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ABSTRACT 

The concept of friction-induced brake vibrations, commonly known as judder, is investigated. 
Judder vibration is based on the class of geometrically induced or kinematic constraint 
instability. After presenting the modal coupling mechanism and the associated dynamic 
model, a stability analysis as well as a sensitivity analysis have been conducted in order to 
identify physical parameters for a brake design avoiding friction-induced judder instability.  
Next, in order to reduce the size of the instability regions in relation to possible system 
parameter combinations, robust stability via µ-synthesis is applied. By comparing the unstable 
regions between the initial and controlled brake system, some general indications emerge and 
it appears that robust stability via µ-synthesis has some effect on the instability of the brake 
system. 
 

NOMENCLATURE 

C  damping matrix 
G  controller 
K  stiffness matrix 
M  mass matrix 
N  normal load 
P  initial system 
T  tangential load 
x  scalar 
x  vector 
x   vector of velocity 
x  vector of acceleration 

set∆  structured uncertainties set 
λ  eigenvalue of the nominal system 
λ  eigenvalue of the controlled system 

fµ  brake friction coefficient 
µ  structured singular value 
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1 INTRODUCTION 

Friction-induced vibration and instability are complicated phenomena that have been studied 
in detail by many researchers [1-23]. However, they are still a major concern in a wide range 
of mechanical systems due to the difficulty in resolving the problem. This is especially the 
case for brake systems, where friction-induced vibration due to coupling modes can cause 
severe damage or/and noise. So the prevention and prediction of unstable vibrations are 
actually very complex and important problems for the vehicle brake industry. In order to 
avoid these problems, the effects of some specific system parameters (typically mass, 
stiffness, damping,…) need to be studied in order to detect the stable and unstable zones of 
the mechanical system subject to friction-induced instability. Though many studies have been 
conducted and some of them have been successfully applied to particular brake systems and 
running conditions, it can be very difficult to find suitable values of the system parameters in 
order to obtain stable brake systems for all operating conditions. In these cases, the engineer 
therefore needs to find suitable devices to control instability in the brake system. 
In recent decades, friction-induced vibration has received considerable attention from a 
number of researchers: Ibrahim [1-2], Bowden and Tabor [3], Rabinowitz [4], Armstrong–
Hélouvry [5], and Oden and Martins [6]. Their investigations were conducted in order to find 
different mechanisms of friction-induced system instability. This type of analysis was then 
introduced in the context of brake noise to predict the dynamic behaviour of brake systems 
and to prevent instability (Ouyang et al. [12], North [7-8], Kinkaid et al. [10], etc). 
In order to find the most suitable mechanism to describe friction-induced vibration in brake 
systems, these different mechanisms have to be examined. They fall into four classes: stick-
slip, variable dynamic friction coefficient, sprag-slip [22] and geometric coupling of degrees 
of freedom [9, 15-21]. The sprag-slip action was described by Spurr [22] and does not depend 
on a friction coefficient varying with the relative rotation speed of the brake disc. Next, a 
number of investigations have been developed by considering kinematic constraint or 
geometric instability. This mechanism involves the coupling of the different degrees of 
freedom. It can be seen as an extension of the idea of the sprag-slip model [22]. Earles et al. 
[15, 16, 18, 20] and North [7-8] conducted extensive studies of kinematical constrained 
instability models. They demonstrated that instability may occur even if the friction 
coefficient is constant. 
In this study, a modal coupling mechanism involving two system modes coupled together due 
to the friction interface will be considered. This instability may be defined as a geometrical 
coupling where two system modes move closer in frequency as the friction coefficient 
increases. 
In this study, the application of robust control via µ-synthesis for a brake system is tested in 
order to avoid instability or in order to reduce the instability regions. In the first section, some 
basic concepts of µ-synthesis will be introduced. In the second section, the modal coupling 
mechanism used in this study will be briefly presented and the application of µ-synthesis for 
judder instability will be investigated. Next, a stability analysis and some interesting studies 
of possible system parameter combinations for the initial and controlled brake systems will be 
undertaken in order to examine the varying effects of robust control analysis on the size of the 
instability regions. This sensitivity analysis will be conducted in order to find the physical 
parameters for a brake design which avoid friction-induced instability in the case of controlled 
and uncontrolled brake systems. Finally, some natural extensions and possible applications of 
this methodology will be briefly described in the conclusions. 
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2 µ-SYNTHESIS 

2.1 INTRODUCTION 

The robustness of a system P  with uncertainties represented by a set set∆  of block-diagonal 
matrices is studied with the non singularity of the matrix − ∆I P  (where I  is the identity 
matrix), for set∆∈∆ . In order to treat this problem, the structured singular value µ  is 
introduced; this parameter µ  will be defined below.  
This theory was introduced by Doyle [24] in 1982 and has become a standard tool in the 
robustness analysis of linear systems. It directly considers the problem of robust stability for a 
known plant subject to a block-diagonal structured uncertainty connected in feedback. The 
utility of µ  lies in the fact that essentially any block diagram interconnection of systems and 
uncertainties may easily be rearranged into this standard form, i.e. where the uncertainty 
structure is block-diagonal. 

2.2 STRUCTURED SINGULAR VALUE 

This section defines the structured singular value (.)µ . We consider matrices n n×∈P R   and 
introduce a structure set∆  to define ( )µ P . This structure set∆  is a prescribed set of block-
diagonal matrices and may be defined differently for each problem depending on the 
uncertainty of the problem. 
By definition,  ( )µ P  is defined  for n n×∈P C  by: 

( ) ( ){ }set

1( )
min : ,  det 0

µ
σ

=
∆ ∆∈ − ∆ =

P
I P∆

   (1) 

unless no set∆∈∆  makes − ∆I P  singular, in which case ( ) 0µ =P . ( )σ ∆  corresponds to the 
maximum singular value of the matrix ∆ . 
µ  is then a function of two variables: the complex matrix P  and the structure set∆ . 
 
Considering the loop shown in Figure 1, ( )µ P  can be interpreted as a measure of the smallest 
uncertainty (represented by the matrix ∆ ) that causes instability of the constant matrix 

feedback loop. The norm of this destabilizing ∆  is exactly 1
( )µ P

. It means that the weaker 

( )µ P  is, the more robust the system. 
Details concerning the calculation of the structured singular value are given in Packard and 
Doyle [25]. 

2.3 µ-SYNTHESIS 

The definition of µ  allows an extension of the stability analysis of systems by considering 
the system illustrated in Figure 2. This system is composed of three blocks ∆ , P  and G  that 
define the perturbation matrix, the initial system which should be controlled, and the 
controller, respectively. 
The input / output couples are ( )0 0,u Y , ( )1 1,u Y  and ( )2 2,u Y  which define respectively the 
perturbation variables associated with the perturbation matrix ∆ ,  the measurable output (with 
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the input control 1u ) and the performance variables where 2u  includes the commands and the 
excitation and 2Y  represents the errors and the results. 
Then, µ-synthesis consists of determining the controller G  allowing the stability of the 
system in the presence of the uncertainty ∆ . The resolution is conducted by applying 
successive iterations. As the controller is often denoted by K  (notation already used here for 
the stiffness matrix), this resolution is called the D-K iterations. These iterations are repeated 
unless 1µ < . If 1µ < , the robust stability of the system is assured for the given uncertainties. 
The theory of µ-synthesis is developed in Packard et al. [26], Venini [27], Balas et al. [28] 
and Markerink et al. [29]. Some applications can be found in Lanzon [30], Wu and Lin [31]. 

3 BRAKE SYSTEMS 

In order to demonstrate the suitability of µ-synthesis to brake systems and in order to link the 
effect of specific parameter variation with stability of the design features, a parameter model 
including friction forces at the rubbing surface and mechanisms for friction-induced system 
instability is established and the equations of motion are determined. 
The problem considered in this study deals with a modal coupling mechanism [11-12] that 
results from the coupling of two system modes due to the friction interface. The first mode 
corresponds to the suspension mode of the front axle assembly and the second mode 
corresponds to the normal mode of the brake piston elements. This phenomenological model 
was established through experimental investigations [32] and the friction-induced vibration 
was observed in the 50 100 Hz−  range without variation of the brake friction coefficient. The 
fact that instability may occur even if the coefficient of friction is constant is a very common 
phenomenon that has been observed by many researchers [9,11, 15-21]. 
In the following sections, two analytical models (the initial and controlled systems) will first 
be presented.  Second, a stability analysis for each system will be undertaken and the initial 
and controlled systems will be compared in order to demonstrate the suitability of robust 
control for brake systems. 

3.1 INITIAL SYSTEM 

The initial system studied here is modelled as a three-degrees-of-freedom system, as 
illustrated in Figure 3(A): translational and normal displacement in the y-direction of the mass 

2m  defined by 2( )Y t and 2( )X t , respectively, and the translational displacement in the x-
direction of the mass 1m defined by 1( )X t . As previously explained, each mode is linked to a 
single vibration mode of the brake system: ( )11 m,k  and ( )22 m,k  define the dynamic of the 
brake piston elements and the dynamic of the suspension mode of the front axle assembly, 
respectively. The modal coupling mechanism involves the two modes coupled together due to 
the friction interface. This mechanism may induce a classic flutter instability where two 
solutions for the dynamic behaviour of the mechanical system exist. The first solution is an 
unstable equilibrium whereas the second is a periodic solution. Then, any perturbation of the 
equilibrium point implies self-excited vibrations. 
In order to simulate the modal coupling mechanism due to the friction interface, this friction 
interface slopes with an angle θ . This assumption may be seen as a geometric coupling with 
the braking system. This slope couples the normal and tangential degree-of-freedom induced 
by the brake friction coefficient only.  
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By considering this system composed of two masses 1m  and 2m  interconnected by stiffnesses 

1k  and 2k  (Figure 3), the dynamic equilibrium around its static equilibrium position is 
expressed by the following system of equations 

( ) ( )

( ) ( )

1 1 1 1 2 1 1 2

2 2 2 2 2 2

2 2 1 2 1 1 2 1

0

sin cos

cos sin

m X c X X k X X

m Y c Y k Y N T

m X c X X k X X N T

⎧ + − + − =
⎪⎪ + + = − +⎨
⎪ + − + − = +⎪⎩

θ θ

θ θ

  (2) 

By applying the hypothesis of maintained contact between the mass 2m   and the moving belt, 
the geometric constraint imposes 

2 2 tanX Y= θ       (3) 

By eliminating x  in equations (3) and considering Coulomb’s friction law fT N= µ , the 2-
degrees-of-freedom system has the form  

+ + =Mx Cx Kx 0      (4) 

where { }T
1 2X Y=x . x , x  and x  are the acceleration, velocity, and displacement response 2-

dimensional vectors of the degrees-of-freedom, respectively. The mass matrix M , the 
damping matrix C  and the stiffness matrix K  of the system are given by 

( )
1

2
2

0

0 tan 1

m

m θ

⎡ ⎤
= ⎢ ⎥

+⎢ ⎥⎣ ⎦
M      (5) 

( ) ( ) ( )
1 1

2
1 1 2

tan

tan tan tan 1 tanf f f

c c

c c c

−⎡ ⎤
= ⎢ ⎥

− + − + +⎢ ⎥⎣ ⎦
C

θ

θ µ θ µ θ µ θ
  (6) 

( ) ( ) ( )
1 1

2
1 2 1

tan

tan 1 tan tan tanf f f

k k

k k k

−⎡ ⎤
= ⎢ ⎥

− + + + −⎢ ⎥⎣ ⎦
K

θ

θ µ µ θ θ µ θ
  (7) 

Finally, the dynamic system may be rewritten in state variables: 
=z Az       (8) 

where 
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

x
z

x
      (9) 

and 

− −

⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

1 1

0 I
A

M K M C
     (10) 

 

3.2 CONTROLLED SYSTEM BY APPLYING µ-SYNTHESIS 

µ-synthesis is applied to the brake system by assuming that the friction coefficient fµ  is 
uncertain. This uncertainty corresponds to possible variations of the friction with time. This 
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controlled system is illustrated in Figure 3(B): the controller U  is placed in parallel with the 
suspension. 

3.2.1 Definition of the controlled system 
By considering section 2 and equations (15-17) of the initial brake system, the nominal 
system is represented by: 

1 1

1 1 11 1

= +⎧
⎨ = +⎩

z Az B u
y C z D u

     (11) 

 where  
 

( )

1

2
2

0
0
0

1 tan
tan 1

f

m

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥+⎢ ⎥
⎢ ⎥+⎣ ⎦

B
µ θ

θ

    (12) 

 
[ ]1 0 1 0 0=C      (13) 

11 0=D       (14) 
 
In the presence of uncertainties, the nominal system is modified to introduce the variables 
corresponding to the uncertain parameters: 

0 0 1 1

0 0 00 0 01 1

1 1 10 0 11 1

= + +⎧
⎪ = + +⎨
⎪ = + +⎩

z Az B u B u
y C z D u D u
y C z D u D u

    (15) 

 
In the case under consideration, the uncertainty is introduced on the friction coefficient fµ . 
As there is only one uncertainty, the set set∆  is reduced to scalar variables, which elements are 
noted δ . We have then ( )1f fµ µ δ= + , whereδ  is the degree of uncertainty. The matrix A  

is then transformed to .δ= +A A A , where A  is the previous matrix and A  is defined by: 
 

( )
( )

( ) ( )
( )

( )
1 1 2 1 1 2

2 2 2 2
2 2 2 2

0 0 0 0
0 0 0 0
0 0 0 0

tan tan
tan 1 tan 1 tan 1 tan 1

f f f fk k k c c c
m m m m

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥

− −⎢ ⎥− −⎢ ⎥+ + + +⎢ ⎥⎣ ⎦

A
µ µ θ µ µ θ

θ θ θ θ

 (16) 

 
By definition, we have 0 0.δ=u y ,which results in: ( ) 11

0 00 0. . .δ δ
−−= −A B D C . This relation 

allows us to determine the matrices 0B , 0C  and ijD : 
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( )

0

2
2

0
0
0
1

tan 1m

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥+⎣ ⎦

B

θ

     (17) 

( ) ( )0 1 1 2 1 1 2tan tanf f f fk k k c c c⎡ ⎤= − − − −⎣ ⎦C µ µ θ µ µ θ   (18) 

00 0=D       (19) 
 01 0=D       (20) 
 10 0=D       (21) 

 
The relations between z , 0y , 1y , 0u  and 1u  determined in this section are the basis of the µ-
synthesis resolution.  

3.2.2 Resolution  
As explained previously, equations (16-21) correspond to the complete description of the 
controlled system and contain the nominal system and the perturbations linked to the 
uncertainties from a general standpoint. 
The D-K iterations, allowing us to determine the robust controller by µ-synthesis, are 
conducted using Matlab software [28]. The controller is determined where the structured 
singular value µ  of the system is less than unity and we obtain the Bode diagram of the 
controller allowing robust stability of the system. 
The structured singular value µ  obtained for the brake system is plotted in Figure 4. We 
observe that µ  is less than unity for all frequencies ω , which means that robust stability is 
assured. This result is obtained after two D-K iterations. 
The controller determined by the algorithm and corresponding to this result is illustrated in 
Figure 5. The controller is approximated by a function ( )G ω  which is sought in the form: 

( ) 2
G GG ω α β ω= − +      (22) 

where Gα  and Gβ  are constants, depending on the values of the parameters of the system. 
For the configuration -1

1 387 rad sω = , -1
2 316.2 rad sω = , 1 0.008ζ = , 2 0.0065ζ =  (i.e. 

1 1 kgm = , 2 1 kgm = , -1 -1
1 5 N m  sc = , -1 -1

2 5 N m  sc = , 5 -1
1 1.5 10  N mk = × , 

5 -1
2 1 10  N mk = × ), 0.2 radθ = , 0.3fµ = , the numerical results give 51 10Gα = ×  and 

0.9395Gβ = . This approximation of ( )G ω  allows a good representation of the controller, as 
we can see in Figure 6, and it will be useful in the stability analysis of the controlled system.  

3.3 STABILITY ANALYSIS OF THE INITIAL AND CONTROLLED SYSTEMS 

In this section, the stability of the initial and controlled brake systems will be compared. To 
examine the stability of the initial system, the eigenvalues λ  of the matrix A  (defined in 
equation (17)) need to be determined. As long as the real part of all the eigenvalues λ  
remains negative, the system is stable. When at least one of the eigenvalues has a positive real 
part, the system is unstable. Moreover, the imaginary part of the eigenvalue having a positive 
real part represents the frequency of the unstable mode. 
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For the controlled system, the form ( ) 2
G GG ω α β ω= +  means that Gα  is equivalent to a 

stiffness and Gβ  is equivalent to a mass. It enables us to take this into account directly in the 
mass and stiffness matrices. By noting K  and M  the new mass and stiffness matrices 

0 0
0 1 tan .f G

⎡ ⎤
= + ⎢ ⎥+⎣ ⎦

K K
µ θ α

    (23) 

  
0 0
0 1 tan .f G

⎡ ⎤
= + ⎢ ⎥+⎣ ⎦

M M
µ θ β

    (24) 

 
a new matrix A  may be defined for the controlled system by 

1 1− −

⎡ ⎤
= − ⎢ ⎥− −⎣ ⎦

0 I
A

M K M C
     (25) 

 
The advantage of these notations is that the stability analysis is similar for the initial and the 
controlled systems: the sign of the real part of the eigenvalues λ  of A  gives the result 
concerning the stability of the system. 
 
First, the evolutions of frequencies in relation to the brake friction coefficient for the initial 
and controlled brake systems are given in Figure 7. The evolutions of the associated real parts 
and the representation in the complex plan are given in Figures 8-9. As illustrated in Figure 8, 
Hopf bifurcation points occur at  0 0.35fµ =  and 0 0.46fµ =  for the initial and controlled 
systems respectively. A Hopf bifurcation point is defined by the following conditions 

( )( )
( )( )

( )( )( )

0

0

0

Re 0

Re 0

Re 0

f f

f f

f f

center

non center

d
d

=

− =

=

⎧
⎪

=⎪
⎪⎪ ≠⎨
⎪
⎪

≠⎪
⎪⎩

µ µ

µ µ

µ µ

λ µ

λ µ

λ µ
µ

    (26) 

where centerλ  defines a pair of purely imaginary eigenvalues while all of the other eigenvalues 

non centerλ −  have nonzero real parts at 0f f=µ µ . The last condition of equation (34), called a 
transversal condition, implies a transversal or nonzero speed crossing of the imaginary axis. 
If 0f fµ µ<  the initial system is stable; it has two stable modes at different frequencies, as 
illustrated in Figure 7. As the brake friction coefficient increases, these two modes move 
closer until they reach the bifurcation zone. We obtain the coalescence for 0f f=µ µ  of two 
imaginary parts of the eigenvalues. Finally, the initial system becomes unstable for 0f f>µ µ . 
In the case of the controlled brake system, the stable and unstable regions are obtained for 

0f f<µ µ  and 0f f>µ µ , respectively. 
In Figure 8, it may be observed that the instability region versus the friction coefficient fµ  is 
smaller for the controlled system than for the initial system ( 0 0f fµ µ> ). This illustrates the 
suitability of robust control via µ-synthesis. 
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An interesting observation is that the mode that becomes unstable and reaches the bifurcation 
zone is different for the initial and controlled systems (Figure 11). 
Then, in order to demonstrate the suitability of µ-synthesis and in order to compare the 
stability analysis of the initial and controlled brake systems, different sets of two 
combinations of physical parameters 1k , 2k , 1c , 2c  and θ  are tested. Figures 10-14 show the 
zones of instability for the initial and controlled systems: the dashed line corresponds to the 
initial system and the solid line corresponds to the controlled system. Figures 15-16 show the 
evolutions of the frequencies and the associated real parts in the complex plane. 
For all tested combinations of the different parameters with the brake friction coefficient 
(Figures 10-14), the controller provided by µ-synthesis allows an increased stable zone for the 
brake system. However, for some values of these parameters which correspond more or less to 
the nominal setting, this improvement is very weak. Another interesting result of µ-synthesis 
is that the intervals of instability frequencies are reduced for the controlled brake system in 
comparison with the initial system, as illustrated in Figures 15-16 and Table 1. 
Finally, dynamical responses of the system are presented in Figures 17-18 in order to illustrate 
the advantages of the controlled brake system versus the initial brake system. In this case, we 
consider a combination of parameters corresponding to an unstable zone for the initial system 
and a stable zone for the controlled system ( 1 1 kgm = , 2 1 kgm = , -1 -1

1 5 N m  sc = , 
-1 -1

2 5 N m  sc = , 5 -1
1 1.5 10  N mk = × , 5 -1

2 1 10  N mk = × , 0.2 radθ = , 0.4fµ = ). In such a 
case, the temporal response of the initial system grows exponentially while that of the 
controlled system is softened (Fig. 17-18). Figure 19 illustrates the oscillations of the initial 
and controlled systems. It illustrates the difference between the behaviour of the two systems. 
The instability is manifested by an exponentially increasing curve. On the other hand, the 
response of the controlled system is more complex but is limited in amplitude. 

4 CONCLUSION 

This study presents an application of µ-synthesis in order to eliminate friction-induced 
vibration for a brake system. A model for judder instability analysis and an associated stability 
analysis for the initial and controlled systems are developed. For further understanding of the 
effects caused by variations in some parameters and the suitability of µ-synthesis, a stability 
analysis using two parameter evolutions has been conducted.  
Robust stability via µ-synthesis for brake systems appears interesting for reducing the size of 
the instability regions in relation to the possible system parameter combinations. This 
procedure can be applied to a brake design avoiding friction-induced judder instability.  
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Figure 1 : −∆P  feedback connection 
 
 

 
 

Figure 2 : General structure of the problem 
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Figure 3 : Braking model (A) initial system (B) controlled system 
 
 
 

 
 

Figure 4 : Evolution of the structured singular value µ  
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Figure 5 : Bode diagram of the controller 
 
 

 
 

Figure 6 : Approximation of the controller 
(   Result of the µ -synthesis,    Approximation) 
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Figure 7 : Evolution of the frequency of two coupling modes 
(   Initial system,    Controlled system) 

 
 

 
 

Figure 8 : Evolution of the real part of two coupling modes 
(   Initial system,    Controlled system) 

 
 
 



 15

 
 

Figure 9 : Evolution of the frequency versus real part of two coupling modes 
(   Initial system,    Controlled system) 

 
 
 

 
 

Figure 10 : Stability as a function of brake friction coefficient fµ  and stiffness 1k  
(   Initial system,    Controlled system) 
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Figure 11 : Stability as a function of brake friction coefficient fµ  and stiffness 2k  
(   Initial system,    Controlled system) 

 
 

 
 

Figure 12 : Stability as a function of brake friction coefficient fµ  and mass 1m  
(   Initial system,    Controlled system) 
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Figure 13 : Stability as a function of brake friction coefficient fµ  and mass 2m  
(   Initial system,    Controlled system) 

 
 

 
 

Figure 14 : Stability as a function of brake friction coefficient fµ  and angle θ  
(   Initial system,    Controlled system) 
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Figure 15 : Frequency and real part of eigenvalue of the initial system for various friction 
coefficient fµ  and stiffness 1k  

 
 

 
 

Figure 16 : Frequency and real part of eigenvalue of the controlled system for various friction 
coefficient fµ  and stiffness 1k  
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Figure 17 : Temporal response of the initial system for 0.4fµ =  
 
 

 
 

Figure 18 : Temporal response of the controlled system for 0.4fµ =  
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Figure 19 : Divergent oscillations for 0.4fµ =  ( )0 0f f fµ µ µ< <  
 
 
 
 
 
 
 
 

Parameter Initial System Controlled System 

1k  47-64 Hz 49-62 Hz 

2k  42-65 Hz 43-65 Hz 

1m  44-63 Hz 47-58 Hz 

2m  44-64 Hz 44-64 Hz 
θ  51 Hz 49-52 Hz 

 
Table 1: Comparison of the instability regions for the initial and controlled brake system 
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