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ABSTRACT 

This paper presents a method of mistuning identification for  industrial blisks from measurements 
of the system modes and natural frequencies. The procedure is based on the “Best Achievable 
Eigenvectors” of all measured modes simultaneously combined with a regulation technique. Four 
illustrative numerical simulations, based on a reduced order model of the blisk, are given which 
demonstrate  that this technique produces acceptable mistuning identification. To do so, a finite 
element model of the bladed disk and a computational reduced-order modelling technique, based 
on component mode substitution method and combined with a cyclic characteristic of the blade 
assembly, are developed. Moreover, sensibility coefficients of the mistuning parameter with 
respect to measured data are derived. 

1 INTRODUCTION 
Turbomachinery bladed disks are originally designed to be cyclically symmetric but, because of  
several inherent phenomena such as manufacturing tolerances, material inhomogeneity or in  
service wear, small differences appear between each of their elementary sectors. This 
phenomenon is known as  mistuning and is an important concern in this industrial community [1-
6]. The first consequence of mistuning on the free response is the frequency splitting of double 
modes for each circumferencial mode. An associated phenomenon is the eigenvalue loci veering 
when mistuning changes [7]. The most important consequence is the energy localization in some 
parts of the structure; it can occur in free [8-9] and in forced response [5,10-14]. Concerning 
forced response, vibration amplitudes can be 2 to 3 times greater than for the tuned case [11], 
leading to high-cycle fatigue. However one positive aspect of mistuning is that in some cases, 
margins to flutter are increased by the presence of mistuning [15]. 
In the design process of bladed disks, taking mistuning into account raises several subjects of 
investigation. First predictive models need to be developed; the main issue is that we are studying  
a mistuned bladed disk, the cyclic symmetry assumption is no longer valid and as a consequence, 
the structure needs to be modeled entirely (in 360°) which is very expensive. To overcome this 
problem, these approaches have been developed, first based on lumped parameter model [16] and  
more and more on reduced order model that can be applied to realistic models [17-21]. In these 
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models, mistuning is commonly introduced as  parameters that perturb each blade natural 
frequency. Then using these models, some determinist is predictions of free and forced response 
or eventually some stability analysis can be done. For example, if mistuning parameters are 
known in terms of their mean and standard deviation, statistic methods can be employed to 
calculate the probability density function of the blade forced response amplitude [13]. Finally in 
order to properly evaluate these responses, the mistuning parameters need to be identified in 
order to  update models. This can only be done through experimental investigations. Mistuning 
identification also allows the designer to check whether the mistuning of a given bladed disk lies 
within the manufacturing tolerances.  In bladed disk assemblies, mistuning identification can be 
achieved through individual tests on each blade, and the mistuning is defined as the deviations of 
the blade's natural frequencies with respect to their nominal value (ie tuned). However, in single-
piece structures such blisks (integrally bladed disks) or blings, individual measurements are no 
longer possible and mistuning identification using measurements of the system modes and natural 
frequencies is essential [16-18, 22]. In recent years, several methods have been developed to 
identify mistuning [23-25]. 
In this paper, an identification technique is presented. Assuming that global measurements are 
available, an updating procedure of a reduced-order model of an industrial blisk is performed. 
The measured modes are treated simultaneously using the “Best Achievable Eigenvector” in  
combination with a regulation technique [26-27]. 
First, the reduced order modeling technique used in the mistuning identification method will be 
briefly presented. Then, the identification technique based on the “Best Achievable Eigenvector” 
is developed. This method is combined with regularization of measured eigenvectors in order to 
eliminate part of measured modes which are not realizable with mistuned model considered. The 
method is then validated numerically on an industrial blisk model; various mistuning 
distributions are introduced in the reduced-order model and the validation consists in the 
identification of these mistunings. Finally, sensitivity coefficients of mistuning parameter to 
measured data is investigated, first theoretically and then applied to the considered model. 

2 REDUCED ORDER MODELING OF MISTUNED BLADED DISKS 

2.1 Reduced order model 
As mentioned in the introduction, mistuned bladed disks cannot be studied using the cyclic 
symmetry assumption; however since the entire finite element of an industrial blisk will be to 
expensive in terms of computation time, the use of reduced order modeling technique became 
unavoidable. For many years, various reduced order models have been proposed in the literature. 
We refer the interested reader to the papers [20-21,28-36] in order to find an extensive overview 
of the reduced order modeling techniques that are not the subject of this study. The technique 
presented here is similar to the component mode substitution method of Benfield and Hruda [37], 
and is adapted to bladed disk modeling. The main advantage is that mistuning can be easily 
introduced as perturbation of the cantilevered-blade modes. Recently more efficient methods 
have been developed which require fewer input data [30,32]. We do not pretend to give an 
important contribution in this section; the only purpose is to give an overview of the various steps 
that will be useful for the understanding of this paper. 
For this component mode technique, the blades and the disk are thought (naturally) as distinct 
component substructures and an interface is defined between them. The motion of the entire 
bladed disk is described using two sets of modes: disk modes with loaded interface (for all nodal 
diameter) and cantilevered-blade modes, each of these modes being calculated using a finite 
element method. 
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The blade motion is constructed  using a Craig-Bampton technique, that is a truncated set Ψ  of 
modes of vibration with fixed interface and a set Θ  of constraint modes. By applying this 
technique, displacement for each blade can be written by 

⎧ ⎫
⎡ ⎤= ⎨ ⎬⎣ ⎦

⎩ ⎭

b
b b j

b

u
u Θ Ψ

q
      (1) 

By applying the cyclicity argument, the displacements of all blades can be obtained  
⎧ ⎫

⎡ ⎤= ⎨ ⎬⎣ ⎦
⎩ ⎭

b
b b j

b

u
u Θ Ψ

q
      (2) 

Then, the disk is characterized by its modes with loaded interface, for all possible P nodal 
diameter. 

0

P

k k
k=

= =∑d d d d du Φ q Φ q      (3) 

Considering the displacement compatibility over the components (i.e. b d
j ju = u ), one has 

⎧ ⎫
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Thus, the transformation matrix T  between physical coordinates u and modal coordinates q  is 
given by 

0

0
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= =⎢ ⎥ ⎢ ⎥
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Finally, the synthesized mass and stiffness matrices take the following forms 

( )T
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( )T
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   (7) 

 

2.2 Model of mistuning  
Structural mistuning refers to nonuniformities in structural parameters around a bladed disk 
which are due to inherent causes. Generally speaking, disk mistuning is negligible versus blade 
mistuning; that's why it is considered as perturbation of the structural parameters of the blades. 
Moreover, there exist several type of mistuning which are frequency, damping or form mistuning; 
but it is commonly assumed that only frequency and in some cases damping mistuning are 
considered [28]. As proposed by a lot of researchers,  mistuning is considered by introducing a 
different Young’s modulus for each blade 

( )0 1i iE E p= +      (8) 

where 0E  and ip  are Young’s modulus for the tuned blade and the dimensionless mistuning 
parameter for the ith blade. Assuming this simplistic but sufficient case for the purpose of this 
study,  the variation of the stiffness matrix bbK  due to the mistuned characteristics of each blade 
is added in K such as 

( ) ( )1 idiag p= + ⊗ ⋅ ⋅b b b
bbK Ψ K Ψ     (9) 
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where ( )1 idiag p+  defines the diagonal matrix of ( )1 ip+ coefficients. ⊗  defines the Kronecker 
product. 

3 MISTUNING IDENTIFICATION TECHNIQUE 
The aim of  mistuning identification  is to find the mistuning parameters to correct the model 
(here a reduced order model) so that it properly describes the dynamic behaviour of a real bladed 
disk. To do so, global measurements of a system of modes are necessary and are taken as a 
reference. The procedure is similar to model updating techniques.  
The method proposed to identify mistuning parameters is based on the Best Achievable 
Eigenvectors [26-27]. This approach uses an eigenvalue assignment technique combined with a 
regularization technique and consists in a projection of the measured eigenvectors on a subspace 
spanned by the perturbed model; this improves the representativeness of the measured modes and 
limits the influence of measurement errors . 
As explained previously, mistuning has been introduced in our model by considering that each 
blade has different cantilevered frequencies. Perturbation parameters are then applied to the 
modal coordinates corresponding to the perturbed modes and mistuned reduced stiffness matrix 

MK  is given by  

1

N
i

i
i

p
=

= +∑M TK K K      (10) 

where TK  and iK  are the tuned matrix and the elementary stiffness matrix of the ith blade (N 
defines the total number of stiffness element matrix). 
The eigenvalue equation associated with the dynamic structural system is 

=     r r r=MK Ψ ΜΨ Λ                             

(11) 
  where rΨ  is the r eigenvectors in modal coordinates and and rΛ is a diagonal matrix containing 
r system eigenvalues.  
By substituting equation (9) into equation (10),  we have  

1

N
i r r r r

i
i

p
=

= −∑ TKΨ MΨ Λ K Ψ     (12) 

This equation will be used in a first time for the eigenvectors regularization and in a second time 
for the mistuning parameters identification. 
Each eigenvector is filtered independently with equation (12) written for each mode j. 

( )2

1

N
i r r

i j j j
i

p
=

= −∑ TKΨ M K Ψω     (13) 

If all measured eigenfrequencies for the mistuned system are different from the ones of the tuned 
system, each eigenvector can be isolated in the previous equation. Considering the jth mode, the 
equation (13) is rewritten as  

1

1

N
i r r

i j j j
i

p −

=

=∑ E KΨ Ψ      (14) 

 
where 

( )2
j j= − TE M Kω      (15) 

Equation (14) can now be rewritten as 
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r
j j j=L γ Ψ       (16) 

where 
1 1 1 2 1 N

j j j j
− − −⎡ ⎤= ⎣ ⎦L E K E K E K    (17) 

and 

1

Tr r
j j N jp p⎡ ⎤= ⎣ ⎦γ Ψ Ψ      (18) 

Equation (16) is only true if r
jΨ  is a linear combination of the columns of jL . In this case, r

jΨ  
must lie in the subspace spanned by the columns of jL  which are only dependent of the tuned 
system matrices and of the eigenfrequency jω . In practice, this equation is not verified because 
of measurements noise or eventual non-linearities not taken into account in model.  
As a consequence, a regularization step is necessary to achieve this condition. This consists in a 
projection of each measured r

jΨ  onto the subspace spanned by the nonzero columns of jL . An 
optimal vector jγ  is calculated to satisfy equation r

j j j=L γ Ψ  as follows 
r

j j j
+=γ L Ψ       (19) 

where the superscript + denotes the pseudoinverse of a matrix. In fact, this optimal solution does 
not give back exactly the measured eigenvector r

jΨ , but a regularized one which is realizable 

with mistuning parameters values pi. This vector rf
jΨ  defined as the best achievable eigenvector 

for jth mode is given by 
rf r
j j j j

+=Ψ L L Ψ      (20) 
Then equation (12) can be rewritten with this best achievable eigenvectors as 

1

N
i rf rf r rf

i
i

p
=

= −∑ TKΨ MΨ Λ K Ψ     (21) 

 
By rearranging  this equation we have  

ˆ =Lp R      (22) 
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2

1 1 1
2

2 2 2

2

rf rf

rf rf

rf rf
r r r

⎧ ⎫−
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⎪ ⎪
⎪ ⎪−⎩ ⎭

T
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ω

     (25) 

Finally, the vector p  can be estimated according to a root mean square solution, which gives 
minimal norm parameters values 

ˆ+=p L R       (26) 
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4 NUMERICAL VALIDATION ON AN INDUSTRIAL BLISK 
In this section, a numerical validation of the mistuning identification procedure previously 
described will be presented. In Figure 1 an industrial high pressure blisk is presented. This blisk 
features 72 blades. It has been chosen because measurements of individual blade characteristics 
are not possible for such structure. Assuming a structure with perfect cyclic symmetry , a finite 
element model of a single sector, shown in Figure 2,  is created  to conduct the study: there are 
2706 degrees of freedom per sector in the finite element model which corresponds for the entire 
blisk to 584496 degrees of freedom. From this FE model and using the technique presented in 
section 2.1, a reduced order model is constructed, which consists of the first cantilevered blade 
modes  and the  first disk modes given in Table 1. Finally, it has 295 degrees of freedom (72 
modal coordinates for blade modes and 223 for disk modes). This reduced model is validated 
since perfect correlation are found (all frequency errors are lower than 0.15% with respect to the 
cyclic symmetry model taken as reference). 
With this model, four illustrative examples with various mistuning configurations are presented 
in order to validate the procedure identification previously described and to check the range of 
applicability of the technique. 
The numerical validation procedure is divided in three main steps. After the choice of a given 
mistuning pattern for the blisk, mistuned free response is calculated in order to obtain mistuned 
eigenfrequencies and eigenvectors. These eigenvectors are then limited to one degree-of-freedom 
per blade in order to simulate punctual experimental measurement and perturbed to represent 
measurement noise. Secondly, tuned free response of the blisk is calculated in order to access to 
tuned eigenvectors which are used to expand measured eigenvectors on all physical degree-of-
freedom. These vectors can then be reduced in modal coordinates. Finally, updating procedure is 
applied to estimate mistuning parameters initially imposed. 
For this study, we focus on the identification of the first family of modes (here first bending 
mode); however, the identification could be on any other modes. 
The identification approach is checked  with the following cases: 
- case 1: all the 72 blades’ modes of the blisk are available and not perturbed. Mistuning with 

2.34% standard deviation and 0% mean is applied.   
- case 2: experimentally speaking, it is unprobable that all eigenvectors are identified with 

modal extraction particularly because the high modal density of such structures. Thus we 
considered that 62 out of 72 modes are available for the identification. Mistuning with 0% 
mean and 2.34% standard deviation, and perturbed eigendata (random gaussian perturbation 
of +/-20% on all components of eigenvectors and of +/-0.15% on all eigenfrequencies) are 
introduced. This case is closer to the « true mistuning » of a blisk. 

- case 3 : 62 modes are available for the identification. Mistuning with 0% mean and 6.18% 
standard deviation and perturbed eigendata (random gaussian perturbation of +/-20% on all 
components of eigenvectors and of +/-0.15% on all eigenfrequencies) are introduced. For a 
blisk, typical mistuning is less than 2%. However, this case is presented in order to check the 
range of validity of the identification procedure and to validate the method for important 
mistuning. 

- case 4 : 62 modes are available for the identification. The mistuning is modeled as being 
normally distributed with 20% mean and 2.34% standard deviation. This last case is tested to 
check the robustness of the identification procedure to modeling errors for example due to 
wrong evaluations of the coupling between the blades and the disk. 

 
Figures 3, 7,11 and 15 illustrate the correlation between the exact and estimated mistunings for 
the first, second, third and fourth cases, respectively. The differences between exact and 
estimated mistuning and the associated relative errors for the four cases are presented in Figures 
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4, 8, 12 and 16, and  6, 10, 14 and 18, respectively. Figures 5, 9, 13 and 17 illustrate the 
associated frequency error for each mode. 
In all cases, the correlations are excellent. For the first case, the differences between exact and 
estimated mistuning for each blade is negligible : the relative error inferior to 0.25% and the 
maximum frequency error inferior to 0.03Hz. Moreover, the correlations are excellent when only 
62 of 72 modes are available for the identification (second, third and fourth cases) ; the maximal 
difference between the exact and estimated moistening is obtained for the third case and is lower 
than 0.8% for each blade number. The maximum relative error is lower than 15% (obtained for 
the second case).  In all cases, error between eigenfrequencies calculated with exact and 
estimated mistuning are lower than 2Hz for all modes, although frequencies are around 2000Hz. 
This study shows the good performances of the proposed identification technique for different 
mistuning configuration taking into account measurement errors as well as modeling errors 
(without 0% mean); furthermore for relatively high values of mistuning, this results are still 
satisfying. 

5 SENSITIVITY ANALYSIS 
As mentioned earlier, the performances of model updating methods such as the one presented 
here are highly influenced by it robustness to measurements errors. In this section, a sensitivity 
analysis is undertaken in order to evaluate error made on mistuning parameters for a given error 
on measured data. The objective is to evaluate if the mistuning parameters can be properly 
updated with usual measurement errors. To do so, we study the sensibility of the mistuning vector 
p  first to perturbations on measured frequency jω  and then, to perturbation on the components 

of the jth modal eigenvector r
jψ  and eigenvector jXψ . 

5.1 Sensitivity to eigenfrequencies 
If ε  is the eigenfrequency perturbation such that, 

pert
j jω = ω + ε       (27) 

then, assuming a first order Taylor development, the corresponding mistuning vector p  is 
perturbed as follows: 

pert

j

∂
= + ε

∂ω
pp p      (28) 

The mistuning vector is a function of the regularized measured eigenvectors so are its 
perturbation and its sensibility. So, we need to express the perturbed regularized measured 
eigenvectors and their sensitivities. 
Noting from equations (15), (17) and (20) that: 

r f
i

j i j≠

⎛ ⎞∂
=⎜ ⎟⎜ ⎟∂ω⎝ ⎠

ψ
0      (29) 

and performing derivations of each member of the regularized measured eigenvectors (given in  
(20)) versus jω  we find the sensitivities: 

( ) ( ) ( )1 12 2j j r rf r
j j j j j j j j j j j

j j

+

+ − + −
∂∂

= = ω − + ω −
∂ω ∂ω

L Lψ Ψ L L Ι E M L L ME Ψ Ψ   (30) 

For pert
j jω = ω + ε , we have with a first order development for regularized measured 

eigenvectors: 
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rf
jrf pert rf rf rf

j j j j , j
j

∂
= +ε = +ε

∂ω

ψ
ψ ψ ψ ψ     (31) 

Introducing, the perturbed expressions of p and ψ  in Equation (22) we can write 

( ) 1
pertˆ + ε = +L J p R R      (32) 

where 

1 rf N rf
j , j j , j

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
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0 0

J Kψ Kψ

0 0

     (33) 

( )2
1 2rf rf

j j , j j j¨

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪= ω − + ω⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

T

0

R M K ψ Mψ

0

    (34) 

Noting that tL̂ J is symmetric ( )t tˆ ˆ=LJ J L , we finally have : 

( ) 1 1
1 2t t

j

ˆ ˆ ˆ ˆ ˆ−+ − +∂ ⎡ ⎤= + −⎢ ⎥⎣ ⎦∂ω
p L R LL J L JL R     (35) 

it may be observed that this sensitivity of mistuning parameters to perturbations on 
eigenfrequencies is dependent of the model and of the mode considered. 

5.2 Sensitivity to modal eigenvectors 
Mistuning coefficients are identified after reduction of the equations in modal domain. So in a 
first attempt, we will evaluate the influence of perturbations on the components of the 
eigenvectors in modal coordinates. As for eigenfrequencies, we impose a perturbation vector ε   
of components iε  (for 1i , ,n=  where n  is the total number of modal coordinates) to the jth non-
regularized eigenvector  

r pert r
j j= +ψ ψ ε      (36) 

We will consider the following notations 

1

n

i i
i=

=∑ε εC       (37) 

where iC  is a zero vector expect for the ith term egals 1. 
From equation (20), expression of the perturbed filtered eigenvector takes the form 

rf pert r pert rf
j j j j j j j

+ += = +ψ L L ψ ψ L L ε     (38) 
By taking into account the perturbed expression of equation (38), equation (22) can be written as  

pert pert pertˆ =L p R      (39) 
where 
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1

1 1

n n
pert N

i i ij j i j j i
i i

ˆ ˆ ˆ ˆ+ +

= =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= + = +
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∑ ∑

0 0

L L ε L εLKL L C KL L C

0 0

  (40) 

Considering a first order development, equation (26) has the following form 

1

n
pert

i
i i=

∂
≈ +

∂∑ pp p ε
ε

     (41) 

Noting  that t
i

ˆ ˆLL  is symmetric, we finally have  

( ) 1
2t t

i i i
i

ˆ ˆ ˆ ˆ ˆ ˆ ˆ−+ + +∂ ⎡ ⎤= + −⎢ ⎥⎣ ⎦∂
p L R LL L L L L R
ε

   (42) 

This expression is quite similar to the one obtained for perturbations on eigenfrequencies by 
making the correspondence between J  and iL̂ and between 1R and iR . 

5.3 Sensitivity to measured eigenvectors 
In practice, measurement error is committed on measured components of eigenvectors in physical 
coordinates. Thus, we are now going to evaluate sensibility to these coordinates in a second time 
thanks to previous development made for modal eigenvectors. This way to proceed improves 
CPU time and used memory. We will note Xε the perturbation vector applied on the j th 
eigenvector identified on the mn  measured dof. 

j j

pert
X X X= +ψ ψ ε      (43) 

This vector Xε  can be linked to ε   thanks to matrix ET  used for expansion on the n physical 
degrees of freedom of the finite element model, and to matrix T  used for the modal reduction 

X
+= Eε T T ε       (44) 

For the ith component : 

( )
1

m

k

n

i X
k

i ,k+

=

= ∑ Eε T T ε      (45) 

By considering equations (41) and (45), we can write : 

1

m

k

k

n
pert

X
i X=

∂
= +

∂∑ pp p ε
ε

    (46) 

where 

( )
1

     with     1
k

n

m
kX i

i,k k , ,n+

=

∂ ∂
= =

∂ ∂∑ E
p pT T
ε ε

  (47) 

6 NUMERICAL RESULTS OF SENSITIVITY ANALYSIS 
In this section, the second configuration of mistuning defined in section 4 is used to appreciate 
sensibility of  estimated parameters to measurement errors (62 out of 72 modes are available for 
the identification ; mistuning with 0% mean and 2.34% standard deviation, and perturbed 
eigendata: random gaussian perturbation of +/-20% on all components of eigenvectors and of +/-
0.15% on all eigenfrequencies). As explained previously, this sensitivity analysis is investigated 
by calculating expressions (35) and (47). 
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Results of sensibility to eigenfrequencies and modal eigenvectors  are represented on Figures 19 
and 20, respectively. 
It may be observed that sensibility coefficients are dependent on the mode and the parameter 
considered. This can be useful to select some modes which are less affected by measurement 
errors or to give some confidence in results obtained. 
Characteristics values are given in Table 2 (by considering modal expansion): maximal value 
which is to be retained for errors committed on mistuning parameters and mean value to highlight 
the fact that sensibility is highly dependent of the modes and parameters. They correspond to 
amplification factors between errors committed on measured eigendata and errors associated to 
mistuning identified parameters. If errors on identified parameters are of the same level as 
mistuning for errors committed on experimental data, then a good identification becomes 
impossible. 
At the first glance, maximal sensibility is 100 times greater for eigenfrequencies than for 
eigenvectors. Identification method is also far more sensitive to errors on frequencies than on 
eigenvectors. However, errors are not of the same amount for these two kinds of data. If we 
consider +/-0.15% perturbations for eigenfrequencies and +/-20% for eigenvectors, 
multiplication with amplification factors given in table 2 gives respectively for mistuning errors 
+/-0.1514% and +/-0.1679%. So it is approximately of the same level. We can notice the fact that 
if we calculate maximal sensibility for all degree-of-freedom of eigenvectors, it is greater than 
the one for measured degree-of-freedom. It implies that expansion procedure should be as precise 
as possible in order to reduce error amplification.  

7 CONCLUSION 
A method for mistuning identification in bladed disk has been presented, which is based on an 
eigendata assignment method coupled with a regularisation of the measured eigenvectors.  
The assessment of the identification technique is validated numerically from a finite reduced 
order element model of an industrial blisk. The validation of this technique was achieved through 
four numerical validations in order to assess the sensibility of various mistuning. In all cases, it 
was found good correlation between the estimated and exact mistunings. These results show that 
this identification technique may provide a valuable tool for predicting mistuning of experimental 
data for mistuned industrial bladed disks. Besides sensibility analysis has been carried on. It 
allows to give confidence level in the identified parameters for given errors on experimental data. 
It can also be used to know if a quality identification can be obtained. 
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ANNEXE A: CYCLIC SYMMETRY 

 
Assuming perfect cyclic symmetry for turbomachinery rotors and the properties of circulant 
matrices and their eigenvectors, a reduced order model formulation reducing the vibration 
analysis to that of one blade with the corresponding disk sector is commonly applied in order to 
study the whole structure.  
All cyclic symmetry structures have structural matrices which are diagonalisable by the Fourier 
matrix E defined by 
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1 2( 1) ( 1)( 1)
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1       

1
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N N N N
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2 j
Ne
π

ω =  and 2 1j = −    (49) 
N defines the dimension of the circulant matrices. Note that E is orthonormal such that  

* =E E I      (50) 
where * defines the complex conjugate transpose.  
All circulant matrices of dimension N have the same set of eigenvectors that can be the columns 
of the Fourier matrix E . Then, all eigenvector iu  of the whole blisk can be determined from the 
associated eigenvector iu  of one blade with the corresponding disk sector  

= ⊗i i iu e u      (51) 
where ⊗  defines the Kronecker product and ie  is the ith  column of E . 
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Nodal diameter Number of disk modes retained 

0 6 
1 7 
2 10 
3 10 
4 10 
5 10 
6 9 
7 8 
8 7 
9 7 

10 4 
11 2 
12 1 
13 1 

  
36 1 

 
Table 1 : retained disk modes 
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Sensitivity maximal mean 

for eigenfrequencies 1.009644 0.017605 

for measured dof of eigenvectors 0.008395 0.000009 

 
Table 2 : characteristics values of sensitivity 

 

 
Figure 1: industrial blisk 

 
 
 

 
Figure 2: finite element model of a blisk sector 
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Figure 3: exact and estimated mistuning (case 1: all the 72 blades’ modes of the blisk are available, 

2.34% standard deviation and 0% mean) 
 

 
Figure 4: difference between exact and estimated mistuning (case 1: all the 72 blades’ modes of the 

blisk are available, 2.34% standard deviation and 0% mean) 
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Figure 5: frequency error (case 1: all the 72 blades’ modes of the blisk are available, 2.34% standard 

deviation and 0% mean) 
 

 
Figure 6: relative error (case 1: all the 72 blades’ modes of the blisk are available, 2.34% standard 

deviation and 0% mean) 
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Figure 7: exact and estimated mistuning (case 2: 62 measured modes, 0% mean and 2.34% standard 

deviation) 
 
 

 
Figure 8: difference between exact and estimated mistuning (case 2: 62 measured modes, 0% mean and 

2.34% standard deviation) 
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Figure 9: frequency error (case 2: 62 measured modes, 0% mean and 2.34% standard deviation) 

 
 
 

 
Figure 10: relative error (case 2: 62 measured modes, 0% mean and 2.34% standard deviation) 
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Figure 11: exact and estimated mistuning (case 3: 62 measured modes,0% mean and 6.18% standard 

deviation) 
 
 
 

 
Figure 12: difference between exact and estimated mistuning (case 3: 62 measured modes,0% mean 

and 6.18% standard deviation) 
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Figure 13: frequency error (case 3: 62 measured modes,0% mean and 6.18% standard deviation) 

 
 
 

 
Figure 14: relative error (case 3: 62 measured modes,0% mean and 6.18% standard deviation) 
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Figure 15: exact and estimated mistuning (case 4: 62 measured modes, 20% mean and 2.34% standard 

deviation) 
 
 
 

 
Figure 16: difference between exact and estimated mistuning (case 4: 62 measured modes, 20% mean 

and 2.34% standard deviation) 
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Figure 17: frequency error (case 4: 62 measured modes, 20% mean and 2.34% standard deviation) 

 
 
 

 
Figure 18: relative error  (case 4: 62 measured modes, 20% mean and 2.34% standard deviation) 
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Figure 19: sensitivity to eigenfrequencies  
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Figure 20: sensitivity to eigenvectors 
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