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Partial Cavity Instabilities and Re-Entrant Jet
J.P. Franc
Laboratoire des Ecoulements Géophysiques et Industriels, BP 53, 38@d4bgiECedex 9, France

Abstract

The purpose of this talk is to give an overview of different instabilities whictaffent partial cavitation. We
shall focus on the case of a unique partial cavity attacheudh tsolated hydrofoil or to the throat of a Venturi.
Another paper presented by Tsujimoto (2001) in this conference is dedicated itaticcavinstabilities in
turbomachinery, where several cavities are simultaneously present and can interact. In @hisvpapave
deliberately chosen to emphasize some particular aspects of partial cavity instabilities, especiaintriaatrget
instability and the associated cloud cavitation. Some discussions reflect our personal peintaf @ subject still
in progress.

1. Introduction

We are mainly concerned here with partial cavities, i.e. cavities which detach froncittiy wf the leading
edge of a hydrofoil and close on the wall. Partial cavitation is opposed to supercavitation, whihorédeg
cavities whose length is greater than the chord length of the hydrofoil and thereforelbécn the fluid bulk.

Partial cavities are unsteady in nature. Unsteadiness has long been an obstacle to the expedtettedtanal
analysis of partial cavitation. From a modelling viewpoint for instance, it has beessagcéo develop specific
models to force partial cavities to close within the frameworstedidycomputations. Yamaguchi and Kato (1983),
in their non-linear steady theory of cavity flow, solve the Rayleigh-Plesset equation for a ghegiead bubble to
estimate a "mean" cavity shape in the closure region. Lemonnier and Rowe (1@8Rjcimta special steady model
of the cavity-wake to get round the unsteady feature of the cavity closure. Such tricks are no mony hecasse
of the progress in computers which makes possible unsteady computations. Unsteadiness is a necessary ingredien
for a partial cavity to close naturally.

The inherent unsteady nature of partial cavities leads to more or less important fluctfatieislength. Such
fluctuations are generally referred to as partial cavitaitistabilities. The term instability is used to qualify such
situations in which no steady cavity actually exists.

The observation of partial cavities under various conditions leads to the conclusion that the characteristic size of
the region in which unsteady effects are significant is variable. Figure 1b presents the case of a highly unsteady
partial cavity for which unsteadiness affects almost the whole cavity, up to its detaclheersituation is very
different in the case of Figure 1a for which unsteadiness is confined in a relatively small region, so that the cavity
can be considered as stable, at least from a large sealpoint. Therefore, it seems important to associate, to the
cavity closure, a length scale which characterizes the eatamtsteadiness. It can be considered as the difference
between the minimum and maximum cavity lengths. It gives the length scale of the largest vapoestwiich
are shed (cf. Figure 7).

We propose to distinguish two main classes of instabilifigsinsic instabilities andsysteminstabilities,
according to the origin of the unsteadiness. In the casesgftem instability, the unsteady behaviour comes from
the interaction between the cavity and the rest of the system. By system, we mean the enviroheealvift In
the case of a cavitation tunnel for example, the inlet or outlet lines as well as the tanks are parts of the hydraulic
system which may influence the development of the instabilities. In the case ofraaahieery, if we consider the
cavity which develops on a given blade, it may interact with the other cavities attached tetHdaates. The case
of alternate blade cavitation or rotating cavitation observed in inducers (Tsujimoto 2@01ypisal example of
system instability involving multiple cavititsThe origin of this kind of instability lies in the interaction between
the various cavities. Roughly speaking, if, for some reason, the length of a givignicabianged, the streamlines

! Alternate blade cavitation is generally considered as a tianitastability although each cavity has a constant length.tite
difference of cavity length from one blade to another which justifies the term instability.



are changed and the angle of attack of the neighbourade®lis also changed, leading to a modification in the
length of the other cavities. It is not easy to guess the final configuration, which is néteady, from so simple
arguments. But computational techniques are now avaitaljpredict such instabilities (Tsujimoto 2001). It follows
that, for a system instability, the dynamic behaviour of the cavity depends drastjrail its environment.

On the contrary, an intrinsic instability originates in tawity itself. Its features, as its frequency content, are
independent of the circuit. The fact that the dynamic behaviour of a cavity is independent of the characteristics of
the environment is the best proof of the intrinsic nature of the instability. For instaiscegit known that the re-
entrant jet instability gives birth to oscillations of the cavity length. Many expetémeonducted in various testing
facilities around the world, with very different hydraulic impedances, lead to oscilfatigmencies which proved to
be almost the same in terms of Strouhal numbers. Hence, the re-entrant jditynatabassociated cloud cavitation
is clearly of intrinsic type.
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Figure 1: Visualizations of partial cavities omao-dimensional hydrofoih a cavitation tunnel.

2. System instabilities

Cavitation surge is a typical example of system instability. To illustrate it, let us considetairgahydrofoil
in a duct of area A (Figure 2). A simplified one-dimensianadel is used to analyse this configuration (Watanabe
et al, 1998). For simplicity, the downstream length is supposed infinite, so thahdke flowrate m in the
downstream line remains constant because of an infinite inertia. In steady conditomravity volumed is
constant and the mass flowrate m as well as the pregsarany section are constafihead losses are neglected.
Under unsteady conditions, we denote m'(t) the fluctuation of mass flowrdke inpstream line and p'(t) the
pressure fluctuation at the location of the hydrofoil. The inlet pressure is supposed cdhstambdmentum balance
in the upstream duct can be written:

Ldm _
TAdt - )

The mass balance simply expresses that the variations in cavity volume are balanced by ttierfuictuthe

incoming flowrate:

—_pd0
The variations in cavity volume are linearly relatedthie variations in pressure by introducing the classical
cavitation compliance K:
d !
P =K de ®)
It is important to notice that the cavitation compliance results from purely quasi-static catsideand do not
involve any dynamic feature of the cavity.
By combining the three previous equations, wetlgefollowing equation for the pressure fluctuation:
dzp'
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The type of solution depends upon the sign of the cavitation compliance K. If K is positive, alfitidesa
exhibit periodic oscillations at the frequency:
- A
©= 1K )

which is the natural frequency of the system made of the cavity and the inlet line.

p=Cte cavity volumed
— , — > A
p+p
> L >« infinite downstream length ————— )

Figure 2: The case of an isolated cavitating foil in a duct. For simplicity, the downstregth is supposed infinite

This regime is typical of surge cavitation. The physical reason for oscillations is easy to understasd. If it i
supposed that the pressure at the location of the ljdagcreases, the cavity volume increases because of a
positive value of the cavitation compliance. By continuity, the incoming flowrate decreases and thefitliegtia o
upstream column makes the pressure at the location of dneft increase. Hence, théwation is stable and auto-
oscillations develop.

From Equation 5, it appears that thhequency of the pulsations results from a coupling between the cavity,
characterized by its compliance, and the inlet line, characterized by its length L and area A. This behaviour is typical
of a system instability.

In the case of a negative cavitation compliance, the solution is no more periodic but increases exponentially. The
behaviour is unstable. A negative cavitation complianceesponds to a decrease initcavolume with a decrease
in pressure, which is not the usual trend. Figure 3 presents a typical variation ofithé&ength with the cavitation
parameter. The qualitative shape of this curve is the same, whatever may be the hydrofoileFexperimental
results, it is clear that the cavitation compliance is always positive, in the partial cavitation domain, as well as in the
supercavitation one. Also indicated irgkie 3 are the predicted curves fromssiical linearized theory applied to a
flat plate (Brennen 1995). It appears that the cavitation compliance is negative for ratios oftyhiergth to the
chord length between % and 1. This argument is sometisegsto explain the instability that some experimenters
have observed between partial and supercavitation, when the cavity length exhibasascdround. /c =1 (see
e.g. Wade & Acosta 1966). This region of negative cavitation compliance results frotheaatical artefact due
to the change of model between partial and supercavitation. In our opinion, it has no physicalasritie
experimental results tend to prove and therefore, it is probably not the reason for the instalvéiey lpartial and
supercavitation, which is more likely of surge type.

Another interesting feature of the curi€s wjth respect to cavitation instabilities is the large variation of
slope, i.e. of cavitation compliance. For small enough cavitation parameters, the slope and the cawifalitnmceo
are large, contrary to the case of large cavitation parameters. Hence, small fluctuations in cavitatietepaft
generate large fluctuations in cavity length as also shown by Equation 3. In oft; W@ng cavities exhibit an
extreme sensitivity to external fluctuations that small cavities do not. This phenomenon dirodigces the
amplitude of the cavity oscillations.

This difference of behaviour between short and long cavities can be related to differences & Eegsige
gradient in the closure region. As schematically shown on Figure 4, it is expected that the longer the cavity on a
hydrofoil, the smaller the adverse pressure gradient at closure. The magnitude of the adverse pressure gradient can
be considered as a basic physical parameter which controls thgaflaos in cavity length. It behaves like an
obstacle to the development of the cavity. If the pressure gradient at closure is high, yhexpaviences a strong
resistance to grow. On the contrary, if the pressure distribution is relatively flat, the cavity can grow ityore eas

Above, we examined the basic case of cavitation surge for an isolated hydrofoil in a duct. The principle of the
analysis remains applicable to more complicated cases. As an example, v tfentivork of Duttweiler (2001)
who explored a surge instability on a cavitating propeller tested in a water tunnel. The grdeedieveloped
illustrates the main steps to follow, in order to analyse a cavitation surge instability.vith@aradynamics and the



facility dynamics are considered as part of a coupled system. Each of them has todiercteatan order to predict
the whole system dynamics. The main steps of the prediction are the following.

1. The quasi-steady response of the cavitation volume tgehan inlet conditions is characterized in terms of a
cavitation compliance K and a mass flow gain factor M. The cavitation compliance describes the variation in
cavity volume with the pressure (cf. Equation 3), whereas the mass flow gain factor describestiba ira
cavity volume with the angle of attack. The mass flow gain factor is needed for the modelling of cavitation
instabilities in turbomachinery, because a change in inlet flow rate results in a change in angle of attack, as it
can be seen from the consideration of the velocity triangle.

2. The second step consists in modelling the dynamics of the facility by dividirtg &lementary components
(pipes, tanks...) of specified resistance, capacitance and inertance.

3. Finally, the facility dynamics and the cavitation dynamics have to be combined irntwidentify potentially
unstable behaviours.

By applying the previous procedure to the case obpgiler in a cavitation tunnel, Duttweiler (2001) succeeded
in predicting the characteristic frequency of the observed instability. This procedure fdlowed for the analysis
of any patrtial cavity instability of surge type.
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Figure 4: Cavity length and pressure gradient (qualitative sketch).



3. Re-entrant jet and cloud cavitation instability

Re-entrant jet

The re-entrant jet instability is the most typical example of intrinsic instabilityadtbeen described by many
researchers. Thirty years ago, Knapp, Daily and Hammitt have given a rather precigtiaiesdrthe flow at the
rear end of a cavity. The cavity closure is the region where the external flow re-attaches 1b Feevilaw which
originally moves along the cavity has locally the structure of a jet immnglifiquely upon the wall. The falling
stream divides into two parts flowing parallel to the wall. One is the rargrjet which moves upstream towards
the cavity detachment. The other one makes the flow re-attach to the wall.

In the framework of steady potential flow analysis, it is possible to have a picture of the rear pattadized
cavity (Figure 5) and in particular to obtain an estimate of the thickness of the rd-tt(Rigure 6). In the simple
case of a cavity behind a step in a semi-infinite medium, the classical non-linear theory,(1B@®3|gives the
thickness of the re-entrant jetas a function of the cavitation parameter

_1lq__ 1
x_zll m] (6)

In this equation, the step height is chosen as unity. The smaller the cavitation parametegethindocavity,
the smaller the impingement angle and the smaller the re-entrant jet thickness.
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Figure 5: Non-linear steady potential flow computation of the shape of the cavity behind a step Hindirsiéeni
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medium. The shape of the cavity is given by the following equat(ohs%{%r +In(1-r) | and
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detachment and 1 at the infinity end of the re-entrant jet. The cavity length is given by
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Figure 6: Variations of the re-entrant jet thickness and of the cavity length for a 2D cavity behind aassein
infinite medium. Non linear steady potential flow computation.



The previous case of a step in a semi-infinite mediumesponds to a negligible adverse pressure gradient. In
many practical cases, in particular for a hydrofoil or a Venturi, a mean pressure gradimusisd by the flow. In
the case of a Venturi e.g., the mean pressure increases because of the divergence. The pressure gradient affects the
development of the re-entrant jet: an adverse pressadiegt will reinforce it, whereas a favourable pressure
gradient, if any, would reduce its thickness. To precisely quantify this effect, it issaegeo carry out a complete
calculation of the cavity flow and examples will be given later. However, an ordeaghitude can easily be
obtained from a dimensional analysis. A simplified model (Callereteak 2001) leads to the following estimate of
the re-entrant jet thickness in the case of a pressure gradient:

d
A=MAg +% g (XC/:pL) (7

In this equation, the cavity thickness is still used as the unit length scale. The gugiitaids for the thickness
of the re-entrant jet without any pressure gradient. It can beatst from Equation 6. The second term gives an
account of the influence of the pressure gradient on the re-entrant jet thickness. The relevant lengthtleale f
calculation of the pressure coefficient gradient is the cavity length L. Quantitative estinibtes giwen later.
Nevertheless, it is clear from Equation 7 that an adverse pressdiengria favourable to the re-entrant jet and
increases its thickness. This effect of the pressure gragifettie re-entrant jet is essential in the analysis of the
cloud cavitation instability as it is well-known that the re-entrant jet is the source of the cloud cavitation instabilit

Unsteady behaviour

The former analysis lies upon a steady approach. However, the re-entrant jet cannot éxistllgootherwise
the cavity would be filled out with liquid. Hence, we are lead to suppose that a succession exists between periods of
development of the re-entrant jet, which tend to fill the cavity, and periods ¢fieppnd entrainment of the two-
phase mixture. This phenomenon is essentially controlled by inertia. A simple dimensional analysis leads to t
conclusion that the oscillation frequency f is of the order of,d./¥Xctually, the Strouhal number S=f L 4)/of this
instability, based on the maximum cavity length L, was found to range between(@Bduand 0.4 by many
experimenters (see e.g. Kawananal. 1998 for a comparison of results of various origins).

The Strouhal number can be interpreted as the ratio of the time required by the re-entrant jet to reach the cavity
leading edgel/ V., to the period of the oscillation 1/f. We shall see later that the velocity of the re-entrant jet is of
the order of the flow velocity/.., which justifies the estimaté / V., for the time required by the re-entrant jet to
reach the cavity leading edge. The use of the cavity lexsgthe characteristic length scale in the Strouhal number is
relevant if the re-entrant jet actually reaches the leading edge of the cavity. In some cases, it cuts the cavity interface
far before the cavity leading edge. If so, the size of tkdddd vapour structures whicharacterizes the extent of
unsteadiness at closure is much smaller than thgydamgth (Figure 7). A few experiments (Belahaatjial. 1997)
tend to prove that the Strouhal number still remains within the former range, pravigedbased upon the
characteristic length L of the shedded structures, which miuteisecessarily correspond to the cavity length. If this
conjecture is confirmed, it would mean that a cavity which sheds small vapour structures should exhibit a relatively
high oscillation frequency.

L =

L L
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Figure 7: Schematic interpretation of the characteristic length scale at closure

Figure 8 presents a visualization of the cycle of the cloud cavitation instability in the case of a cavityabehind
diverging step. The various phases including the progression of the re-entrant je¢dttingsbf a vapour structure
and the growth of the leading edge cavity can be identified. The re-entrant jet is initiated iaragad.42 T. It
moves upstream and reaches the leading edge around time 0.73 T. Then a cavitation cloud is formed ahd entraine
by the main flow. The leading edge cavity grows progressively between images 0.84 T and 0.31 T.



+ Cavity detachment f Front of the re-entrant jet

Figure 8: Visualization ofhe re-entrant jet and of ¢hcavity oscillations (cloud
cavitation) behind a diverging step. The flow velocity is 11.6 m/s. The geometi ¢
the test section is shown here, the confinement height is e = 20 mm, the step E @
h = 3.6 mm, the divergence angle= 4.2°. The period of the oscillation is 35 ms t
(Callenaere et al. 2001).

The decisive role of the re-entrant jet in the generation mechanism of cloud cavitation was exg@ériment
proved by Kawanangt al. (1997). They conducted a simple but conclusive experiment which consisteding put
an obstacle on the foil in order to stop the progression of the re-entrant jet.was ishBigure 9, the addition of
such an obstacle holds back the re-entrant jet and prevents the generation of a large cloud. Much smaller vapour
structures are formed. In addition, the pressure oscillations due to the shedding of the cloud arepgdnessedu
This experiment definitely confirms the essential role of the re-entrant jet ongiieadrtioud cavitation.

One of the pioneering works on the re-entrant jet instability is the study ofssuamel Hutton (1975). The
dynamic behaviour of the cavity which develops on a Venturi type nozzle is described andceadnbyledl two-
dimensional unsteady potential flow theory. More regerte Lange (1996) conducted a detailed computation of
the dynamics of a cavity for two-dimensional hydrofoils, still using a boundary element method. Typicalaresult
presented in Figure 10 and Figure 11. The roll-up motion at cavity closure which gives birth to the formation of the
re-entrant jet is clearly visible. The re-entrant jet moves upstream and when it tdwechppédr cavity interface, the
computation stops. In the case of Figure 10, the re-entrant jet reaches nearly the leading edge of the caxjty. Alth
the computation is prematurely stopped because of the limitations of the BEM method, we can expect the shedding
of a large vapour structure made of a large part of the attached cavity. It is the classical cloud cavitation
phenomenon shown in Figure 8.
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Figure 9: Mechanism and control of cloud cavitation (Kaami et al. 1997). Two different cases are compared.
The reference case of cloud cavitation on a smooth fpikeisented on the top. The quasi inhibition of cloud
cavitation by an obstacle is presented below.
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Figure 10 : Modeling of the séty growth on a NACA 0012 profile ah angle of attack of 6°. and a cavitation
number 0.25 (de Lange 1996)



In the second computational case presented in Figure 11, de Lange observes an early touching which does not
necessarily prevents the re-entrant jet to continuendsement towards the leading edge of the cavity, as he
conjectures. This phenomenon is probably the reason for the formation and shedding of small scale vapour
structures which was observed experimentally by Calleregeak (2001). In their experiments, the cavity thickness
is directly controlled by the height of the step which triggers the cavity. The highatep height, the thicker the
cavity. For a large step height and consequently a relatively thick cavity, they observe the classlazdvitation
instability (see Figure 8). In the case of a relatively thin cavity, they still obsexwdetlelopment of a periodic re-
entrant jet with a very comparable frequency. Howebegause of the smallness of the cavity thickness and
consequently of the closeness of the cavity interface angpther boundary of the re-entrant jet, a strong interaction
exists between the cavity interface and the re-entrant jet, all along its upstream movementall tseaden
instabilities which develop on both interfaces make that the thin vapour layer béheeeawity interface and the
re-entrant jet breaks at many points. Many small vapour structures are formed (see Figure 12), contrary to the unique
large cloud shed by thicker cavities. In the case of cloud cavitation, the re-entrant jettdotsrant significantly
with the cavity interface as it moves upstream. The interadsidimited to the instant at which the re-entrant jet
reaches the cavity leading edge and cuts the cavity intetfacenclusion, it appears that the characteristic size of
the shedded structures depends upon the cavity thickness. Thick cavities shed large scalehdoems much
smaller scale structures are produced by thinner cavities.
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Figure 11: Modeling of the cavity growth on a NACA 16-009 profile at an angle of attack iodl 4°Gavitation
number 0.78 in the region x/c<0.4 (de Lange 1996)



Front of the re-entrant jet

Figure 12: Visualization of the re-entrant jet and of the formation of small scale vapor structurecasthof a
thin cavity. The geometry of the test section and the operating conditions are exactly the same as in Figure 8, except
for the step height which is here equal to 0.8 mm instead of 3.6 mm. Hence, the only difference between Figure 8
and Figure 12 is the cavity thickness. The period of thi#latson is 36 ms. Although the front of the re-entrant jet
is much more irregular than in the case of cloud cavitation, its location is indicated apptekirby an arrow.
(Callenaere et al. 2001).

Modelling aspects

From a modelling viewpoint, beside potential based panel methods mentianed(ake also Dang & Kuiper,
1998, 1999a, 1999b), an effort was made to develop models able to describe not only the growthtipbateeff
cavity and the development of the re-entrant jet, but also the break-off and the advection of the fully detached cloud
that a Lagrangian description of the cavity contour failpredict. Several approaches were used. Many of them
model the liquid-vapour mixture as an homogeneous fluid of varidbhsity. Different techniques have been
developed to account for the variations in density.

In their local homogeneous model, Kubota (1988) and Kuktash (1992) assume that the flowing liquid carries
cavitation nuclei. The nuclei density is an input parameteciwhas to be specified in the computation. Nuclei are
convected and grow when they reach the low pressure ragite vicinity of the leading edge. Their growth is
computed from a modified Rayleigh-Plesset equation, lwtdkes into account the interaction between the bubbles.
From the computation of the bubble cluster, it is possible to compute the void fraction and spsthe af the
mixture. This cavitation model is coupled with a Navier-Stokes solver to get the velndifyressure fields. Figure
13 presents a typical visualization of cloud cavitation on a hydrofoil. The various mechanisms involved in this
process including the growth of the leading edge cathity,formation and the collapse of a cavitation cloud are
correctly predicted. It has to be noticed that a simplified version of this model is ndaniemted in several
commercial codes as Fluent and Star-CD.

Furthermore, separated two-phase flow models are being developed using a free surface tedhkithcasn
"volume of fluid" to capture the interfaces (see for example Dieval, 1999, D@tval, 1998). For further
information on the direct numerical simulation of free-acefflow and especially the VOF technique, the reader can
refer to the review by Scardovelli & Zaleski (1999).

Barotropic models were also developed by sewesgarchers (for example Reboud and Delannoy 1994, Song
and He 1998, Shin & Ikohagi 1998, Arrettal. 2000). The principle of the modelling still consists in considering an
homogeneous liquid-vapour mixture. A state law of barotropic fgpassumed for the mixture. It allows a
continuous transition between the liquid density and the vapour density ahewepbur pressure.

1C



Figure 13: Void fraction contours around NACA0015 hydrofoil at an angle of attack of 8°, a Reynolds number of
3x1@ and a cavitation parameter of 1.0. The contourriveeis 0.1 except for the rabouter line. The nuclei
density is 10 (reproduced from Kubota 1988).

Effect of the pressure gradient

It was already noticed that the mean pressure gradient has a significant influémeeesantrant jet. Therefore,
it is expected that the cloud cavitation instability will also depend upon the pressure gradient. This addyprov
Callenaereet al. (2001) on a diverging step whose geometry is schematically shown in the caption of Figure 8. The
domain of the cloud cavitation instability was determined visually and also from the nmeaesud# the velocity
fluctuations, as a function of the cavitation number and tightef the step (Figure 14). Let us recall that the step
height directly controls the cavity thickness. The mpesssure gradient for the same configuration is shown in
Figure 15. A comparison of both figures shows a good correlation between the domain of the cloudncavitat
instability and the domain of high adverse pressure gradient.

This was confirmed by varying the adverse pressure gradient. This parameter was ddntrolianging either
the divergence angke or the confinement height e of the channek(saption of Figure 8 for the interpretatioroof
and e). A decrease in divergence angle as well as an increase in confinement height reduce the adwerse press
gradient and consequently significantly reduce the domatheofnstability as presented in Figure 16. It was also
observed that the cloud cavitation instability completely disappears in the case of a negligible advenge pressu
gradient, corresponding to a larger confinement heigh8@ mm. In conclusion, the adverse pressure gradient has a
crucial influence on the cloud cavitation instability and it can be conjectured that a critical adverse pradsne g
is necessary for the onset of this instability.

The previous results can help in the understanding of the onset of cloud cavitation in the case of a hgdrofoil.
et al. (1993a) have determined the domain of the cloud cavitation instability on a plarexdgmrofoil. As shown
in Figure 17, the cloud cavitation instability is observed for partial cavities whose lisnatbund mid-chord. It
does not occur for long cavities and in particular, no instability was observed betwganapar supercavitation.
Referring to the scheme in Figure 4, it can be inferred tine mean adverse pressure gradient decreases as the
cavity length increases. Considering the necessity of a sufficiently high adverse pressure fogradiendnset of
this instability, it is expected that cloud cavitation will occur for rather short cavities. Long cavities Vemgth is
of the order of the chord length close in a region whergtassure distribution is relatively flat. Therefore, long
cavities should not exhibit the cloud cavitation instability. If oscillations in cavity length acteally,@s observed
for instance by Wade & Acosta (1966), they are most likely of surge type and related tadh®e esdnsitivity of
long cavities to external pressure fluctuations already discussed.
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Figure 14: The domain of cloud cavitation on a diverging step as a function of the cavitation number and the height
of the step. The diagram on the left corresponds tswaVdetermination of thdomain of instability under
stroboscopic lighting, whereas the diagram on the right was obtained from velocity fluctuation measuréheent
geometry of the test section is schematically given in the caption of Figure 8. The flow velocity is 11.6 m/s, the
confinement height is e = 20 mm and the divergence angle i4.2° (Callenaere et al. 2001)
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Figure 15: Mean adverse pressure gradient corresponding to the configuration presented in Figure 14.
The pressure gradient was estimated from LDV measurements (Callenaere et al. 2001).
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Figure 16: Influence of the adverse pressure gradient on the domain of cloud cavitatioilitpstaserved on a
diverging step. The pressure gradient is controlled either by the divergence or the confinement of the clgannel. Th
domain of cloud cavitation instability is significantly reaa when the adverse pressure gradient is reduced
(Callenaere et al. 2001).
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Figure 17: Various cavitation patterns observed on a plamavex hydrofoil as a function of the angle of attack and
of the cavitation parameter. Thegien in green corresponds to the dmimof cloud cavitation instability
characterized by the periodic shedding of vapor clouds. The cavity leggnt the cavity thickness e, non
dimensioned by the chord length c, are indicated (Le et al. 1993a).

As a consequence, it appears difficult to control the instability of partial cavitation on a hydrofoil. § stron
adverse pressure gradient is favourable to the re-eigtaimistability, whereas a negligible pressure gradient will
make the cavity more sensitive to external fluctuatiorsfence more sensitive to cavitation surge. Thus, we can
swing from an intrinsic instability to a system instability with an increase in cavigtHe Both instabilities can
even coexist, as proved by pressure spectra (see Figure 22).

From Figure 17, it appears that very short cavities twydrofoil do not exhibit the cloud cavitation instability.
Although they close in a region of high adverse pressure gradient, their thickness is so small that the retentrant j



does not lead to the formation of a unique large cloud but of many small vapaiursts all along its upward
movement. This difference was already illustrated in Figure 8 and Figure 12.

In conclusion, the onset of the cloud cavitation instability requires two main conditions:

1. The cavity must close in a region of large enough adyeessure gradient favourable to the development of the
re-entrant jet

2. The cavity must be thick enough to limit the interaction between the re-entrant jet and the cavity interfgce duri
its movement to the leading edge, allowing thus the formation of@eitarge vapour structure

Advanced measurements

In 1989, Kuboteet al. gave a detailed description of the flow structure around unsteady cloud oavdatia
stationary two-dimensional hydrofoil by laser Doppleemometry using a conditional sampling technique. They
showed that the shedded cloud is a large-scale vortex structure containing many small cavitation bubbles
Yamaguchiet al. (1990) succeeded to measure the micro-scaletate of the cavitation cloud using a laser
holography system. They were able to quantify the bubisteibution as a function dheir diameter. The pressure
pulses induced by the collapse of those bubbles were measuredebyal €1993b). Their pressure pulse height
spectra confirm the well-known industrial observation according to which, fromrasion viewpoint, cloud
cavitation is much more aggressive than a stable sheet cavity. To reduce the aggessoeveral possibilities
were tested by Boehet al. (1997, 1998) including variations of theading edge geometry, air injection and the
insertion of an obstacle to stop the re-entrant jet.

The structure of the two-phase flow inside the cavity was investigated by Stutz andl R&®®7) and Reboud
et al. (1998) using a double optical probe. They succeededé&sune the local void fracticand the velocity inside
their cavities and showed that, for their cavitating cood#j the void fraction does not exceed 21%. Their velocity
measurements also confirm the existence of a reversed two-phase flow along the wall. Other eaperimen
techniques were used to investigate the structure of partial attached cavities as lasar dbappbmetry (Avellan
and Dupont, 1988, Dupont, 1993), particle imaging velocimetry (Laberteaux and Ceccio, 1998, 2001a, 2001b) and
electrical impedance probes (Geoggel, 2000, Phanret al, 1998).

The re-entrant jet thickness was measured by Calleraiaig2001) by an ultrasonic technique on the diverging
step already presented. Typical results are given in Figure 18. The cavity thickness and the re-entrant jet thickness
are plotted as a function of the step height. The cavitkribis increases like the step height, whereas the re-entrant
jet thickness increases not as much. Thus, the thickness of the vapour layer between the re-entrdre jevatyd t
interface changes considerably with the cavity thickness. For thick enough cavities, this vagrdardayhick that
no significant interaction exists between the re-entrant jet and the cavity interface. On the agh&arye cavity
thickness decreases, the interaction becomes more ared gigmificant. Below a threshold value of the cavity
thickness, the surface perturbations which travel on both interfaces make that tlathinlayer breaks in a large
number of small scale vapour structures. This discussion confirms that the cloudaraiitstability can develop
only if the thickness of the cavity is large enough, in comparison with the rexgetrthickness.

Returning to the influence of the pressure gradient on the re-entrant jete8scknquick estimate of the re-
entrant jet thickness can be made on the basis of Equatond compared with the previous experimental results.
Without any pressure gradient, the re-entrant jet thickigssnon-dimensioned by the cavity thickness, can be
estimated around a few percents only (see Figure 6 and also Laberteaux & Ceccio 2001a). This thickness is
increased by the adverse pressure igradaccording to Equation 7. Referring to Figure 16, the non-dimensioned
pressure gradierdC, /d(x/L) where L is the maximum cavity length, is of the order of 0.6 in the domain of cloud
cavitation. Therefore, the increase in the non-dimensioned re-entrant jet thickness due to the adverse pressure
gradient is around 15%, which is much greater than the few original percents. Hence, the re-entramgss tkick
mostly controlled by the adverse pressure gradient. Témseates are roughly in agreement with the experimental
results which give a range of variation of the non-dimensioned re-enttathtigeness between 15% and 30%
according to the operating conditions (Callenaral, 2001).
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Figure 18: Evolution of the thickness of the re-entrant jet and of the cavity as a function of the step hamght, in t
case of a diverging step. The flow velocity is 11.6 m/s, the confinement height is e = 20 mm, the divergence angle is
o= 4.2° and the maximum cavity length is about 95 mm (Callenaere et al., 2001).

As for the re-entrant jet velocity, most studies conclude that it is of tiex of the main flow velocity (see e.g.
Pham et al, 1998). Variations can be expected accorditigetthickness of the cavity. For example, Callenatre
al. (2001) have shown that, in the case mentioned above of thin cavities for which gaistesaction exists
between the re-entrant jet and the cavity interface, the re-entrant jet is "braked" by the cavity interface. A few
measurements tend to prove that its mean velocity is only about 60% of its velocity in the referenteloade o
cavitation for which the interaction of the re-entrant jet wlih cavity interface can be considered as negligible. In a
similar way, we can expect a decelerating effect of the wall roughness on the re-entrant jet.

Three-dimensional aspects

In the fully two-dimensional case, the re-entrant jet velocity is parallektontin flow velocity, and directed in
the opposite direction. As explained by de Lange (1996), the re-entrant jet velocity gaamwasesgomponent if
the closure line of the cavity is inclined. Assuming that the pressure gradient has no exngbomg the closure
line, the conservation of the tangential momentum implies that the velocity component tangémtialdsure line
remains unchanged. It results that the incident velocitgfiected at the closure line as schematically shown in

Figure 19.
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Figure 19: Reflection of the incident flow by the closure line of the cavity. The flow is from left to right.
(adapted from de Lange, 1996).

This phenomenon happens in the case of a swept foil, as illustrated by the photodfapireoR0 taken by
Laberteaux and Ceccio (2001). Two very different regionthéncavity interface are clearly visible. Part of the
cavity is glossy and rather steady, whereas the rest of the interface is frothy and more .ufiséeimdsrpretation of
this photograph is given in Figure 21 reproduced from Duttweiler & Brennen (1998). The re-ettfiant fan be
divided into two parts. In the upstream region where the closure line is very inclined, the re-amardgrjeeaches



the leading edge and thus delimits a vapour-filled cavity, whereas in the downstrtavhgre the closure line is
less inclined, the re-entrant jet, by impinging on the cavity interface, generates a liquid-vagore. mi

Even in the case of purely two-dimensional experiments, it is often observed that the closurehinsheket
cavity has a convex shape (see for instance Figure 1). Thus, three-dimensional effects can be suspecte@@ds mention
by de Lange (1996).

Figure 20: Cavitation on a three-dimensional hydrofoil with 30° of sweep, at 2° of angle of attack,
for a flow velocity of 10.1 m/s and a cavitation parameter of 0.7. The flow is downward.
Reproduced from Laberteaux and Ceccio (2001b)

Figure 21: Interpretation of the photograph of Figure 20. Reproduced from Duttweiler and Brennen (1998).

Freguency content

From visualizations under stroboscopic lighting, it is possible to measure the charadtedsiency of the
cloud cavitation instability. This technique is easy to handle when the shedding is regular, g @ndhanore
unreliable as the limits of the periodic domain are approached. The use of pressure transducers and the spectral
analysis of pressure fluctuations offers a more objective approach. &ratit(2000) and Kjeldseet al. (1998)

make use of a joint time-frequency analysis on ramping tests to identifyetipgefcy content of partial cavity
instabilities.

In their analysis of partial cavitation on a diverging step, Callereteak (2001) made a spectral analysis of the
pressure fluctuations measured by a pressure transdeeded at the observed cavity closure, for different cavity
lengths. For each cavity length, several step heights eesrgidered and a spectrum was obtained for each of them.
All the spectra corresponding to the various step heights are juxtaposed to get the maps shawa 88.Fgr the
short cavity considered here (75 mm), the cloud sheddingdrey is easily identified. It corresponds to a Strouhal
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number close to 0.2. The lower and upper limiting values of the step height for which the pealspectine
vanishes are in agreement with the mapping of the cloud cavitation instability presented on Figure 14. For the long
cavity (150 mm), another maximum is visible on the spectra at a lower frequdnsysetond frequency is the
signature of a second instability which is likely of surge type because it affects only long cavities that close in
regions of small adverse pressure gradient. Figure 22 shows that both instabilities can otieuresinsly. As the

cavity length is increased, the kind of instability which affects partial cavitation progrgsshanges from the

cloud cavitation instability to a cavitation surge instability.

Cavity length : 75 mm Cavity length : 14

=
N

Step Height (mm)
o

Step Height (mm)

©

6 0.8 1 0.2 0.4 0.6 0.8 1
Strouhal Number Strouhal Number

Figure 22: Spectra of the pressure fluctuations at cavity closure. Each diagram corresponds to a given cavity
length. The spectra obtained for various steps heights are piled up. The tested geometry is thg dieprgi
represented in the caption of Figure 8. The flow velocity is 11.6 m/s, the confinement height is e = 20tinem an
angle of divergenceris 4.2° (Callenaere et al., 2001).

Finally, let us mention that the higher frequency content of the peefimatuations was analysed by Reisman,
Wang and Brennen (1998). They distinguish global and local events. The global eventsraicdlyskse coherent
collapse of large scale clouds which generates an overpFesswltaneously detected by all the transducers located
in the collapsing zone. On the contrary, local events aoraly distributed and correspond to the collapse of small
scale vapour structures. They are interpreted as shock waves in the bubbly mixture by Regéman
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3. Other intrinsic instabilities

The cloud cavitation instability, triggered by the re-entrant jet, is the most wellrkimstability of intrinsic type
that a partial cavity can experience. However, other intrinsic instabilities have either beemrdlexperimentally
or predicted from computation. We would like to mention here the three-dimensi@udirgh observed by
Kawanamiet al. (1998) on two-dimensional hydrofoils and the high-frequency instabilities that a linear analysis of
partial cavitation reveals (Watanabial. 1998).

Three-dimensional shedding

In the previous section, we focused on the typical cloud cavitation instability which shedsealargguapour
structure. Kawanan®gt al. (1998) have shown that, still on two-dimensional hydrofoils, other regimes of shedding
can take place and that a certain spatial periodicity edistg) the spanwise direction. The photographs in Figure 23
present the case of partial cavities which shed simultaneously several clouds along tH¢éagpanamiet al.
measured the spanwise length of the clouds which arelbshadartial cavity. They showed that it is correlated to
the usual cavity length. Roughly speaking, the spanwise length of the cloudbesoofi¢r of the cavity length and
hence, the number of clouds simultaneously shed along the span increases as the cavity length is reduded. Althoug
such results may be dependent upon the facility as we can imagine a particulargnatt¢thenthree-dimensional
shedding to the width of the test section, they prove that other instabilities of ittmexesibnal type can affect
partial cavities.
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Figure 23: Variation of the spanwise length of cloud cavities with the chordwise length of the partial sheet cavity.
Both lengths are non-dimensioned by the chord length (from Kawanami et al. 1998)

High-frequency instabilities

Finally, we mention the possible occurrence of high-fraqguenstabilities which can be expected from a linear
analysis of the stability of two-dimensional closed partial cavities. Watagtadle(1998) have computed various
modes of instability, presented in Figure 24. Mode |, which occurs at zero rigsgue the instability already
mentioned between partial and supercavitation. It is due to a negative cavitatigianoea Mode 11 and mode I
are high frequency modes. As shown by the temporal evolution of the cavity, they correspond to periodic
oscillations of the interface. Mode | corresponds to a downstream travelling wave on the cavity intettiagee wi
wavelength, whereas mode Il corresponds to a two wavelengths redimaugh such instabilities were not yet
observed experimentally, we must keep in mind that the linear stability theedjcts the possibility of
development of high-frequency instabilities.
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Figure 24: Various modes ofstability deduced from a linear analysistbé stability of two-dimensional partial
cavities. The central part of the figure gives the Strouhal number of modes I, 1l and IIl. The evolution irittene of
cavity interface is also indicated for each mode (reproduced from Watanabe et al. 1998).

4. Concluding remarks

Partial cavities may experience various forms of instabilities which can be either siegtendent or purely
intrinsic. The determination of the cause of an instability is often made difficult bgotiy@ing of the cavitation
with the environment or the facility. The comparison of tests conducted onvaeometries, for various operating
conditions and in different facilities has recently alldwe better physical understanding of partial cavitation
instabilities. From a modelling viewpoint, several models have been gedeto compute the unsteady behaviour
of partial cavities. Very encouraging results, showing qualitative (and more rarelitajivaa) agreement with
experiments, have been obtained from the use of cavitation models, coupled with KakesrsSlvers. Each model
has its own specificities and also its own numerical or phyamjakted parameters. Hence, an effort has to be made
to carry out a large enough number of comparative computations on various test cases (Witico isasy in
practice as such models are generally very time consuming) in order to identify their limitatid provide the
cavitation community with validated predicting tools.
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