the non-linear systems. The eigenvalues of this system can be expressed b.ia +=λ . If 
a  is negative or equal to zero, the system is stable and we don’t have vibration. If a  is positive, we have 
an unstable root and vibration. Moreover, b  represents frequency of the unstable mode. Computations 
are conducted with various brake friction coefficients. The Hopf bifurcation point is detected for 

0 0,204µ =  and defined as follows: 
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A representation of the evolution of frequencies and the associated real parts against brake friction 
coefficient are plotted in Figure 3 and in Figure 4, respectively. As illustrated in Figure 3, there are two 
stable modes at different frequencies when 0µµ < . On the other hand, as illustrated in Figure 4, the real 
part of eigenvalues is negative when 0µµ < . For 0µµ = , there is one pair of purely imaginary 
eigenvalues and we have the Hopf bifurcation point. All other eigenvalues have negative real parts. 
After the bifurcation, the two modes couple and form a complex pair. On the other hand, the real part of 
eigenvalues is positive. As shown in Figure 4, the system is unstable for 0µµ >  and stable for 0µµ < . 
Moreover, the frequency 0ω  of the unstable mode obtained for 0µµ =  is near 50 Hz. There is a perfect 
correlation with experiment tests where grabbing vibration is in the 40-70 Hz range. 
Therefore, it is possible to characterise the stability properties of the linearized system by representing 
the evolution of the eigenvalues by variation of µ  in the complex plane, as illustrated in Figure 5. 

 
Figure 3 : Coupling of two eigenvalues 
Figure 4 : Evolution of the real part of two coupling modes 
Figure 5 : Evolution of the eigenvalues by variation of µ  in the complex plane 

5 CENTER MANIFOLD APPROACH AND LIMIT CYCLE 

In this section, we briefly described the center manifold approach in the proximity of a bifurcation point. 
The center manifold approach can be compared as a simplification method that reduces the number of 
equations of the original system (Nayfeh [8], Guckhenheimer [11] and Knobloch [18]). 
Previously, stability analyses were investigated by determining eigenvalues of the linearized equations at 
each steady-state operating point for small perturbations. In order to carry out a complex non-linear 
analysis, it is necessary to consider the complete expressions of the non-linear forces. Moreover, the 
complete non-linear expressions are expressed at the equilibrium point for small perturbations. The non-
linear sprag-slip equations at the equilibrium point { } { }T

000 YXx =  for small perturbations { } { }TYXx =  
can be expressed as 
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where the vectors if )1( , ijf )2(  and ijkf )3(  are the coefficients of the linear, quadratic, and cubic terms, 

respectively , due to the non-linear stiffness at the equilibrium point. The expressions of if )1( , ijf )2(  and 
ijkf )3(  are given in appendix B. 
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In order to use the center manifold approach, we write the non-linear equation in state variables 
{ }xxy =  
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where µ  is the friction parameter, ( )µA , ij
)2(η , and ijk

)3(η  are the 44× matrix, quadratic and cubic non-
linear terms, respectively. We have 
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The problem can be put into Jordan normal form by means of the eigenbasis. At the Hopf bifurcation 
point, the previous system can be written in the form 

( ) ( )
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v,vHv,vHv.Jv
v,vGv,vGv.Jv      (17) 

where cJ  and sJ  have eigenvalues λ  such as [ ] 0)(Re 0Jc =µλ  and [ ] 0)(Re 0Js ≠µλ . 232 H,G,G  and 3H are 
polynomials of degree 2 and 3 versus cv  and sv . Since, we consider here the physically interesting case 
of the stable equilibrium losing stability;  we assume that the unstable manifold is empty. The center 
manifold theory enables us to express the variables sv  as a function of cv : ( )cs vhv =  (Carr [35], 1981). 
The expression of h  cannot be solved explicitly. However, it is possible to define an approximate 
solution of h  by a power expansion and by equating the coefficients. In order to satisfy the tangency 
conditions at the bifurcation point to the center eigenspace, the function h  verifies ( ) 00h =  and ( ) 00Dh = . 
So, we define )v(hv cs = as a power series in cv  , without constant and linear terms. By differentiating 
and substituting the center manifold )v(hv cs =  into the second equation of Eq.(17), we obtain 

( )( ) ( )[ ]( ( )[ ]) ( ) ( )[ ] ( )[ ]cc3cc2cscc3cc2cccv vh,vHvh,vHvh.Jvh,vGvh,vGv.J.vhD
c

++=++    (18) 

A system of algebraic equations for the coefficients of the polynomials is obtained by equating the 
coefficients of the different terms in the polynomials on both sides. Solving these equations gives a first 
approximation of the center manifold )v(hv cs = . Now, the limit cycles are obtained for parameter values 
near the bifurcation point µµµ += 0  where 0µ  is the bifurcation point and 0.µεµ =  (with ε <<1). We use 
an application of the center manifold approach by augmenting the system with the equation 0=µ . We 
assume that ( )2

cvΟµ = , so the local center manifold is represented by the polynomial expansion 
)v(hv cs =  as defined previously. This method is a simple extension to the center manifold method which 

is useful when dealing with parameterised families of systems. Moreover, the non-linear terms are 
approximated by their evaluations at the bifurcation point 0µµ = ; effectively since the unfolding 
parameter 0.µεµ =  is very small (with ε <<1), so the approximation ( )[ ]0cc2 ,vh,vG µ  and ( )[ ]0cc3 ,vh,vG µ  
are equivalent to ( )[ ]µ,vh,vG cc2  and ( )[ ]µ,vh,vG cc3  with negligible error. 
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Finally, the dynamics are given by 
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µ
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This reduced system is easier to study than the original system. . Using an approximation of  h  of order 
2 causes divergence in the evolutions of limit cycles. Using approximations of h  of order 3 or 4 allow to 
obtain a first approximation of the limit cycles but we consider that it is not sufficient, as illustrated in 
Figure 6 and in Figure 7. Using an approximation of h  of order 5 allows to obtain a very good 
estimation of the limit cycles as illustrated in Figure 6 and in Figure 7. 

 
Figure 6 : X-limit cycle for 0.10001 µµ =  
Figure 7 : Y-limit cycle for 0.10001 µµ =  

6 SYSTEM’S TRANSFORMATION TO USE MULTIVARIABLES APPROXIMANTS 

Our purpose in this section is to write again the system defined  in (19) in terms of { }T
2c1cc vvv =  in 

order to use the multivariable approximants for the  simplification of the non-linear system. Considering 
)v(hv cs =  as a power series in cv  of degree m  without constant and linear terms ( 2m ≥ ), we note that 

( )[ ]0cc2 ,vh,vG µ  and ( )[ ]0cc3 ,vh,vG µ  are power series in cv  of degree m2 and m3 , without constant and 
linear terms ( 2m ≥ ). We have : 
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⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎡ ⎤ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪= ⊗ ⊗ =⎡ ⎤ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥⎣ ⎦

⎣ ⎦ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎩ ⎭

∑
( )33

2. , 1 2
2 0

. .
cpm

i p i
i p i c c

p i

g v
v vγ −

−
= =

⎧
⎪
⎪
⎪
⎪
⎪⎪
⎨

⎧ ⎫⎪
⎪ ⎪⎪ ⎪ ⎪⎪ =⎨ ⎬

⎪ ⎪ ⎪
⎪ ⎪ ⎪⎪ ⎩ ⎭⎩

∑

∑∑

  (20) 

where ,i p iϕ −  and ,i p iγ −  are matrices of the constant coefficients and ⊗  defines the Kronecker product 
⊗ (Stewart [36]). 
The substitution of Eq.(20) in Eq.(19) gives 

[ ]

2 3

1. , 1 2 1. , 1 2
2 0 2 01 1

2 3
2 2

2. , 1 2 2. , 1 2
2 0 2 0

. . . .
( ) .

. . . .

p pm m
i p i i p i

i p i c c i p i c c
p i p ic c

c p pm m
c c i p i i p i

i p i c c i p i c c
p i p i

v v v v
v v

J
v v

v v v v

ϕ γ
µ

ϕ γ

− −
− −

= = = =

− −
− −

= = = =

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪

⎧ ⎫ ⎧ ⎫ ⎪ ⎪ ⎪ ⎪= + +⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭ ⎪ ⎪ ⎪ ⎪

⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

∑∑ ∑∑

∑∑ ∑∑
   (21) 

where [ ])(J c µ  is a 22×  matrix containing the coefficients of linear terms. Finally, the system can be 
written as follow : 
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3

1. , 1 2
1 01

3
2

2. , 1 2
1 0

. .

. .

pm
i p i

i p i c c
p ic

pm
c i p i

i p i c c
p i

c v v
v
v

c v v

−
−

= =

−
−

= =

⎧ ⎫
⎪ ⎪

⎧ ⎫ ⎪ ⎪=⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎪ ⎪

⎪ ⎪⎩ ⎭

∑∑

∑∑
     (22) 

where ij.1c  and ij.2c  are the coefficients in terms of )1ji(v.v j
2c

i
1c ≥+ . Equating the coefficients of 

different terms in the polynomials on both sides, gives a system of algebraic equations for the 
determination of the coefficients ij.1c  and ij.2c .  We note that the determination of ij.1c  and ij.2c  are 
completely independent. Moreover, we remark that 10.1c , 01.1c , 10.2c  and 01.2c  are only defined  by the 
expression of  [ ])(J c µ  (we have ( )1,1Jc c10.1 = , ( )2,1Jc c01.1 = , ( )1,2Jc c10.2 =  and ( ))2,2Jc c01.2 = . Hence, 

10.1c , 01.1c , 10.2c  and 01.2c  are defined for µµµ += 0 . In the other hand, ij.1c  and ij.2c  (with 2ji ≥+ ) are 
defined for 0µ . Therefore, the system can be expressed as follows: 

( )
( )

( ) ( )
( ) ( )

( )

( )

3

1. , 0 1 2
1 1 2 2 01 1.10 1 1.01 2

3
2 2.10 1 2.01 22 1 2

2. , 0 1 2
2 0

. ., . .
. ., . .

pm
i p i

i p i c c
c c p ic c c

pm
c c c i p ic c

i p i c c
p i

c v vf v vv c v c v
v c v c vf v v c v v

µ
µ µ
µ µ

µ

−
−

= =

−
−

= =

⎧ ⎫
⎪ ⎪⎧ ⎫ ⎧ ⎫+⎧ ⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪= = +⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬+⎪ ⎪⎩ ⎭ ⎩ ⎭⎪ ⎪ ⎪ ⎪⎩ ⎭
⎪ ⎪⎩ ⎭

∑∑

∑∑
  (23) 

7 PADE APPROXIMANTS AND MULTIVARIABLE APPROXIMANTS 

Let f  be a formal power series 
0

( ) i
i

i

f z c z
∞

=

= ∑ . Let us consider a rational function with a numerator of the 

degree p  at most a denominator of the degree q  at most such that its power series expansion (obtained 
by dividing the numerator and by the denominator in ascending powers of the variable z ) agrees with 
that of f  as far as possible. Such a rational function is called an Padé approximant of f  and it is usually 
denoted [ ] ( )f zp q . Its numerator has 1p +  coefficients and its denominator 1q + . But, since a rational 

function is defined apart from a multiplying factor, which will be taken so that the constant term of the 
denominator is equal to 1 , there are only 1p q+ +  unknown coefficients in this Padé approximant. The 
two series will agree at least up to the term of degree p q+  inclusively: we have 

[ ] ( ) ( )1( ) p q
f zf z p q O z + +− = . 

Here, it is not our purpose to give a full account of Padé approximation that can be found in Baker's [19] 
and Brezinski's [38]-[20] works. We confine our attention to the generalisation of Padé approximants 
and more particularly we consider two-variable rational approximants. The main purpose of Padé 
approximants is to approximate functions given by a formal series expansion. We use the applications of 
the multivariable approximants in order to simplify the system. Moreover, the use of the approximants 
allows to obtain limit cycles more easily and rapidly. 

We suppose that 
0 0

i j
ij

i j

c x y
∞ ∞

= =
∑∑  is a power series representing a function ),( yxf . We define polynomials 

∑
∈

=
Aj,i

ji
ij yxn)y,x(N  and ∑

∈

=
Bj,i

ji
ij yxd)y,x(D so that  

∑∑
∞

=

∞

=

+=
0i 0j

ji
ij yxe

)y,x(D
)y,x(N)y,x(f      (24) 
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where as many coefficients ije  as possible are equal to zero. A  and B  define the lattice spaces (Baker 
[19]), for )y,x(N  and )y,x(D , respectively. The numerator and denominator coefficients are in lattice 
spaces A  and B . We require that 0=ije  for Eji ∈, , the equality space. Considering  100 =b  as part of the 
definition, this scheme is normally determinate if ( ) ( ) ( ) 1−+= BdimAdimEdim . 
The developments are known as the generalized Chisholm approximants or the Canterbury 
approximants. The case of Canterbury approximants we are considering is the general system of Hughes 
Jones approximants (Hughes Jones[39]), defined as 

[ ] ∑∑
= =

=
L

0i

L

0j

ji
ij

M/L yxn)y,x(N  and [ ] ∑∑
= =

=
M

0i

M

0j

ji
ij

M/L yxd)y,x(D    (25) 

Returning to (24) and cross-multiplying, we find that 

( )( )

∑∑
∞

=

∞

=

++++++

=+++++++++

0i 0j

ji
ij

LL
LL11011000

11011000
MM

MM11011000

yxeyxn...xynynxnn

...xycycxccyxd...xydydxdd
  (26) 

Then we have equality at order βα yx  if 

∑∑
= =

−− =
α β

αββα
0i 0j

j,iij ncd  for ( ) A∈βα ,      (27) 

( )( )
∑ ∑
= =

−− =
M,min

0i

M,min

0j
j,iij 0cd

α β

βα  for ( ) ( ) A,,E, ∉∈ βαβα    (28) 

The numerator coefficients ijn  are determined by (27), once the denominator coefficients ijd  are 
determined. This method, called the prong method, is more detailed by Hughes Jones and Makinson [40]
 . 
Using the multivariable approximants, we can rewrite the system defined in (23) as follows : 

( )
( )

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=
⎭
⎬
⎫

⎩
⎨
⎧

∑∑∑∑

∑∑∑∑

= == =

= == =
M

0i

M

0j

j
2c

i
1cij.2

L

0i

L

0j

j
2c

i
1cij.2

M

0i

M

0j

j
2c

i
1cij.1

L

0i

L

0j

j
2c

i
1cij.1

2c1c2

2c1c1

2c

1c

v.v.dv.v.n

v.v.dv.v.n

v.vp
v.vp

v
v     (29) 

where ( )2c1c1 v.vp  and ( )2c1c2 v.vp  are rational functions with a numerator of degree L  and a denominator 
of degree M  defined by using the multivariable approximants. The determination of the coefficients 

ij.1n , ij.2n  (for L,..,1,0j,i = ) and ij.1d , ij.2d  (for M,..,1,0j,i = ) is obtained by using the procedure defined 
previously. We note that the determination of ( )ij.1ij.1 d,n  and  ( )ij.2ij.2 d,n  are completely independent. The 
use of multivariable approximants allows the computation of an accurate approximation of ( )2c1c v,vf  
even at values of f  for which the Taylor series of ( )2c1c v,vf  diverge. 
Applications of the multivariable approximants is applied in order to simplify the non-linear expression 
of Eq.(23), that is a power series in cv  of degree 15 , without constant terms. In order to approximate the 
solution, we use [ ] ( )2c1c1 v,vf4/5  approximants and [ ] ( )2c1c2 v,vf4/5  approximants. We notice that an 
[ ] ( )2c1c v,vfM/L  approximation with 4L ≤  and 4M ≤  is not sufficient : effectively, in some cases, 
computations diverge since the non-linearities retained are not sufficient, and in other cases, the limit 
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cycle amplitudes obtained are not acceptable due to the same reasons. An [ ] ( )2c1c v,vfM/L  approximation 
with 5L ≥  and 4N ≥  gives a good correlation with the original non-linear system. A representation of 
the limit cycle amplitudes for different [ ] fM/L  approximants are plotted in Figure 8 and in Figure 9. 
The interest of multivariable approximants is that they need less terms than the Taylor series in order to 
obtain  an accurate approximation of the limit cycle amplitudes. Effectively, we need to use a center 
manifold at least of order 5 in order to have the same estimation of the limit cycles. So, the non-linear 
terms becomes a power series of degree 15 in which all terms are relevant.  
Moreover, the determination of limit cycle amplitude by the integration of the differential-algebraic 
equations of the system is faster using the multivariable approximants. 
 
Figure 8 : X-limit cycle for 1000/0µµ =  
Figure 9 : Y-limit cycle for 1000/0µµ =  

8 APPLICATION OF THE HARMONIC BALANCE 

One of the systematic way for analysing non-linear systems is the harmonic balance method (HBM) in 
order to discretize the unknowns functions in time by their Fourier components, which are assumed to be 
constant with respect to time. Such methods include the incremental harmonic balance (IHB) method, 
the Fast Galerkin (FG) method, and the alternate frequency/time domain (AFT) method. Cheung, Chen 
and Lau [2], Leung and Chui [3], Lau and Zhang [4], Pierre, Ferri and Dowell [5] employed the 
incremental harmonic balance (IHB) method for different non-linear systems. The developments of 
procedures made by Ling and Wu [41] for the Fast Galerkin (FG) method and by Cameron and Griffin 
[6] for the alternate frequency/time domain (AFT) method essentially consist in a substitution of the 
harmonic balance step by a FFT algorithm.  
In our case, we use the alternate frequency/time domain (AFT) method in order to obtain limit cycle 
amplitudes of the non-linear system defined in Eq.(29). In this case, we will show that it is possible to 
carry out  the AFT method and to obtain the correct limit cycle amplitudes in the form of a Fourier series 
by considering the non-linear simplified system with multivariable approximants form. We consider the 
general multi-degree-of-freedom non-linear autonomous dynamical system corresponding to Eq.(29) in 
the form 

N,...,1i,0)z(fz ii ==+      (30) 

where if  represents the non-linear expression in multivariable approximants form, as described 
previously, and defined by ( )2c1ci v,vp  . We remark that this system is an autonomous system. The 
frequency of oscillation is known, since we will obtained a limit cycle amplitude near the Hopf 
bifurcation point µµµ += 0  where 0µ  is the bifurcation point and 0.µεµ =  (with ε <<1). So, the exact 
frequency is obtained by the determination of the equilibrium point and eigenvalues of these linearized 
equations for µµµ += 0 , as defined previously in Eq.(9) and Eq.(10), respectively. The frequency is 
equal to  50.2 Hz, so s/rad316=ω . We considering the truncated Fourier series expansion for k

iz  : 

[ ]∑
=

− ++=
M

1j

k
j2,i

k
1j2,i

k
0,i

k
i )tjsin(.Z)tjcos(.ZZz ωω   for N,..,1i =   (31) 
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where k
0,iZ , k

1j2,iZ − , k
j2,iZ  are the Fourier coefficients. The number of harmonic coefficients M  is selected 

in order to consider only the significant harmonics expected  in the solution. We obtain ( )NM 12 +  linear 
algebraic equations  

[ ]{ } { } [ ]{ } { }0Z.JAFZ.A kNL1k =++++ ∆     (32) 

where [ ]A  and [ ]J  are the Jacobian matrices associated with the linear and non-linear parts of the 
equation of motion (30). They are defined in Appendix C. { }NLF  represents the vector of the Fourier 
coefficients of the non-linear function f . { }1kZ +  and { }kZ∆  contain the Fourier coefficients and the 
Fourier increments of kz  and kz∆ , respectively. Equation (32) contains ( )NM 12 +  unknowns which can 
be determined by solving the ( )NM 12 +  linear algebraic equations. { }NLF  is difficult to determine from 
the Fourier coefficients directly for many non-linear elements. Hence Cameroun and Griffin [6]  
suggested to calculate { }NLF  following a path (alternating frequency/time domain AFT) as follows 

( ) ( ) NLDFTDFT FtftzZ
1

⎯⎯ →⎯⇒⎯⎯⎯ →⎯
−

     (33) 

We use the Discrete Fourier Transform (DFT) as defined by Narayanan and Sekar [7]. It is  given in 
Appendix C. The number of collocation nodes are calculated as ( )NM 12 + , where M  is the number of 
harmonics considered in the Fourier series expansions. 
The error vector { }R  is given by 

{ } [ ]{ } { }NL1k FZ.AR += +       (34) 

and the convergence is chosen and given by  

( )2 2 2
0 2 1 2

1

M

j j
j

R R Rδ −
=

= + +∑      (35) 

An initial estimate of the Fourier coefficients is necessary in order to start the iteration scheme. The 
complete scheme of the computer program using the alternate frequency/time domain (AFT) method 
with the Discrete Fourier Transform (DFT) is expressed in Figure 10. 
 
Figure 10 : Direct Iteration of the DFT method 
 
Computations are conducted by using various power harmonics. We note that one harmonic ( 1M = ) is 
not sufficient to describe exactly the limit cycle amplitude. Conversely, the second or more order of 
harmonic coefficients ( 2M = , 3M =  or 3M ≥ ) allow the obtention of the same limit cycle amplitudes 
than that obtained by the integration of the original system. The values of the Harmonic coefficients for 
one and two harmonics are given in Table 1. Moreover, we note that the values of the harmonic 
coefficients are complex, since they defined the unknown functions in time of ( )2c1c v,v  by their Fourier 
components in the center manifold base. 
Using the reverse transformation in order to go from the center manifold space (with complex variable) 
to the physical space (with real variable), we obtain the limit cycle amplitude of the non-linear system 
defined in Eq.(3) near the bifurcation point µµµ += 0 , where 0µ  is the bifurcation point and 0.µεµ =  
(with ε <<1). A representation of the limit cycle amplitudes for different orders are plotted in Figure 11 
and in Figure 12.We note that this method is ideal for parametric studies since we can go from a known 
state of vibration to the next neighboring state which corresponds to an incremental change in one of the 
parameters of the system. Therefore, the method is rapidly convergent. 
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Table 1 : Values of the harmonic coefficients 
Figure 11 : X-limit cycles amplitude by using the alternate frequency/time domain method 
Figure 12 :  Y-limit cycles amplitude by using the alternate frequency/time domain method 

9 SUMMARY AND CONCLUSION 

A non-linear model for the analysis of mode heavy truck grabbing has been developed. Results from 
stability have been investigated by determining eigenvalues of this linearized equation for each steady-
state operating point of the non-linear system. This stability analysis indicates that system instability can 
occur with a constant friction coefficient.  
Moreover, this paper presents a procedure using successively the center manifold approach, the 
multivariable approximants, and the AFT method in order to obtain equations for the limit cycle 
amplitude. This approach simplifies the dynamics on the centre manifold by reducing the order of the 
dynamical system, while retaining the essential features of the dynamic behaviour near the Hop 
bifurcation point. The multivariable approximants allow the approximation of the non-linear system as 
rational non-linear equations. One of the most important points is the possibility to use successfully 
these two methods in order to obtain a reduced and simplified non-linear system, without losing 
contributions of non-linear terms. Finally, the AFT method is applied to discretize the unknown 
functions in time by their Fourier components. We have validate this procedure by comparing the results 
obtained by solving the full system, and by using the combination of center manifold approach, 
multivariable approximants, and AFT method. This approach seems very interesting when time history 
response solutions of the full set of non-linear equations are both time consuming and costly. Moreover, 
extensive parametric design studies can be done in order to relate the effect of specific parameter 
variation on the stability and the evolution of limit cycle amplitude. 
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APPENDIX A : PARAMETER VALUES 

 
1brakeF N=    brake force 

1 1m kg=    equivalent mass of first mode 
2 1m kg=    equivalent mass of second mode 

1 5 / / secc N m=   equivalent damping of first mode 
2 5 / / secc N m=   equivalent damping of second mode 

5
11 1.10 /k N m=   coefficient of linear term of stiffness 1k  

6 2
12 1.10 /k N m=  coefficient of quadratic term of stiffness 1k  

6 3
13 1.10 /k N m=  coefficient of cubic term of stiffness 1k  

5
21 1.10 /k N m=   coefficient of linear term of stiffness 2k  
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5 2
22 1.10 /k N m=  coefficient of quadratic term of stiffness 2k  

5 3
23 1.10 /k N m=  coefficient of cubic term of stiffness 2k  

0,2radθ =    sprag-slip angle 
0 0, 204µ =   brake friction coefficient at the Hopf bifurcation point 

 
 

APPENDIX B : MATRICES OF THE SYSTEM AND DEFINITION OF i
)1(f  , ij

)2(f  AND ijk
)3(f  

COEFFICIENTS 
 
The vectors i

)1(f , ij
)2(f  and ijk

)3(f  are the coefficients of the linear, quadratic, and cubic terms of the 
nonlinear force { }TnonlinearF , respectively , due to the nonlinear stiffness at the equilibrium point. The non-

zero components of the vectors { } { }Ti,Y
)1(

i,X
)1(

i
)1( fff =  , { } { }Tij,Y

)2(
ij,X
)2(

ij
)2( fff =  and 

{ } { }Tijk,Y
)3(

ijk,X
)3(

ij
)3( fff = ,respectively , are : 

 
( )

( )
( )

,1 2 3 2 2 2
(1) 12 0 12 0 13 0 13 0 0 13 0

2
22 0 23 0

,2 2 2 2
(1) 12 0 12 0 13 0 13 0 0 13 0

tan 2 tan . 2 tan . 3 tan . 6 tan . . 3 tan .

1 tan 2 . 3 .

tan 2 . 2 tan . 3 tan . 6 tan . . 3 .

X

X

f k X k Y k X k X Y k Y

k X k X

f k Y k X k X k X Y k Y

θ µ θ θ θ θ θ

µ θ

θ µ θ θ θ

⎡ ⎤= − + − + − +⎣ ⎦
⎡ ⎤+ + +⎣ ⎦

⎡ ⎤= − + − − + −⎣ ⎦

 

 
,1 2 2 2 3 2

(1) 12 0 12 0 13 0 13 0 13 0

,2 2 2 2
(1) 12 0 12 0 13 0 13 0 0 13 0

2 tan . 2 tan . 3 tan . 6 tan . . 3 tan .

2 . 2 tan . 3 . 6 tan . . 3 tan .

Y

Y

f k X k Y k Y k X Y k X

f k Y k X k Y k X Y k X

θ θ θ θ θ

θ θ θ

= − + + − +

= − + − + −
 

 
( ) ( )[ ]
( )
( ) [ ]

,11 2 3 2
(2) 12 13 0 13 0 22 23 0

,12 2
(2) 12 13 0 13 0

,22
(2) 12 13 0 13 0

tan . .tan 3 .tan . 3 .tan . 1 tan 3 .

tan . 2 .tan 6 .tan . 6 .tan .

tan . 3 .tan . 3 ..

X

X

X

f k k X k Y k k X

f k k X k Y

f k k X k Y

θ µ θ θ θ θ

θ µ θ θ θ

θ µ θ

⎡ ⎤= − + + − + + +⎣ ⎦
⎡ ⎤= − + − − +⎣ ⎦

= − + − −

 

 
,11 2 2 3

(2) 12 13 0 13 0

,12 2
(2) 12 13 0 13 0

,22
(2) 12 13 0 13 0

. tan 3 . tan . 3 . tan .

2 . tan 6 . tan . 6 . tan .

3 . 3 . tan .

Y

Y

Y

f k k Y k X

f k k Y k X

f k k Y k X

θ θ θ

θ θ θ

θ

= − − +

= + −

= − − −

 

 
( ) ( )

( )
( )

( )

,111 3
(3) 13 23

,112 2
(3) 13

,122
(3) 13

,222
(3) 13

tan . . tan . 1 tan

3 . tan tan

3 .tan tan

. tan

X

X

X

X

f k k

f k

f k

f k

θ µ θ θ

θ θ µ

θ θ µ

θ µ

= − + + +

= − − +

= − +

= − − +

   

,111 3
(3) 13

,112 2
(3) 13

,122
(3) 13

,222
(3) 13

. tan

3 . tan

3 . tan

Y

Y

Y

Y

f k

f k

f k

f k

θ

θ

θ

=

= −

=

= −
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APPENDIX C : FOURIER COEFFICIENTS OF NON-LINEAR FUNCTION AND THEIR 
DERIVATIVES 

 
The k -incremental vector of Fourier coefficients are arranged as follows: 

{ } { } { } { } { } TTk
m2,N

k
M2,1

Tk
j2,N

k
j2,1

Tk
1j2,N

k
1j2,1

Tk
0,N

k
0,1

k Z,...,Z,...,Z,...,Z,Z,...,Z,...,Z,...,ZZ ⎥⎦
⎤

⎢⎣
⎡= −−  

We note ⎥
⎦

⎤
⎢
⎣

⎡
=

10
01

Ι  and ⎥
⎦

⎤
⎢
⎣

⎡
=

00
00

Ο . The matrices [ ]A  and [ ]J  are given by 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
−

⎥
⎦

⎤
⎢
⎣

⎡
−

=

ΟΙω
ΙωΟ

ΟΙω
ΙωΟ

ΟΙω
ΙωΟ

Ο

M
M

j
jA  

[ ] [ ] [ ]( ) [ ] [ ]( )ΙΓΙΓ ⊗

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
∂∂∂∂
∂∂∂∂

⊗= −1

yy

xx .
yfxf
yfxf

.J  

with ( ) ∑∑∑∑
= == =

=
M

0i

M

0j

ji
ij

L

0i

L

0j

ji
ij y.x.dy.x.ny,xf , we have : 

2

0 00 0 0 0

1

0 00 0

1

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
×−×⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=∂∂ ∑∑∑∑ ∑∑∑∑∑∑

= == = = =

−

= == =

−
M

i

M

j

ji
ij

M

i

M

j

M

i

M

j

j)i(
ij

L

i

L

j

ji
ij

ji
ij

L

i

L

j

j)i(
ij y.x.dy.x.d.iy.x.ny.x.dy.x.n.ixf  

2

0 00 0 0 0

1

0 00 0

1

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
×−×⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=∂∂ ∑∑∑∑ ∑∑∑∑∑∑

= == = = =

−

= == =

−
M

i

M

j

ji
ij

M

i

M

j

M

i

M

j

)j(i
ij

L

i

L

j

ji
ij

ji
ij

L

i

L

j

)j(i
ij y.x.dy.x.d.jy.x.ny.x.dy.x.n.jyf  

 
The DFT from time to frequency domain is given by  

[ ] ( )[ ]
( )( )[ ] ⎪

⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

=−−
−=−

=
=

N,...,3,1iforN1i1jsin.N2
1N,...,4,2iforNi1jcos.N2

1iforN1

ij

π
πΓ  for N,...,2,1j =   

and from frequency time domain: 

[ ] ( )[ ]
( )( )[ ] ⎪

⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

=−−
−=−

=
=−

N,...,3,1jforN1j1isin
1N,...,4,2jforNj1icos

1jfor1
1

ij

π
πΓ  for N,...,2,1i = .  

Using the DFT method, it is possible to determine Z  and NLF , the Fourier coefficients of { }yxz  and f , 
respectively : 

z.Z Γ=  
f.F NL Γ=  
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Harmonic coefficient Case 1 ( )1M =  Case 2 ( )2M =  Case 3 ( )3M =  

0,1Z  -0.685-0.0102i -0.686-0.0102i -0.685-0.0102i 
0,2Z  -0.685+0.0102i -0.686+0.0102i -0.685+0.0102i 
1,1Z  1.7453+1.0786i 1.7463+1.0812i 1.7458+1.0808i 
1,2Z  1.7453-1.0786i 1.7463-1.0812i 1.7458-1.0808i 
2,1Z  -1.0775+1.7377i -1.0805+1.739i -1.0801+1.7385i 
2,2Z  -1.0775-1.7377i -1.0805-1.739i -1.0801-1.7385i 
3,1Z  0 0.0171+0.0215i 0.0166+0.0212i 
3,2Z  0 0.0171-0.0215i 0.0166-0.0212i 
4,1Z  0 -0.0147+0.0388i -0.0144+0.0382i 
4,2Z  0 -0.0147-0.0388i -0.0144-0.0382i 
5,1Z  0 0 0.0002+0.0007i 
5,2Z  0 0 0.0002-0.0007i 
6,1Z  0 0 -0.0003+0.0008i 
6,2Z  0 0 -0.0003-0.0008i 

Table 1 : Values of the harmonic coefficients 

 
 
 

Figure 1 : Stick-slip and sprag-slip models 
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Figure 2 : Dynamic model of braking system 

 
Figure 3 : Coupling of two eigenvalues  
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Figure 4 : Evolution of the real part of two coupling modes 

 

 
Figure 5 : Evolution of the eigenvalues by variation of µ  in the complex plane 
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Figure 6 : X-limit cycle for 0.10001 µµ =  

 

 
Figure 7 : Y-limit cycle for 0.10001 µµ =  
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Figure 8 : X-limit cycle for 1000/0µµ =   

 
 

 
Figure 9 : Y-limit cycle for 1000/0µµ =  
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{ } [ ] [ ]( ) { } [ ] [ ]( ){ }( )Z.JAF.JA.2Z 1cal ++−+= −

{ } [ ]{ } { }FZ.AR cal +=

( )2 2 2
0 2 1 2

1

M

j j
j

R R Rδ ε−
=

= + + ≤∑

DFT

( ){ }zf

{ } [ ]{ }f.F Γ=

{ } { }initialZZ =
DFT-1

{ } [ ] { }Z.z 1−= Γ

DFT-1

Convergence Criterion

STOPSTOP
YESNO

{ } { }calZZ =

[ ] [ ] [ ] 1.zf.J −

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
∂∂= ΓΓ

 

Figure 10 : Direct Iteration of the DFT method 

 

 
Figure 11 : X-limit cycles amplitude by using the alternate frequency/time domain method 
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Figure 12 :  Y-limit cycles amplitude by using the alternate frequency/time domain method 
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