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Abstract

The objective of the present work is to investigate qualitative aspects of mode-coupling instability of self-
excited friction-induced oscillations in the presence of structural damping and a cubic non-linearity. In a previ-
ous study, Sinou and Jezequel demonstrated the effects of structural damping in determining stable and unstable
zones and indicated that the damping ratio of the coupling modes may be a key factor for avoiding bad design.
In this paper, we propose to complete this study by examining the influence of structural damping on limit
cycle amplitudes in order to achieve a complete design including not only the evolution of stable/unstable areas
but also the evolution of limit cycle amplitudes as functions of the structural damping and non-linear system
parameter. For the sake of simplicity, a two-degree-of-freedom minimal model is constructed and analysed to
examine the effects of structural damping and cubic nonlinearity on the limit cycles. The non-linear behaviour
and stable limit cycle amplitudes are determined through a Complex Non-Linear Modal Analysis which makes
use of the non-linear unstable mode governing the non-linear dynamics of structural systems in unstable areas.
Based on this non-linear modal approach, we will produce and explain qualitative and quantitative results of
limit cycle evolutions in the presence of structural damping and non-linearity.

1 Introduction

Friction-induced vibrations and flutter instability are recognized as one of the most serious problems for in-
dustry. Though many researchers have examined the problem of friction-induced vibrations with experimental,
analytical and numerical approaches [1–5], there are still no methods for completely eliminating or reducing
instability. The addition of damping to one part of a mechanical system such as the pads for brake systems [1,6]
is commonly undertaken to reduce or eliminate vibration. While some methodologies propose introducing ad-
ditional damping to dynamic systems to eliminate or significantly reduce vibrations, it has been demonstrated
experimentally and numerically [1, 6, 7] that the addition of damping may have a detrimental effect. Although
a number of studies on damping have been done, it is apparent that the role of damping in flutter instability is



not yet fully understood. One of the most interesting papers on the influence of damping was published in 1987
by Earles and Chambers [6]. The authors discussed the concept of geometrically-induced instability as being
the mechanism controlling disc brake squeal and they examined the influence of the physical parameters of the
double-pin on a disc system. In particular, they examined the effects of damping and observed that increasing
damping not only has a general tendency to decrease instability intensity, but also has the effect of increasing
the size of the unstable region for certain physical parameters of the double-pin on a disc system. For example,
they observed that increasing the disc damping has little effect on the size of the unstable region, but it reduces
the limit cycle amplitudes; however increasing the pin torsional damping reduces the unstable region, but has
little effect on the limit cycle amplitudes. They concluded that the role of damping is a complex problem and
could not be readily anticipated, and that the varying effects of damping indicate that it is not possible to make
predictions intuitively. Recently, an interesting paper by Shin et al. [7] presents the effect of damping on a
two-degree-of-freedom model where the disc and the pad are modelled as single modes connected by a sliding
friction interface. They clearly indicated that the amount of damping is a key factor. Their analysis suggests
that the size of the limit cycles decreases as the damping of both the pad and disc increase simultaneously.
Moreover, they found that the damping of the pad and the disc are important in order to avoid unstable vibra-
tions and stick-slip phenomena. They demonstrated that two-degree-of-freedom systems connected through a
sliding friction interface can become unstable if damping is added on only one side of the sliding interface.
Recently, some researchers [8, 9] have made progress in the analysis of friction-induced instability by study-
ing the influence of structural damping. Hoffmann and Gaul [8] studied the effects of damping on mode-
coupling instability in friction-induced oscillations. They demonstrated that linear viscous structural damping
changes mode-coupling instability and that an imperfect merging of modes may be observed. They devel-
oped a feedback-loop formalism in order to allow a more detailed understanding of the underlying mechanical
processes. Nevertheless, they concluded that viscous instability in the field of friction-induced oscillations is in
itself a surprising phenomenon. Then, Sinou and Jezequel [9] illustrated the fact that the only effect of adding
structural damping is a shift of the curves toward the negative real parts if damping is equally distributed on the
two modes involved in the mode coupling phenomenon. Thus, increasing damping increases the critical value
of the friction coefficient (i.e. the Hopf bifurcation point) and always stabilizes the brake system. However, if
damping is spread non-equally over the two modes, a shifting and a smoothing effect can be seen on coales-
cence curves. In this case, increasing damping may tend to make the brake system unstable for a lower value
of the friction coefficient. They then illustrated the fact that the damping ratio of the coupling modes may be
a key factor to be taken into account. They gave the complete analytical expressions of the Hopf bifurcation
point that defines the stable/unstable boundary regions via the Routh-Hurwitz criterion and demonstrated that
the Hopf bifurcation point depends on the structural damping of the coupling modes, the damping ratio and the
frequency ratio between these two modes.
In conclusion, all these recent studies [7–9] indicate that neglecting damping in a stability analysis or adding
damping on only one part of the system may result in worse design and lead to a misunderstanding of the mode
coupling instability of mechanical systems. Damping therefore appears to be one of the key parameters and
may not be ignored in the design of mechanical systems. It is well known that the design of mechanical systems
must not be restricted to stability analysis. If the equilibrium solution of the mechanical system is unstable,
the non-linear dynamical behaviour and the limit cycles become the design criterion. This is only due to the
fact that even if the equilibrium point is unstable, the associated limit cycles of the mechanical system may be
very small and hence the instability could be negligible. Given this fact, we will seek to describe the effects of
damping in order to avoid worse design in mechanical systems subject to flutter instability. The main objective
of this paper will be to clarify the influence of structural damping on the limit cycles amplitudes. The study
is set up as follows: first, the minimal non-linear two-degrees-of-freedom system of mode-coupling instability
in friction-induced vibrations is presented. Second, a brief review of the effects of damping on mode-coupling



instability is given. Then, the role of damping on the limit cycles is examined. The influence of practical
parameters is also examined. To save time and to extensively cover the parametric studies, the computational
methodology of the Complex Non-Linear Modal Analysis is applied [10].

2 Mechanical system and stability analysis

2.1 Description of the two degree of freedom model

Fig. 1 shows the minimal non-linear two-degrees-of-freedom model to be used in the following. This model
has its origins in the model proposed by Hulten [11] in order to study drum brake squeal (flutter instability),
and was used by Sinou and Jézéquel [9] in order to study the effects of damping. This minimal two-degrees-of-
freedom model is chosen due to its simplicity and to better understand the roles of various physical parameters
including, more specifically, damping on the stability of the fixed points and the associated non-linear behaviour
and limit cycle amplitudes. To understand the intrinsic features of the mode-coupling mechanism and the role
of damping, it is assumed that the mass and band surfaces are always in contact. The contact between the mass
and the band is modelled by two plates supported by two springs, one having a cubic nonlinearity. Considering
the friction forces between the two plates and the band, Coulomb’s law is assumed T = µN where T and N

define the tangential and normal forces and µ is the coefficient of friction which is assumed to be constant.
For the sake of simplicity, the relative velocities between the band speed and the displacements of the mass are
assumed to be positive so that the direction of friction force does not change.
The equations of motion for the present model are given by[
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Figure 1: Two degree of freedom model with cubic non-linearities



Notation Description Value
ω0,1 first natural frequency 2π ∗ 1000 rad.s−1

ω0,2 second natural frequency 2π ∗ 800 rad.s−1

η1 first relative damping coefficient 0.06
η2 second relative damping coefficient 0.06

kNL cubic non-linear term 1011N.m−3

m mass 1kg

µ friction coefficient 0.3

Table 1: Value of the physical parameters

2.2 Stability analysis

The equations of motion (1) may be rewritten in the form

MẌ + CẊ + KX = FNL (X) (2)

where X = [X1 X2]
T defines the displacement response 2-dimensional vectors of the degrees-of-freedom.

For a non-linear system, stability is investigated by calculating the eigenvalues of the linearized system at the
equilibrium point X0 [5]

M¨̄X + C ˙̄X +

(
K − ∂FNL

∂X̄

∣∣∣∣∣
X0

)
X̄ = 0 (3)

where X̄ defines small perturbation about the equilibrium point X0 that is obtained by solving the non-linear
static equations KX0 = FNL (X0). For the non-linear system being studied, the only physical static solution
corresponds to the origin of the system (see Appendix A). Then, the stability analysis of the system (2) is given
by the linear system M¨̄X + C ˙̄X + KX̄ = 0 due to the fact that the linearized expression of the non-linear
terms equals zero. So, stability of the system (1) may be investigated by performing an eigenvalue analysis of
the characteristic equation

det
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0,1 −µω2

0,2

µω2
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0,2

∣∣∣∣∣ = 0 (4)

where λ define the eigenvalues of the system. Due to the non-symmetric stiffness matrix (as a result of the
friction force), this two-degrees-of-freedom model may become unstable. The mechanical system is stable if
all the real part of the eigenvalues are negative, and unstable if there exist one or more eigenvalues having a
positive real part.
Fig. 2(a) shows the results of an eigenvalue analysis of the two-degrees-of-freedom for various structural
damping. For the undamped case, the borderline for the transition between the stable and unstable equilibrium
points lies close to µ = 0.225. With respect to the control parameter µ, the effects of damping appear to be a
very surprising and complex phenomenon. In order to better assess the role of damping, Sinou and Jezequel
used the Routh-Hurwitz criterion [9] and demonstrated that the value of the friction coefficient µ0 (i.e. the
control parameter) at the Hopf bifurcation point is given by
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where αω = ω0,1

ω0,2
and αη = η1

η2
. This last equation indicates that the effect of damping is more complicated

than the commonly accepted idea that “adding damping always stabilizes the mechanical system”. As previ-
ously explained by Hoffmann and Gaul [8], and Sinou and Jézéquel [9], if we consider the case of proportional
damping (i.e. c1 = c2 corresponding in our case to η2

η1
= ω0,1

ω0,2
= 1.25), increasing the value of the propor-

tional damping increases the value of the control parameter at the Hopf bifurcation point µ0 and the mechanical
system is more stable. Physically speaking the frequencies remain constant and the “lowering of the real part
curves” is obtained [8,9]. Nevertheless, if non-proportional damping is added (i.e. c1 �= c2 or η1ω0,1 �= η2ω0,2),
the mechanical system may become more stable but also more unstable.
Finally, Sinou and Jézéquel [9] showed that structural damping not only influences the stability of the mechan-
ical system but also has an important part in defining the value of the unstable frequency. This fact is illustrated
in Fig. 2(b). The white surface defines the frequency of the potentially unstable mode if the equilibrium point is
unstable (i.e. corresponding to the eigenvalue having a positive real part) whereas the black surface corresponds
to the associated stable mode. It is shown that the unstable mode may come from the high or low frequency
of the two coupling modes. The borderline between the black and white surfaces corresponds to proportional
damping (c1 = c2 corresponding in our case to η2

η1
= ω0,1

ω0,2
= 1.25).

All these aspects and phenomena indicate that damping plays an important role for mode-coupling type insta-
bility in friction induced vibrations. For more detailed aspects and extensive results, we refer the interested
reader to the papers of Hoffmann and Gaul [8], and Sinou and Jézéquel [9].
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Figure 2: Effects of the damping on the stability (a) Stable and unstable zones versus the damping ratioη2
η1

and
the friction coefficient µ (− undamped, − − η1 = 0.02, · · · η1 = 0.06, −. − η1 = 0.1) (b) Evolution of the
stable and unstable modes in the complex plane for η1 = 0.02

3 Non-linear behaviour of the mechanical system

3.1 Self-excited oscillations and stable limit cycles

While the determination of the eigenvalues is useful in evaluating the effect of damping on stable and unstable
zones, it cannot evaluate the vibration amplitudes if the equilibrium point of the mechanical system is unstable.



If stable limit cycles exist, the limit cycle amplitudes and the time-history solutions of the non-linear equations
can be calculated by using the classic fourth-order Runge–Kutta algorithm. For example, Figs. 3 show the
transient response analysis and the predicted non-linear vibration amplitudes of the displacement X1(t) and
the velocity Ẋ1(t) (for µ = 0.25 and η1 = η2 = 0.06). The displacements and velocities increase until the
periodic self-excited oscillations of the non-linear dynamical behaviour of the system are obtained. Neverthe-
less, this procedure is rather expensive and consumes considerable resources both in terms of the computation
time and in terms of the data storage requirements. So in order to undertake extensive parametric studies and
to investigate the role of structural damping, non-linear methods can be applied to find the non-linear response
of the dynamical system. Because the purpose of this section is to study the effect of damping on limit cycle
amplitudes of the non-linear system, we refer the interested reader to the following references for an extensive
overview of the various non-linear methods and approaches [5, 12].
Before briefly describing the methodology of this non-linear modal approach that will be used in this paper, it
may be observed that the principle of this method is based on the well-known technique of equivalent lineariza-
tion of Krylov and Bogoliubov [13]: the idea is to replace the non-linear system by an equivalent linear system
in which the difference between the two systems is minimized. Then, the solution of the associated linear
system is taken as an approximation of the original non-linear problem by considering only one harmonic for
the final periodic solution. In order to obtain the complex and exact solution that can consists of more than one
harmonic (see for example the study of D’Souza and Dweib [14] where the non-linear self-excited vibrations
consists of a steady state component, a component oscillating at the fundamental frequency, and a second har-
monic component) which is not the purpose of this non-linear modal approach, other non-linear methods [5,12]
such the methodology developed by D’Souza and Dweib [14] may be used.
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Figure 3: Evolution of the displacement X1(t) and velocity Ẋ1(t) (for µ = 0.25 and η1 = η2 = 0.06) (a)
displacement X1(t) (b) velocity Ẋ1(t)

3.2 Complex Non-Linear Modal Analysis

3.2.1 Limit cycles determination

In this study, the Complex Non-Linear Modal Analysis [10] will be used in order to obtain the approximated
limit cycles of the non-linear mechanical system. We do not claim to make an important contribution in this



section of the paper: the purpose here is to give a brief overview of the Complex Non-Linear Modal Analysis.
We refer the interested reader to [10] for an extensive explanation of this non-linear modal method.

First, the non-linear equations of the system are rewritten in state variables Y =
[
X1 X2 Ẋ1 Ẋ2

]T
Ẏ = AY + FNL (Y) (6)

where A is a 4 × 4 matrix containing the mass, damping and stiffness parameters of the mechanical system.
FNL (Y) is the vector containing the non-linear cubic expressions of the non-linear system defined in Eq. (1).
The idea of the Complex Non-Linear Modal Analysis is to consider that the non-linear behaviour of the system
may be approximated by studying only the modal participation of the unstable modes if the equilibrium point of
the mechanical system is unstable. It is assumed that all modal participation of the stable modes (associated with
the eigenvalues having negative real part Re (λ) < 0) is negligible in regard to the unstable mode (associated
with the eigenvalues having positive real part Re (λ) > 0). When the non-linear system becomes unstable, Eq.
(6) is first governed by the approximated increasing unstable curve

Ỹ (t) = Ψeλt + Ψ̄eλ̄t (7)

where λ and λ̄ are the complex eigenvalues of equivalent linear system at the equilibrium point having positive
real part (associated with the unstable mode) and ΨandΨ̄ are the associated eigenvectors.
Then, when the increasing curve of the system becomes the limit cycle, Eq. (7) defines the stable periodic
approximated solution Ỹ depending only on the pair of purely imaginary eigenvalues λ = −̄λ = iω1 (i.e.
Re (λ) = 0) with the associated normalized eigenvector Ψ = Ψ1 and conjugated normalized eigenvector
Ψ̄ = Ψ̄1

Ỹ (t) = p
(
Ψ1e

iω1t + Ψ̄1e
−iω1t

)
(8)

where p is the amplitude of the periodic approximated solution governed by the unstable mode. It may be
observed that the change from instability to stability of the self-exciting vibrations that indicates the limit cycle,
is obtained when the real parts λ and λ̄ equal zero. The approximated solution Ỹ (t) considers only the modal
participation of the unstable mode.

So, the objective of the Complex Non-Linear Modal Analysis is to determine the amplitude p of the
periodic approximated solution, the associated frequency ω1 and the associated eigenvector Ψ1. It may be ob-
served that no assumption is made about the value of the control parameter and more particularly that the limit
cycle amplitudes may be estimated far from the Hopf bifurcation point. Moreover, the method may be applied
to estimate stable or semi-stable limit cycles.
Considering the eigenvalues of the linearized system of Eq. (1), the real part of eigenvalues defines the growth
rates of the vibrations until the periodic self-excited oscillations of the system are reached. When the periodic
oscillations are obtained, two eigenvalues (λ and λ̄) have their real part equal to zero (i.e. Re (λ) = 0) whereas
all the other eigenvalues have negative real part (i.e. Re (λ) < 0). The purpose of the Complex Non-Linear
Modal Analysis is to be able to follow the evolution of the real parts of eigenvalues from the unstable equi-
librium point (defined for p = 0) to the periodic oscillations. It may be observed that the initial value for
the determination of the limit cycles is given by p = ∆p. Then, from the equilibrium point to the periodic
oscillations, the unstable approximated solution curveỸ (t, p) for a given value of p is defined by

Ỹ (t, p) = p
(
Ψ1 (p) eλ(p)t + Ψ̄1 (p) eλ̄(p)t

)
(9)

The evolution of the eigenvalues λ (p) and the associated normalized eigenvector Ψ1 (p) are obtained by de-
termining the eigenvalues and associated eigenvectors of the equivalent linear system of the non-linear system



defined in Eq. (6). This is done by using the concept of the equivalent linearization procedure [15, 16]. The
principle of the linearized equivalent approach is based on the idea of finding a linear system which is equivalent
to the non-linear system at the unstable fixed point

˙̃y = Aỹ + FNL (ỹ) ≈ Aỹ + AFNLỹ = Aequiỹ (10)

where AFNL defines the equivalent linear system of the non-linear terms FNL (ỹ). ỹ defines the associated
periodic solution of oscillations Ỹ (t, p). The expression of ỹ (t, p) is given by

ỹ (t, p) = p
(
Ψ1 (p) eiω(p)t + Ψ̄1 (p) e−iω(p)t

)
(11)

where ω (p) is the frequency of the periodic solution and corresponds to the imaginary part of the eigenvalue
λ (p). The equivalent linear system that is defined in Eq. (10) and the associated matrix AFNL are obtained
such that the difference ε between the equivalent linear and non-linear systems

ε ≡ FNL (ỹ) − AFNLỹ (12)

is minimized for every of ỹ (t, p) of the form defined by Eq. (11). Using the least square method, the minimiza-

tion is performed according to the criterion Min

(∫ 2π
ω(p)

0 εT εdt

)
. Finally, the evolution of the eigenvalues λ (p)

and the associated normalized eigenvector Ψ1 (p) are obtained by determining the eigenvalues and associated
eigenvectors of Aequi.
The periodic approximated oscillations are obtained by incrementing the value of p until two eigenvalues λ (p)
of Aequi have their real part equal to zero whereas all the other eigenvalues have negative real part. For each
increment of p, we calculate the linear equivalent system, the eigenvalues λ (p) and the associated normalized
eigenvectors Ψ (p). In numerical practice, it may be difficult to obtain the exact value of the final amplitude p

and the change of the sign of the real parts of eigenvalues, indicating a change of oscillations from stability to
instability (or vice versa) and the perfect detection of the neutral stability of oscillations, defining the periodic
self-exciting vibrations. So, the value of the increment δp of the amplitude p may be sufficiently small. In the
cases of stable limit cycles, a final correction using a linear extrapolation follows the estimation of the final
amplitude p to exactly define the neutral stability of oscillations indicating the limit cycle.
In order to illustrate the usefulness and efficiency of this non-linear modal approach, the previous numerical
example is considered (see Fig. 3). Figs. 4(a) and (b) show the numerical evolution of the real part of the
unstable mode and the associated evolution of the imaginary part which describes the frequency of the unstable
mode. As illustrated in Fig. 4(a), the real part of the unstable mode decreases from the original positive value
(obtained by performing an eigenvalue analysis of the characteristic Eq. (4)) to zero. Then, Figs. 4(c) and
(d) illustrate the associated limit cycles. The grey lines illustrate the convergence of the trajectory to the limit
cycle by using direct numerical integration (as previously indicated in Fig 3 for the displacement X1(t) and
the velocity Ẋ1(t)) with initial conditions around zero. It appears that the classic fourth-order Runge–Kutta
algorithm and the non-linear modal approach agree quite well.
Moreover, Tab. 2 give a comparison of the computational times required for the convergence of the trajectory
to the limit cycles by using direct numerical integration (Runge-Kutta method) and the proposed technique of
Complex Non-Linear Modal Analysis. It clearly demonstrates the advantage of the proposed method.
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µ η1 η2 Runge-Kutta method Proposed technique
0.25 0.06 0.06 0.89 0.21
0.3 0.02 0.025 0.93 0.09
0.3 0.06 0.075 0.91 0.22
0.3 0.09 0.1125 0.86 0.10
0.3 0.12 0.15 0.89 0.18
0.3 0.12 0.225 1.54 0.13
0.3 0.06 0.1125 0.82 0.09
0.3 0.06 0.0562 0.91 0.24
0.3 0.12 0.1125 0.87 0.18

Table 2: Comparison of the computational times (CPU time) required by using the direct numerical integration
(Runge-Kutta method) and the proposed technique of Complex Non-Linear Modal Analysis

3.2.2 Stability of the limit cycle

Once a limit cycle is found, several methods exist to investigate the stability of periodic oscillations: for ex-
ample, the stability of periodic solutions may be determined using Lyapunov functions [12]. Moreover, the
stability of periodic solution may be carried out by using frequential methods based on a perturbation in the
time domain applied to the known harmonic solution [17].
As discussed in [18], limit cycle stability can be determined by considering the evolution of eigenvalues: by ap-
plying a small perturbation ∆p to the estimated amplitude p of the final periodic approximated solution ỹ (t, p)
and by considering the associated evolutions of the frequency ω (p + ∆p) and Ψ1 (p + ∆p), the stability of the
periodic approximated solution may be studied by observing the variation of the real part of eigenvalues of the
matrix Aequi caused by the perturbation ∆p. In this study, the equilibrium point is unstable until Aequi has
two eigenvalues with zero real parts and all the others having negative real parts. So, the stability of the limit
cycle may be restricted to the two following cases:

• If all eigenvalues of Aequi have negative real parts for p + ∆p and some eigenvalue(s) have positive
real parts for p − ∆p (where ∆p is a small positive perturbation), the limit cycle is stable.

• If some eigenvalue(s) of Aequi have positive real parts for p + ∆p and p − ∆p, the limit cycle is
semi-stable.

In order to study the stability of the estimated limit cycles on the previous physical case, a small variation
is applied to the predicted amplitude p. In Fig 5(a), the stability of limit cycles is illustrated by using the
Complex Non-Linear Modal Analysis (for µ = 0.25, η1 = η2 = 0.06). It may be observed that the maximum
real part of eigenvalues changes from a positive value to a negative value. When the real part is equal to zero,
the neutral stability of self-exciting oscillations takes place and the limit cycles appear. The limit cycles are
stable and there is agreement between the estimations given by time domain simulations and the non-linear
modal analysis (see Fig. 3 and Fig. 5 (b) for two different initial conditions).

3.3 Effects of damping on the limit cycles

To further our understanding of the effects of damping on limit cycles, two physical cases will be studied: the
first case considers proportional damping (c1 = c2 i.e. ω0,1η1 = ω0,2η2) and the second non-proportional
damping (c1 �= c2 i.e. ω0,1η1 �= ω0,2η2). The evolution of the limit cycles versus damping will be studied by
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Figure 5: Stability curve of the limit cycles and comparison/validation with the estimation of limit cycles via the
Runge-Kutta integration (for µ = 0.25 and η1 = η2 = 0.06) (greyline: Runge-Kutta 4, blackline: non-linear
modal analysis) (a) Evolution of the real part (b) limit cycles

(
X1, Ẋ1

)

applying the Complex Non-Linear Modal Analysis.

3.3.1 Proportional damping

Firstly, we will study the effect of increasing the damping coefficients by keeping proportional damping (i.e.
c1 = c2 or η1ω0,1 = η2ω0,2). Figs. 6(a) and (b) show the results of the evolution of the real part and imaginary
part of the unstable mode corresponding to four values of proportional damping that are given in Tab. 3. Figs.
6(c) and (d) show the associated limit cycles. In these cases, the well known role of damping is recovered: it
is obvious that increasing proportional damping decreases the limit cycle amplitudes

(
X1, Ẋ1

)
and

(
X2, Ẋ2

)
.

Physically speaking, this may be explained by the fact that the growth rates of the equilibrium point (for p = 0)
is altered by a certain amount depending on proportional damping, whereas the merging-scenario is unchanged.
Intuitively, increasing the proportional damping decreases the growth rates by “lowering the real part curves”,
and the energy of mode coupling instability has to overcome the nonzero structural energy dissipation before
generating self-excited oscillations and limit cycles. Therefore the more damped the mechanical system is, the
lower the limit cycle amplitudes are (if these limit cycle are stable).
Moreover, Fig. 7 illustrates the evolution of the two complex eigenvalues of the unstable and the associated
stable modes. It may be observed that the two modes merge at p = 0 due to proportional damping (i.e. the
stable and unstable modes have the same frequency). Then, the real parts of the stable and unstable modes
decrease until the periodic self-excited oscillations.
Moreover, it is calculated that the limit cycles are stable by using the complex non-linear modal analysis, as
previously explained in Section 3.2.2.
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Figure 6: Evolutions of the unstable mode and the associated limit cycles for µ = 0.3 and kNL = 1011N.m−3

with proportional structural damping (− − c1 = c2 = 125.7Nm−1s−1, · · · c1 = c2 = 377Nm−1s−1 ,
− c1 = c2 = 565.5Nm−1s−1, −. − c1 = c2 = 754Nm−1s−1) (a) real parts (b) associated imaginary part (c)
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Figure 7: Evolution of the stable and unstable modes in the complex plane with proportional structural damping
(− − c1 = c2 = 125.7Nm−1s−1, · · · c1 = c2 = 377Nm−1s−1 , − c1 = c2 = 565.5Nm−1s−1, −. − c1 =
c2 = 754Nm−1s−1)

Case Symbol η1 η2 c1 (Nm−1s−1) c2 (Nm−1s−1)
1 −− 0.02 0.025 125.7 125.7
2 · · · 0.06 0.075 377 377
3 − 0.09 0.1125 565.5 565.5
4 −.− 0.12 0.15 754 754

Table 3: Proportional structural damping

3.3.2 Non-proportional damping

Now the effects of non-proportional damping will be investigated by considering the ratios of non-proportional
damping c1

c2
= 1.5 and c1

c2
= 0.75 as indicated in Tab. 4. Figs. 8 show the evolutions of the real and imaginary

parts of the unstable mode and the associated limit cycles. Fig. 9 illustrates the evolution of the stable and
unstable modes in the complex plane. As previously explained, it is shown that the unstable mode may come
from the high or low frequency of the two coupling modes in accordance with the non-proportional damping
ratio (see Fig. 9).
Moreover, the role of damping appears to be quite a bit more complicated than in the case of proportional
damping. First of all, it may be observed that the smaller limit cycle amplitudes

(
X1, Ẋ1

)
and

(
X2, Ẋ2

)
are not obtained for the same damping parameters. Then, the addition of non-proportional damping totally
changes the evolution of the real part of the eigenvalue associated with the unstable mode. Fig. 8(a) clearly
indicates that the initial value of the real part cannot be used in order to estimate the limit cycle amplitudes. For
example, even if the initial real part for case 2 (c1 = 377Nm−1s−1 and c2 = 565.5Nm−1s−1) is higher than



the initial real part of case 1 (c1 = 754m−1s−1 and c2 = 1131Nm−1s−1), the associated periodic limit cycles(
X2, Ẋ2

)
are smaller. So it appears that the eigenvalues of the characteristic Eq. (4) can not be used as a design

criterion when the equilibrium point of the mechanical system is unstable. A complex non-linear analysis and
the determination of the self-excited oscillations and the associated limit cycles is needed. Considering these
results, it is obvious that structural damping is one of the most important factors for minimizing the limit cycle
amplitudes. However, the amount of damping may be correctly chosen in order to avoid bad design. One
of the most surprising and fascinating phenomena is that if too much damping is added to only one part of
the mechanical system, the size of the limit cycle amplitudes may increase, as illustrated in Figs. 8. Cases
2 and 3 indeed have exactly the same value of damping c1, but the value of damping c2 is higher for case 2.
Nevertheless, the limit cycles of case 3 are larger than the limit cycles of case 2. So it may be concluded that
not only the amount of damping but also the distribution of damping between the two modes are essential.
Moreover, cases 2 and 4 (where c2 is the same and c1 is different) show that the limit cycles

(
X1, Ẋ1

)
are

bigger for case 2, whereas the limit cycles
(
X2, Ẋ2

)
are bigger for case 4. So the effects of damping on the

limit cycles appear to be very complex and interesting. Using the complex non-linear modal analysis, the limit
cycles are estimated to be stable.

Case Symbol η1 η2 c1 (Nm−1s−1) c2 (Nm−1s−1)
1 −− 0.12 0.225 754 1131
2 · · · 0.06 0.1125 377 565.5
3 − 0.06 0.0562 377 282.75
4 −.− 0.12 0.1125 754 565.5

Table 4: Non-proportional structural damping

3.4 Effects of the cubic non-linearity on the limit cycles

In this section, the effects of the cubic non-linearity on the limit cycles will be studied. First, it should be
remembered that the cubic non-linearity do not influence the stability analysis of the present model due to the
fact that the equilibrium point is zero.
Figs. 10 show the variations of the limit cycle amplitudes

(
X1, Ẋ1

)
and

(
X2, Ẋ2

)
and the evolution of the

real and imaginary parts of the unstable mode resulting from the change in the cubic non-linearity kNL while
keeping the structural damping and other parameters at their initial values (as indicated in Tab. 1). The effects
of the cubic non-linearity appear very interesting. It may be observed that increasing the non-linearity decreases
the size of the limit cycles. One of the most interesting phenomena is that the evolution form of the imaginary
part is the same for the four cases (see Fig. 10(b)). Moreover, the evolution of the unstable mode in the complex
plane is exactly the same for the fourth cases, as illustrated in Fig. 11.

3.5 Combined effects of the damping, the friction and the cubic non-linearity

Figs. 12-14(a) show that the equilibrium point stability of the mechanical system can be altered by changes in
the friction coefficient µ, the damping ratio η2

η1
and the non-linearity kNL. It must be emphasized that increasing

the friction coefficient (for a given set of parameters) increases the unstable region of the mechanical system
(see for example Figs. 12(a) and 13(a)). Fig. 12(a) shows that the effects of damping agree with the conclusion
of Section 2.2: the more stable system in relation to the structural damping ratio η2

η1
corresponds to the equally

damped situation (i.e. c1 = c2 corresponding to η2

η1
= ω0,1

ω0,2
= 1.25).
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Figure 8: Evolutions of the unstable mode and the associated limit cycles for µ = 0.3 and kNL =
1011N.m−3 with non-proportional structural damping (− − c1 = 754Nm−1s−1 and c2 = 301.6Nm−1s−1,
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−. − c1 = 251.3Nm−1s−1 and c2 = 402.1Nm−1s−1)(a) real parts (b) associated imaginary part (c) limit
cycles
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)
(d) limit cycles

(
X2, Ẋ2

)



−2500 −2000 −1500 −1000 −500 0 500
5100

5200

5300

5400

5500

5600

5700

5800

5900

6000

6100

Real( λ )

Im
ag

( 
λ 

)

STABLE MODE 

UNSTABLE
      MODE 

p=0 

p=0 

Figure 9: Evolution of the stable and unstable modes in the complex plane with non-proportional struc-
tural damping (− − c1 = 754Nm−1s−1 and c2 = 1131Nm−1s−1, · · · c1 = 377Nm−1s−1 and
c2 = 565.5Nm−1s−1 , − c1 = 377Nm−1s−1 and c2 = 282.75Nm−1s−1, −. − c1 = 754Nm−1s−1

and c2 = 565.5Nm−1s−1)

In Figs. 13-14(a), it appears that the cubic non-linearity does not influence the stability analysis of the
model: as previously explained, the stability analysis is conducted by calculating the Jacobian of the non-linear
system at the equilibrium point [5].
Figs. 12-14(c-d) illustrate the amplitudes of the displacements X1 and X2 of the limit cycles when the equi-
librium point of the mechanical system is unstable. Performing stability analysis via the Complex Non-Linear
Modal Analysis, all the limit cycles appear to be stable. Figs. 12-14(b) give the associated frequency of the
self-excited oscillations.
From these parametric studies, we may draw the following general observations for the two-degrees-of-freedom
model:

• the effects of structural damping and non-linearity are important, surprising and interesting phenomena
which add another feature in self-exciting mechanisms and flutter instability. Structural damping and the asso-
ciated structural damping ratio not only influence the stable/unstable zones but also the size of the limit cycles.
So, a nonlinear analysis and the determination of the limit cycles are essential in order to avoid worse design
and erroneous diagnostics. Special attention has to be paid to the structural damping properties and non-linear
contact of the mechanical systems.

• Neglecting damping or increasing/decreasing damping on only one part of the system may increase the
displacement amplitudes X1 and X2 of the limit cycles (see Figs. 12).

• We note the existence of a critical value of the friction coefficient after which the equilibrium point of
the mechanical system becomes unconditionally unstable. Then, increasing the friction coefficient µ increases
the displacement amplitudes X1 and X2 of the limit cycles (see Figs. 12 and 13).

• By increasing the cubic non-linearity kNL, the displacement amplitudes X1 and X2 of the limit cycles
decrease (see Figs. 13 and 14).
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Figure 10: Evolutions of the unstable mode and the associated limit cycles for µ = 0.3 and η1 = η2 = 0.06
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Figure 11: Evolution of the stable and unstable modes in the complex plane for µ = 0.3 and η1 = η2 = 0.06

• One of the most robust (but insufficient) design and compromise solutions to enhance the stable/unstable
areas of the mechanical system and to optimize the self-exciting oscillations may be to consider equal structural
damping (i.e. c1 = c2 or η2

η1
= ω0,1

ω0,2
).

• The final frequency of the self-exciting oscillations changes with structural damping, as illustrated in
Figs. 12(b) and 14(b).
The same general conclusions have been obtained for the evolution of the velocity amplitudes Ẋ1 and Ẋ2.

4 Conclusion

A minimal two-degrees-of-freedom model describing the elementary flutter mechanism of friction-induced vi-
brations is used to investigate the effects of damping and non-linearities on flutter instability and the associated
limit cycles.
It is demonstrated that the commonly accepted idea that “increasing damping stabilizes a mechanical system or
minimizes the self-excited oscillations” may be wrong. It is shown that the information about the stability of
the mechanical system may be erroneous if the undamped mechanical system is used. This study also indicates
that the merging scenario and the unstable mode may change the frequency of the unstable mode. This depends
on the structural damping ratio of the two coupling modes that play one of the most important roles in the
stable/unstable areas and the size of the limit cycles.
The effects of damping on the limit cycles appear to be complicated and interesting: the amount and distribution
of damping may be carefully chosen in order to avoid worse design. A general condition for robust design to en-
hance the stability of a mechanical system and/or to optimize/minimize the size of limit cycle amplitudes is that
proportional structural damping should be added to both modes involved in the mode coupling phenomenon.
It was demonstrated that increasing the cubic non-linearity may decrease the limit cycle amplitudes. It may be
concluded that the structural damping ratio between the stable and unstable modes and the non-linearities are
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very important and must be taken into account to enhance the stability of mechanical systems or to minimize
the amplitudes of self-excited oscillations. Finally, the non-linear limit cycles and the associated stability of
the limit cycles are calculated by applying the Complex Non-Linear Modal Analysis which requires relatively
little resources both in terms of the computation time and in terms of the data storage requirements.

Appendix A: determination of the equilibrium points of the non-linear system

As indicated in Section 2.2, the equilibrium points X0 = [X1,0 X2,0]
T are obtained by solving the non-linear

static equations [
ω2

0,1 −µω2
0,2

µω2
0,1 ω2

0,2

](
X1,0

X2,0

)
=

(
−ϕNLX3

1,0

−µϕNLX3
1,0

)
(13)

In this study, we assume that the factors ω0,1, ω0,2, ϕNLand µ are positive. Firstly, it may be noted that the
origin is an equilibrium point of the system.
By premultiplying the second equation of the system (13) by the factor µ, and by comparing the obtained
equation with the second equation of the system (13), it follows that the component X1,0 verifies

X1,0

(
ω2

0,1 + ϕNLX2
1,0

)
= 0 (14)

Consequently, the equilibrium point components X1,0 and X2,0 are given by

X1,0 = 0 and X2,0 = 0 (15)

or

X1,0 = ± iω0,1√
ϕNL

1

and X2,0 = 0 (16)

So, considering the possible equilibrium points given in Eqs. (15) and (16) , it clearly appears that the only
physical equilibrium point corresponds to the origin [X1,0 X2,0]T = [0 0]T .
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