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Abstract
This paper presents the non-linear dynamic analysis of a flexible unbalanced rotor supported by ball
bearings. The rolling element bearings are modeled as two-degree-of-freedom elements where the
kinematics of the rolling elements are taken into account, as well as the internal clearance and the
Hertz contact non-linearity. In order to calculate the periodic response of this non-linear system, the
harmonic balance method is used. This method is implemented with an exact condensation strategy
to reduce the computational time. Moreover, the stability of the non-linear system is analyzed in the
frequency-domain by a method based on a perturbation applied to the known harmonic solution in
the time domain.
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1. Introduction

In the last two decades, a lot of research efforts has been devoted to study the stability and non-
linear  dynamic  analysis  of  flexible  rotor  bearings.  Effectively,   one  of  the  most  important
mechanical elements to take into account is bearings due to their large influence on the dynamic
behavior of rotating machinery (Bently et al.[1], Ehrich [2], Harris [3],  and Vance [4]). Rolling-
elements bearings, fluid-film bearings and gas bearings are the three major types bearings that are
currently used. Gas bearings operate without noise and are not subjected to wear. However, self-
excited vibrations may occur due to  the loss of damping properties of the gas film. So, a complete
non-linear analysis and stability of flexible rotors supported by gas journal bearings are essential to
estimate the range of their applications (Wang et al.[5], and Czo czy ski et al.[6]). Then, fluid-film
bearings are often used due to the  important  damping   effect  on  rotors  and  a long  life  limit
with good lubrication and squeeze-film dampers are widely utilized in aircraft turbine in order to
reduce amplitudes of the rotor while passing through critical speeds. However, the multiple-solution



response of flexible rotor supported on fluid-film bearing is a typical non-linear phenomenon that
needs to be carefully undertaken in order to avoid worse design (Inayat-Hussain [7], and  C.S. Zhu
et al. [8]) .
Nowadays,  rolling-element  bearings is  commonly used  for  aircraft  engine and many types of
rotating machinery. In contrast to fluid-film bearings, rolling element bearings allow to rotors to be
more  stable and are convenient to use.  It is well known that this mechanical system may drastically
influence the dynamic behavior of rotating system. So, the vibration analysis of flexible rotor with
rolling element bearings is of great importance for the design of rotating systems. Moreover, one of
the most important problem is the presence of non-linearities due for example to the internal radial
clearance, the Hertzian ball-race contact and the associated non-linear restoring forces.
Then, there are many techniques that have been employed for designing rotating system and for
obtaining the dynamic responses  of rotor  with non-linearities.  One of  the methods available to
discretize the equations of motion of a elastic body is the finite element method. Specifically in
rotordynamics,  one  of  the  first  works  dealing  with  finite  elements  is  the  one  of  Nelson  and
McVaugh [9], where rotatory inertia, axial loads and gyroscopics moments are considered. Later,
Zorzi and Nelson [10] showed how to take into account the damping of the rotating parts. Several
works followed these pioneer works (Genta [11], Hashish and Sankar [12], Ku [13], Özgüven and
Özkan[14]), showing the maturity and efficiency of the finite element method for rotor-dynamics.
Moreover, due to the complexity of non-linear systems and to save time, there are many methods
that have been developed in order to simplify and to reduct in the non-linear equations.  The most
popular methods for approximating the non-linear responses of systems are the harmonic balance
methods  where  the  non-linear  solution  is  assumed  to  be  a  truncated  Fourier  series  (harmonic
balance method. These numerical methods are well-known and have been commonly used to solved
non-linear  problems  in  the  fields  of  mechanical  engineering.  However,  various  alternative
approaches may be used in order to obtain the non-linear response and stability of the flexible
bearing  rotor  system.  We  refer  the  interested  reader  to  [15,16]  for  an  extensive  overview  of
alternative approaches.
So, this paper will firstly presents the rolling bearing model with radial clearance and Hertz contact.
Secondly, the harmonic balance method with a condensation strategy will be developed in order to
obtain the periodic solution of the non-linear bearing rotor. Then, the stability analysis is carried out
in the frequency-domain, using a method based on a perturbation in the time domain applied to the
known harmonic solution.
Finally, numerical  tests  and results  of  a  rotor  with one disk and two bearing elements  will  be
investigated.  The non-linear  response,  the  stability analysis  and the evolution of  the  non-linear
behavior of the rolling elements will be undertaken.

2. The rolling bearing model

A numerical model of a rotor bearing system may have a very complex behavior when the rolling
bearing model tries to incorporate the non-linearities found in such a component. With these special
rolling  bearing  models,  non-linear  phenomena  such  as  quasiperiodic  motions,  chaotic  motions,
jumps and super harmonics have been observed (Childs [17], Kim and Noah [18], Karpenko et al.
[19], Tiwari et al. [20], Harsha et al. [21]).
In this work a rolling bearing model were the restoring forces are calculated based on the kinematics
of the rolling elements is adopted. The rolling bearing is represented in figure  , where  Ri  is the
internal groove radius, Ro  is the external groove radius,  j  is the angular position of the jth rolling
element and   is the constant angular speed of the rotor. The external ring of the bearing is fixed
to the stator, and the internal ring is fixed to the rotor. The rolling bearing has a radial clearance 
and the dynamical effects on the rolling elements (gyroscopic moments and centrifuge forces) are
not considered. The rolling elements are kept with constant angular spacing as a result of the use of
a retainer or cage. The cage speed, or the speed of rotation of the set of rolling elements around the
origin, is (Tiwari et al. [20]):



cage= Ri

RiRo   (1)

This rolling bearing model can generate a parametric excitation due to the combination of a constant
lateral force (like the weight of the rotor) and the variation of the angular position of the rolling
elements. However, this excitation is not considered here, in that  the main excitation of the rolling
bearing system. An unbalance force, which is more important than this parametric effect, will be
considered. The rolling bearing has  N b  rolling elements and the position of the  j th  one can be
calculated in function of the rotating speed as:

 j=
2
N b

 j­1cage t , j=1, , N b  (2)

At the position  j , the relative displacement between the rotor and the stator is:

  j= xr­xssin  j zr­z scos  j  , j=1, , N b (3)

where xr  and yr  are the coordinates of the rotor and xs  and ys  are the coordinates of the stator.
If the relative displacement   j  is bigger than the radial  clearance, there appears some level of
compression  at  the  rolling  element.  As  a  result,  a  local  restoring  force  occurs.  Otherwise,  the
restoring force is null. This can be stated as:

Q j={K C  j­n ,  j
0 ,  j

 (4)

The global restoring force exerted by the rolling bearing over the rotor is then:

F X=­∑
j=1

N b

Q j sin  j 

F Z=­∑
j=1

Nb

Q j cos  j 
 (5)

3. Harmonic balance formulation and reduction 

To obtain the periodic solutions of the non-linear rotor system with  the bearing element previously
described,  the  harmonic  balance  method  is  one  of  the  most  interesting  methods  [22-24].  The
principle idea of the method is to impose an harmonic solution with unknown coefficients and with
the same period of the excitation. After inserting this solution into the equation of motion of the
system, the resulting harmonic terms are balanced and the unknown coefficients can be found. This
method can be used to find approximate analytical solutions for small number of degrees of freedom
(dof)  systems,  like  a  mass-spring-damper  system with  a cubic  stiffness  non-linearity. However,
when the system contains more complex non-linearities or a significant number of dof, the amount
of  symbolic  manipulations  can  be  disencouraging.  To  overcome  this  problem,  a  special
implementation of the harmonic balance method is available: the AFT (alternating frequency time
technique) [22,23 and 25]. To present the method, the following equation of motion is considered:



M Ẍ  D Ẋ K X =F NL  Ẋ , X , , t   (6)

where  M  is the mass matrix,  D  is the damping plus gyroscopic matrices,  K  is the stiffness
matrix,  X  is the displacement vector,  F NL  Ẋ , X , , t   is the vector containing all the efforts
acting on the system,    is the rotating frequency and  t  is the time. The overdot means time
differentiation.  The  number  of  degrees  of  freedom in  this  discretization  is  r .  For  simplicity,
F NL  Ẋ , X , , t   will be written as F .

Assuming that  the harmonic  excitation causes  a harmonic  response,  X t   can be written as a
Fourier series up to the mth  term:

X t =B0∑
k=1

m

[Bk cos  k t  Ak sin k  t ]  (7)

The forcing term F  can also be written as a Fourier series expansion:

F =C0∑
k =1

m

[C k cos k  t S k sin k  t ]  (8)

The  Fourier  series  representation  of  the  displacement  (7) and  forcing  (8) are  inserted  into  the
equation of motion (6), and the terms of same frequency are balanced. For the constant terms, the
balance leads to:

K B0= X  (9)

For the ith  sine term, the result of the balance is:

K ­i 2 M  Ai­i  D Bi=S i  (10)

Finally, for the ith  cosine term:

­i  D AiK ­i 2 M Bi=C i  (11)

Gathering together  all  the harmonics,  the  following system of  equations  of  order  2m1 r  is
obtained:

[
K

1

⋱
i

⋱
m

] [
B0

1

⋮
 i

⋮
m

]­[
C 0

1

⋮
i

⋮
m

]=0  (12)

Where:
 



i=[K ­i 2 M ­i D
i D K ­i 2 M ] ;  i=[Ai

Bi] ; i=[S i

Ci] (13)

This can be recognized as a nonlinear algebraic system of equations since the Fourier coefficients of
the forcing terms are implicit functions of the Fourier coefficients of the displacement. In this sense,
Equation (12) can be written as:

H Z ,= Z ­b  Z   (14)
where the entities  , Z  and b  Z   can be readily identified. H Z , defines the residue and
is imposed to zero. To establish the implicit relation between forcing and displacement coefficient,
that is, the vector b  Z  , the AFT strategy is employed. This strategy starts with an estimation of
the Fourier coefficients used to build the  Z  vector. This coefficients are used to synthesize the
displacement  X t  , which in turn is used to evaluate the nonlinear forces in the time domain. A
Fourier analysis of these forces gives the coefficients C0 , Ci  and Si :

C0=
1
T ∫

0

T

F dt (15)

Ci=
2
T ∫

0

T

F cos i  t  dt (16)

Si=
2
T ∫

0

T

F sin i t  dt  (17)

These coefficients  are used to build the vector  b  Z  .  Knowing the procedure to  construct  the
vector b  Z  , the response curves of the dynamical system are found by calculating the zeros of the
equation (14) given range of  . This can be accomplished with the aid of a nonlinear system of
equations solver, like the Newton-Raphson  [26] or Broyden [27] methods. Figure 2 illustrates the
computational method.
When a given system as a significant number of degrees of freedom but only a few of then are
related to nonlinear efforts, it is recommended to use some kind of condensation. From now on
these degrees of freedom will be called nonlinear degrees of freedom, in contrast with the linear
degrees of freedom, which are not directly linked to the nonlinear efforts. The main idea of the
condensation is to solve the algebraic nonlinear system of equations only for the nonlinear degrees
of  freedom,  letting  the  others  be  determined  later  by  a  linear  transformation.  In  this  way,  a
significantly  smaller  number  of  degrees  of  freedom  means  less  computational  effort.  The
condensation scheme used here is the one presented by Han and Chen [24], and it will be outlined in
the following paragraphs.
The nonlinear degrees of freedom are stored at the end of the displacement vector. If there are p
linear degrees of freedom and  q  nonlinear degrees of freedom (with  pq=r ), the equation of
motion (6) is written as:

[M pp M pq

M qp M qq ][ Ẍ p

Ẍ q][D pp D pq

Dqp Dqq][ Ẋ p

Ẋ q ][K pp K pq

K qp K qq][X p

X q ]=[F p

F q ]  (18)

Following the harmonic balance procedure, the balance equation for the constants terms is:



[K pp K pq

K qp K qq][B0p

B0q]=[C 0p

C 0p]  (19)

From equation (19), it is possible to write B0q  in function of B0q :

 K qq­K qp K pp
­1 K pq B0q=C0q­ K qp K pp

­1C 0p  (20)

To proceed with the condensation for the sine and cosine terms, it is needed to define the following
terms:

Qi=K ­i2 M , Ri=i D (21)

Then, from the ith  block of the equations (10) and (11), one can write:

[Qi ­Ri

Ri Qi ][Ai

Bi]=[S i

Ci] (22)

From equation (22), it is possible to write:

T i Bi=Ui (23)
T i Ai=W i (24)

where: 

T i=Qi Ri Qi
­1 Ri

U i=Ci­Ri Qi
­1 S i

W i= Si Ri Qi
­1 Ci

(25)

Using the same procedure applied to equation (19), one obtains:

T iqq­T iqpT ipp
­1 T ipq Biq=U iq­T iqpT ipp

­1 Uip (26)

T iqq­T iqpT ipp
­1 T ipq Aiq=W iq­T iqpT ipp

­1W ip (27)

Considering the m  harmonics and the equations (20), (26) and (27), it is possible to obtain:

[
Kqq­K qp K pp

­1 K pq
1

⋱
i

⋱
m

] [
B0q

1q

⋮
 iq

⋮
mq

]­[
C 0q­K qp K pp

­1C0p

1

⋮
 i

⋮
m

]=0  (28)



where: 

i=[T iqq­T iqpT ipp
­1 T ipq 0

0 T iqq­T iqpT ipp
­1T ipq]

 iq=[ Aiq

Biq ]
 i=[W iq­T iqpT ipp

­1 W ip

U iq­T iqpT ipp
­1U ip ]

(29)

Equation  (28) is a non-linear system of equations of order  2m1 q . When compared with the
2m1 r  order  of  the  system given  by the  equation  (14),  it  becomes  clear  the  performance

increase obtained when the condensation is used. If the number of nonlinear degrees of freedom is
small compared with the total number of degrees of freedom of the system, this performance gain
can be important, as the method of solving the nonlinear system of equations is iterative.
The harmonic balance method can be implemented with some modifications regarding the nonlinear
system of equations solver and the transformation between the time and the frequency domains. One
approach is to use a FFT algorithm for domain switching and the Newton-Raphson method to solve
the nonlinear system of equations (Cameron and Griffin [22], Choi and Noah [28], Kim et al. [29]
and  Kim  and  Noah  [30]).  The  harmonic  balance  method  can  have  special  predictors  for  the
evolution  of  the  control  parameter  (the  frequency,  in  the  case  of  this  study),  like  a  Lagrange
polynomial (Narayanan and Sekar [31]) or an Euler predictor (Cardona et al. [25]). 

4. Stability analysis

In all cases, although the harmonic balance method can find a harmonic solution, it can not state
about its stability. So it may be very important to obtain information about the stability of such
periodic solutions. This will be the purpose of this section.
The traditional method to study the stability uses the Floquet theory. However it is needed to work
in the time domain to obtain the monodromy matrix  (Cardona et al. [25]). To avoid the additional
time  domain  processing  and  to  keep  the  inherent  advantages  of  the  frequential  method  (low
computational cost and speed compared with the direct integration), it is recommended to use a
frequential method for the determination of the stability (Sinha [32], Groll and Ewins [33]). This
method is based on a perturbation applied to a known harmonic solution in the time domain, and
has the form:

 X =X 0L et (30)

where X 0  is the known solution and L et  is the perturbation term, with a harmonic part ( L ) and
an exponential function of time. Equation (30) is inserted into the equation of motion of the system
(equation (6)) (not considering the speed dependent terms):

M Ẍ 0 D Ẋ 0K X 0e t2 M L 2 M L̇ D L M L̈D L̇ K L =F NL X 0e t L (31)

and the harmonic balance procedure is applied to the resulting equation of motion:

  Z 012 2 Z e t=b Z 0et Z  (32)



where Z 0  and Z  are the vectors containing the Fourier coefficients of X 0  and L , respectively.
  is defined by 

 =diag K ,1, ,m  (33)

Where

i=[K ­i 2 M ­i D
i D K ­i 2 M ] (34)

1  and 2  are given by

 1=diag D , 1, , m  (35)

 2=diag  M , , M  (36)

with

 i=[ D ­2i  M
2 i M D ] (37)

After the linearization of b  Z0e t Z   with respect of e t Z  in the right side of the equation (32),
the following eigenvalue problem is obtained:

 12 2­J b Z0  Z e t=0 (38)

where J b Z 0  is the Jacobian matrix of the function b  Z  . The eigenvalues of (38) are complex.
If the system is stable, the real part of all eigenvalues is negative and the perturbation diminishes as
the time passes. In another hand, if at least one of the eigenvalues has a positive real part, the system
is instable.
This  method  is  interesting as  it  doesn't  require  domain  switching  for  the  determination  of  the
stability. However, it requires the representation of the perturbation as a Fourier series. As for the
frequency representation of the response of the system, the number of harmonics retained for the
perturbation has an impact on the evaluation of the stability.

5. Results and discussion

The finite element model of the rotor bearing system under analysis is shown in figure . The beam
elements are of the type Euler-Bernoulli, with four degrees of freedom per node (two translations
and  two  rotations  in  orthogonal  planes).  The  disk  is  modelized  as  a  point  mass  with  the
corresponding moments of inertia. The main excitation of the system is a radial unbalance at the
disk.
The rotor  is  connected to the stator  through rolling elements  bearings.  The bearing 1 is  a ball
bearing and the bearing 2 is a roller bearing. The stator is composed of two suspensions. In a first
moment, the stiffness of both bearings are modelized as radial linear springs. Also the coupling
between the rotor and the motor is regarded as a radial linear spring.



Following the approach of Lalanne and Ferraris [33], the equation of motion in the fixed frame of
reference of this rotor-bearing system can be found as:

M Ẍ  D G  Ẋ  K X = F L  (39)

where M  is the mass matrix, K  is the stiffness matrix, D  is the viscous damping matrix, G  is
the gyroscopic matrix, X  is the displacement vector and F L  is the unbalance vector. The overdot
means time differentiation. The viscous damping matrix D  is built considering a Rayleigh damping
law: 

D= M  K  (40)

where the constants   and   are such as the modal damping for the first and second modes of the
system at rest ( =0 ) are equal to 0.005.
For discretization purpose, the shaft is divided into four sections, where the first and the fourth
sections have 2 elements, and the second and fourth sections have 3 elements. With the spring
elements of the suspensions, the system has 48 degrees of freedom.
The condensation procedure shown in section 5 is applied with the 8 degrees of freedom associated
to the bearings (four at the bearings plus four at the suspensions) as master degrees of freedom.
However, for the example that will be analyzed in the following paragraphs, only the ball bearing is
treated as a non-linear component.
When the system is  treated as non-linear,  with  the  rolling bearing 1 modeled as shown in the
previous section, the equations of motion become:

M Ẍ  DG  Ẋ K X =F LF NL (41)

where the coefficient matrices are equal to the corresponding linear ones. The exception is the K
matrix, which is obtained from K  by setting to 0 the elements corresponding to the rolling bearing
1, since the forces of the bearing 1 are now represented by the vector  F NL , containing the force
components given by the equation (5).
For  the  rotor  shown  in  figure  3,  the  length  of  each  section  is:  L1=0.222m ,  L2=1.136 m ,
L3=0.146 m  and L4=0.196 m . The shaft is made of steel with a 0.04 m  diameter circular cross

section. The unbalance is placed at the disk and it's value is 40 g⋅cm . The suspensions have a radial
stiffness equal to 3.8×106 N /m , and mass equal to 6.0 kg . The flexible coupling is represented by
a radial stiffness of 5.75×104 N /m  with a mass of 0.73kg .
The radial clearance of the ball bearing is set to =10 m . The bearing radial stiffness, following
Harri's methodology [34] for a 6014 ball bearing, is  4.6×107 N / m1.5  . For the roller bearing, a
linear radial  stiffness of  7×108 N /m  is adopted. The total  mass of the bearings and mounting
fixtures is 1.5 kg .
The frequency of rotation is in the range 1Hz-50Hz, with 2900 frequency steps. The steady state
solution is in the form of equation (7), retaining the first 6 terms. This choice is done to predict the
dynamic  behavior  of  the  non-linear  rotor  bearing  system even  if  it  is  relatively complex.  The
displacements are taken at the ball bearing position for the rotor and at the ball bearing suspension
for the stator.
At first the influence of the unbalance will be studied. Figure 4 shows the horizontal displacement
of the rotor. From the figure, one can see that the first direct critical speed depends on the unbalance
amount.  Also,  there  are  jumps  at  the  critical  speed  region.  The  figure  suggests  that  the  most
complicated behavior is obtained when the unbalance level is low.
The dynamic behavior of the system will  be analyzed with more details for the 0.002 kg mass
unbalance. Figure 5 shows the response curves obtained for the run up and the coast down tests. It



shows  the  horizontal  and  vertical  components  of  the  response,  where  it  is  possible  to  see  an
anisotropic behavior. This picture also shows two super-harmonics at 4.2 Hz and 7.6 Hz, and two
jumps at the first critical speed region.
A zoom at the critical speed shows the jumps more clearly (figure 6). For the run up response, the
jump occurs at 27.28 Hz (considering the frequency resolution adopted). The second jump is at
28.41 Hz. For the coast down curve, the jumps are at 28.30 Hz and 26.92 Hz.
The instability curves are shown in Figure 7. The first plot shows the maximum real part of the
eigenvalues obtained from the eigenproblem described by the equation (38), where a value greater
than zero means that the system is unstable. The second plot shows the response curve with the
instability zones indicated by the shaded zones. The instability estimation allows one to see zones
where there are two simultaneous stable solutions (from the run up and coast down tests): 27.01 Hz
– 27.28 Hz e 28.34 Hz – 28.41 Hz. Moreover, Figure 8 illustrates the estimation of the stable-
unstable zone against the number of harmonic components.  It clearly demonstrates that the 2nd
order (two harmonic components)  is  not  sufficient  to obtain a good estimation of the stable or
unstable behavior of the periodic solution. However, considering more than two components gives
the same results for the stability analysis of the non-linear rotor-bearing system.
Finally, the results obtained from the harmonic balance method can be used to synthesize the orbits
of the rotor and the stator.  This allows one to determine the whirling sense of the rotor.  Some
examples  will  be  shown  in  the  next  paragraphs,  where  the  mean  of  the  Fourier  series  is  not
considered for plotting the orbits. The orbits of the rotor and the stator are constructed for the shaft
at the non-linear bearing position (rotor) and for the suspension of this bearing (stator). The first
point of the orbit is represented by a circle and the last by a square. The rotor has positive angular
speed.
These first orbits are shown in figure 9 for 7.6 Hz. It is the frequency of the the second super-
harmonic. These orbits are somewhat complex but limited to 3 mm. For 24.8 Hz, the orbits are
shown in figure 10. The motion in the vertical direction is less pronounced compared with the
motion  in the horizontal  direction,  indicating an anisotropic  effect.  This  effect  comes from the
combination of the rolling bearing radial clearance and the weight of the rotor. The whirling is
direct. Between 24.8 Hz and 26.0 Hz (approximate values), the whirling sense changes from direct
to reverse. Figure 11 shows an intermediate state and figure 11 shows the orbits at 26.0 Hz with a
reverse whirling direction. There is another inversion on the whirling direction around 27.1 Hz, and
the orbits show again a direct whirling as shown in figure 12 for 28.3 Hz.
Figure 13 shows the orbits of two simultaneously stable solutions at 27.2 Hz, indicating that the
main difference between them is the level of the displacements, with the coast down orbit about two
times bigger than the run up orbit.
The harmonic solutions can also be used to analyze the behavior of the rolling elements of the
bearing, showing for example how many of them are in contact with the outer ring or if some of the
elements are more charged than the others. Considering one period of revolution of the bearing
cage, one tactic is to create a function per rolling element that is zero valued over all the period of
revolution except the instants of contact. When the function is evaluated for all rolling elements and
put in graphical form, the contact behavior of the bearing can be understood.
With the system at 7.6 Hz, the contact evolution of the rolling elements is shown in figure 14. To
have a better understanding of this figure, the first plot will be considered now. If one looks the first
ball, the length of the horizontal line indicates the fraction of the period of revolution of the bearing
cage where the contact exists. The same idea holds for the rest of the balls. So it is possible to see
that every ball at this rolling bearing has almost the same amount of contact time in a period of
revolution of the cage. There is no rolling element that does not contact the outer ring. Also the
contact order is from the ball number 14 to the ball number 1. Finally, for each instant there are 7
balls in contact. Considering the direction of rotation of the rotor and the order of contact, this
behavior indicates that, thanks to the rotor weight, the shaft is positioned at the lower part of the
bearing, with the bearing clearance consumed. The second plot shows the relative orbit between the
rotor and the stator. The dotted circle has it's radius equal to the bearing clearance. Then, if the
relative orbit (or one part of it) falls inside of the dotted circle, there is no contact between the rotor



and the stator. This plot confirms that the rotor is always in contact with the stator for this frequency
of operation.
At 24.8 Hz (figure 15), the contact evolution presents a situation where the contact at the balls 2 and
8 is intermittent. The relative orbit indicates no loss of contact and also that the rotor still evoluates
bellow the axis of the undeformed shaft.
At 29.1 Hz, an unstable operating frequency, there are contact losses as Fig. 16 illustrates. From this
figure, it is possible to see a small fraction of time between 0.013 s and 0.015 s where no rolling
element is in contact with the outer ring. The relative orbit confirms this situation. It is also possible
to see from this figure that in one period of revolution of the cage the rolling elements can have
three or even four contacts with the outer ring. This situation is more clear if the 28.1 Hz frequency
is considered (see  Fig. 17). At this frequency, the rolling elements have 4 contacts per period of
revolution of the cage. Also at this operating point the relative orbit indicates that the motion of the
rotor takes place always in contact with the stator, around the undeformed shaft axis.

5. Conclusions

The harmonic balance method with the AFT strategy can find harmonic solutions very efficiently. It
has to be used with a method to determine if the solution found is stable or not. Using this method, a
flexible rotor bearing system was studied, considering the non-linearities of the bearing. For this
part, a rolling bearing model containing the clearance and Hertz non-linearities was used.
The unbalance responses showed a dependency between the critical speed and the unbalance level.
For a given unbalance level, it was shown that there are non-linear phenomena in the response, such
as  jumps  and  super-harmonics.  The  instability  zones  were  determined,  showing  that  for  this
particular system there are frequencies where two stable solutions can co-exist.
The set of harmonic coefficients found by the harmonic balance method allowed the synthesis of the
orbits. This is useful to verify the whirling direction of the system. The evolution of contact of the
rolling elements can also be studied, revealing several aspects of the internal behavior of the rolling
bearing. In function of the rotating frequency, it was possible to verify how many elements are in
contact with the outer ring for a given instant and the order of contact of the rolling elements.
One limitation  of  the harmonic  balance method was seen for  two operating frequencies  of  the
system. For the implementation considered in this work, the response is composed by multiples of
the rotating speed of the rotor. However, for these two frequencies, it was shown that the contact
can happen three or four times in a revolution of the cage of the bearing. It would be interesting to
investigate if this force, that has a frequency multiple of that of rotation of the cage, has some
important influence on the dynamics of the system.
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Figure 1: the rolling bearing model



Figure 2: the computational method

Figure 3: the rotor-bearing system



Figure 4: influence of the unbalance level on the unbalance response

Figure 5: horizontal and vertical unbalance responses for the
0.002kg unbalance level



Figure 6: zoom of the 25 Hz - 35 Hz range of the horizontal
unbalance response curve

Figure 7: maximum real part of the eigenvalues and the instability
zones



Figure 8: evolution of the maximum real part of the eigenvalues with
the number of harmonic components

Figure 9: Orbits of the rotor (⎯⎯) and stator (------) for 7.6 Hz



Figure 10: Orbits of the rotor (⎯⎯) and stator (------) for 24.8 Hz

Figure 11: Orbits of the rotor (⎯⎯) and stator (------) for 26.0 Hz

Figure 12: Orbits of the rotor (⎯⎯) and stator (------) for 7.6 Hz



Figure 13: Comparison between two stable solutions at 27.2 Hz. Left
plot is for the run-up and the right is for the coast down.

Figure 14: Evolution of the contact and the relative orbit at 7.6 Hz

Figure 15: Evolution of the contact and the relative orbit at 24.8 Hz



Figure 16: Evolution of the contact and the relative orbit at 29.1 Hz

Figure 17: Evolution of the contact and the relative orbit at 28.1 Hz


