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Abstract. In this paper, a rigorous quasi-steady state approximation
method is applied in order to study the absence of oscillations in a family
of models describing a gene regulated by a polymer of its own protein. A
result presented in a former paper at Algebraic Biology 2007 is thereby
generalized. The rigorous method is illustrated over the basic enzymatic
reaction.

1 Introduction

In a former paper [1], we studied a simple family of models depending on an
integer parameter n and featuring a negative feedback loop, one of the core in-
gredients for generating oscillations [2]. These abstract models are closely related
to models studied by Goodwin and Griffith in the 60’s [3–5]. Griffith considered
a model of a gene regulated by a polymer formed of n copies of its own pro-
tein. We studied the same problem, but in a slightly more general case, where
gene activation is not assumed to be fast. We eventually concluded with the ab-
sence of Poincaré-Andronov-Hopf bifurcation in our family of models for n ≤ 8
and their existence for n ≥ 9. The absence/presence of Poincaré-Andronov-Hopf
bifurcation for n ≤ 8 is a strong indicator for the absence/presence of oscillat-
ing trajectories. Extensive numerical experiments [6, 7] confirmed the absence of
oscillations for n ≤ 8 and their existence for n ≥ 9.

In this paper, the models are designed by means of systems of parametric
nonlinear ordinary differential equations (ODE) [8]. The approach applied in [1]
consisted in two steps: first simplifying the initial system of n + 2 parametric
ordinary differential equations as a reduced system of three ODE by means of a
quasi-steady state approximation; second, studying the reduced model.

The idea of quasi-steady state approximation is simple: study the dynam-
ics of the slow reactions, assuming that the fast ones are at quasi-equilibrium,
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thereby removing from the ODE system, the differential equations which de-
scribe the evolution of the variables at quasi-equilibrium. Many authors [9–12]
state that carrying out rigorously this approximation is far from straightforward.
We would rather say that there are different ways to perform this approximation
and that it is the problem of ascertaining the domain of validity of each kind of
approximation which is not straightforward.

In another paper [13], the authors reformulated the methods of [9–12], which
are equivalent, and made them fully algorithmic, by means of differential elimina-
tion methods [14–18]. An efficient implementation, based on [19], was developed
by the third author.

In this paper, we show that the reduction method of [13] can be applied to
our family of models. It yields a reduced model which contains that of [1] as a
particular case: our new approximation is more precise. By a very concise proof,
we show that the results obtained in [1] also hold for the new model. This paper
gives us also the opportunity to widen the audience of our [13, diffReduce]
algorithm by recalling its principle.

2 Our family of models

2.1 The initial model

A schematic model describing a single gene regulated by an order n polymer of
its own protein is provided in Figure 1. It is borrowed from [1, page 68]. The
variables G and H represent the state of the gene. The mRNA concentration
and the concentration of the protein translated from the mRNA are represented
by M and P . The n types of polymers of P are denoted by P = P1, P2, . . . , Pn.
Greek letters represent parameters.
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Fig. 1. A single gene regulated by a polymer of its protein



First, one translates the diagram as a system of generalized [20] chemical
reactions (transcription and translation are not balanced reactions), introduc-
ing 2 (n − 1) extra parameters k−

i , k+
i (1 ≤ i ≤ n − 1):

G + Pn

α
⇀↽
θ

H, G
ρf
−→ G + M, H

ρb
−→ H + M,

M
β

−→ M + P, M
δM
−→ ∅, P

δP
−→ ∅, Pi + P

k
+

i⇀↽
k
−

i

Pi+1 (1 ≤ i ≤ n − 1).

The initial model is obtained by translating the above chemical reactions system
as the following system of parametric ordinary differential equations, denoting
Ai = (k−

i Pi+1 − k+
i Pi P ). Variables G, H, M, P = P1, . . . , Pn are time varying

functions. The dot appearing over the variables, in the equations left handsides,
denotes the derivative w.r.t. the time.

Ġ = θ H − α GPn,

Ḣ = −θ H + α GPn,

Ṁ = ρf G + ρb H − δM M,

Ṗ = β M − δP P + 2 A1 + A2 + · · · + An−1,

Ṗi = −Ai−1 + Ai (2 ≤ i ≤ n − 1),

Ṗn = −An−1 + θ H − α GPn

(1)

The variables G and H should be viewed as “random variables” instead of con-
centrations. They are bound by the relation G + H = γ0 where γ0 is a constant
equal to the total quantity of the gene. In [1], the variable H was replaced by
γ0 − G.

2.2 The new quasi-steady state approximation

The quasi-steady state approximation that is performed in this paper relies on
the following hypotheses: the n − 1 chemical reactions describing the polymer-
ization of the protein are fast while the other ones are slow. This happens when
the parameters k+

i , k−

i are much larger than the other parameters.

These hypotheses permit us to compute a reduced model by the following
method. First one replaces, in the initial model, the contributions of the fast
reactions by new variables Fi (1 ≤ i ≤ n − 1). This just amounts to rewriting
Ai = Fi in system (1). Then one adds the following algebraic equations to the
system, in order to express the pre-equilibrium conditions:

0 = k+
i P Pi − k−

i Pi+1, (1 ≤ i ≤ n − 1)



Then one eliminates the new variables Fi from the above differential-algebraic
system, thanks3 to [13, diffReduce]. One is led to the raw reduced model:

Ġ = θ H − α Kn−1 Pn G,

Ḣ = −θ H + α Kn−1 Pn G,

Ṁ = ρb H + ρf G − δM M,

Ṗ =
n θ H − n α Kn−1 Pn G − δP P + β M

n−1
∑

i=0

(i + 1)2 Ki P i

(2)

where Ki =
k+
1 · · ·k+

i

k−

1 · · ·k−

i

with the convention K0 = 1.

2.3 Parameters reduction

The raw reduced model (2) can now be simplified by rescaling all parameters
and variables. The following equations express the old variables as functions of
the new ones, which are overlined:

θ = θ δM , β = β δM , δP = δ δM , ρb =
µ δ θ δM

α β
, ρf =

δ θ (µ + λ) δM

α β
,

δM = δM , α =
α δM

Kn−1

, Ki =
Ki αi

θ
i

(1 ≤ i ≤ n − 1),

G = G, H = γ0 − G, M =
M δ θ

α β
, P =

θ P

α
, t =

t

δM

Performing these substitutions in the raw reduced model (2), withdrawing the
redundant ODE which expresses the evolution of H and removing the bars for
legibility, one gets the reduced model (3):

Ġ = θ (γ0 − G − GPn),

Ṁ = λG + γ0 µ − M,

Ṗ =
n α (γ0 − G − GPn) + δ (M − P )

n−1
∑

i=0

(i + 1)2 Ki P i

·
(3)

Remark 1. In order to recover [1, system (1)], it is sufficient to replace the right
handside of the last equation of system (3) by its numerator.

3 Our algorithm does not handle the generic system with a symbolic n. We computed
the reduced system for many different values of n, inferred the general formula and,
checked afterwards that the inferred formula is correct.



Last observe that one more parameter could be removed from the above
system, the software [21] shows. The above reduction is however more convenient
in this paper for it permits us to directly apply the results of [1].

3 On the existence of Poincaré-Andronov-Hopf

bifurcations

One proves in this section that no Poincaré-Andronov-Hopf bifurcation [22] arises
in system (3) for meaningful4 values of the parameters and the variables if and
only if n ≤ 8. Our proof essentially amounts to reducing the study of system (3)
to that of [1, system (1)] and then applying the main result of this paper.

According to remark 1, the steady point equations of system (3) are exactly
those of [1, section 4]. They write:

γ0 = G + GPn, M = P, λ =
P − µ G − µ GPn

G
·

The Jacobian matrix of system (3), evaluated at the steady points5 writes:

J =













−θ (1 + Pn) −n θ GP n−1 0

P − µ G − µ GPn

G
0 −1

−
n α (1 + Pn)

B
−

n2 α GPn−1 + δ

B

δ

B













where B =

n−1
∑

i=0

(i + 1)2 Ki P i.

If one clears the denominators of the last row of the Jacobian matrix J , i.e.
if one lets B = 1, then one exactly gets the Jacobian matrix of [1, page 73].

Remark 2. The matrix J is invariant under the following transformation, where ℓ
denotes a nonzero arbitrary constant:

B → ℓ B, δ → ℓ δ, α → ℓ α.

Remark 3. The parameters Ki only occur in the denominator B of the Jacobian
matrix J .

Assume that a Poincaré-Andronov-Hopf bifurcation occurs for system (3), for
some meaningful6 values of the system parameters and variables (1 ≤ i ≤ n−1):

(G, P, M, λ, α, θ, δ, γ0, µ, Ki) = (G0, P 0, M0, λ0, α0, θ0, δ0, γ0
0 , µ0, K0

i ).

4 Following [1], all variables and parameters are required to be positive apart λ, which
may be negative but must anyway be greater than −µ,

5 Note that the derivative of B w.r.t. to P which appears in the Jacobian of the
system (3) disappears after the evaluation at the steady points since it is multiplied
by a term which cancels.

6 In the sense precised above.



Then, by introducing B0 =
∑n−1

i=0 (i + 1)2 K0
i (P 0)i, and according to the two

remarks above, a bifurcation of [1, system (1)] occurs for the meaningful values

(G, P, M, λ, α, θ, δ, γ0, µ, ) = (G0, P 0, M0, λ0, α0/B0, θ0, δ0/B0, γ0
0 , µ0).

Conversely, suppose that a birfurcation of [1, system (1)] arises for some mean-
ingful values

(G, P, M, λ, α, θ, δ, γ0, µ) = (G0, P 0, M0, λ0, α0, θ0, δ0, γ0
0 , µ0).

Using the two remarks above and taking ℓ = 2, one can easily find some positive
values for K0

1 , . . . , K0
n−1 such that B0 =

∑n−1
i=0 (i + 1)2 K0

i (P 0)i = 2. Thus a
bifurcation for the system (3) occurs when

(G, P, M, λ, α, θ, δ, γ0, µ, Ki) = (G0, P 0, M0, λ0, 2α0, θ, 2δ0, γ0
0 , µ0, K0

i )

which are meaningful values. Combining the two implications, one concludes
that a Poincaré-Andronov-Hopf bifurcation arises for [1, system (1)] if and only
if such a bifurcation arises for the system (3), for meaningful values of the systems
variables and parameters. The next proposition follows from the results of [1]:

Proposition 1. For meaningful values of the parameters and the variables, no
Poincaré-Andronov-Hopf bifurcation arises in system (3) if and only if n ≤ 8.

4 On the new quasi-steady state approximation

4.1 Principle of the method

Our method is based on simular ideas as in [11, 9, 12] (see [1, section 4.2] for more
details). The main interest of our method is that it is fully algorithmic. One first
builds a system of differential equations involving some one extra variable Fi

for each fast reaction. Those extra variables are then eliminated by performing
elimination. Our original implementation is based on the diffalg [23] package
available in the standard library of MAPLE. A more recent implementation is
based on the RegularChains [19] package.

This section aims at summarizing [1, section 2]. Consider the classical system
of chemical reactions (4) and (5) describing the transformation of a substrate S
into a product P under the action of the enzyme E (an intermediate complex C
is produced):

E + S
k1⇀↽

k
−1

C (4)

C
k2
−→ E + P (5)

Assume that the reaction (4) is fast. Our method consists in introducing the
following system:

"

Ė = −F1 + k2 C, Ṡ = −F1, Ċ = F1 − k2 C, Ṗ = k2 C, k1 E S = k
−1 C

#

.



Performing the elimination process (and introducing K = k
−1/k1), one gets:

"

F1 =
k2 E S (S + K)

K (S + E + K)
, Ė =

k2 E2 S

K (S + E + K)
, Ṗ =

k2 E S

K
, Ṡ = −

k2 E S (S + K)

K (S + E + K)
, C =

E S

K

#

.

Using the conservation laws E+C = E0+C0 and S+C+P = S0+C0+P0 (where
the subscript 0 indicates the initial concentration), assuming that C0 = P0 = 0
and introducing Vm = k2 E0, further computations yield:

Ṡ = −
Vm S (K + S)

K E0 + (K + S)2
(6)

which differs from the Henri-Michaëlis-Menten and Briggs-Haldane formulae7:

Ṡ(t) = −
Vm S(t)

K + S(t)
· (7)

Over this easy example, the benefits are clear since the reduction is auto-
matic and yields the formula (6) which seems more accurate than the classical
reductions, especially when the condition S ≫ E0 is not fulfilled. Observe that
formula (7) is recovered from (6) by assuming S ≫ E0.

4.2 A better new reduced model

The reduced system (2) appears to be more precise than that of [1], numerical
simulations show. Figure 2 shows two different numerical simulations of the
variable G(t) for the same parameters and initial conditions values except for
the k−

i ’s (hence for the Ki’s). In both cases, three curves are displayed: one for
the initial model (1) in red, one for the raw reduced model (2) in blue and one
for [1, last system page 69] in green. In both cases, the blue and the red curves
almost coincide. The reduction performed in [1] is clearly less precise than the
new one. As the Ki’s parameters tend towards zero, the reduction performed
in [1] becomes more accurate (the rightmost picture is obtained with values
of Ki’s smaller than that of the leftmost one). Thus the domain of validity of
the reduction performed in [1, last system page 69] is more narrow than that of
our new reduction: the Ki’s need to be small.

5 Conclusion

In this paper, the result presented in [1] is generalized by applying an algorithmic,
accurate, quasi-steady state approximation method.

It is well-known that quasi-steady state approximation is useful for it permits
to reduce the size of the differential system to study and the number of its
parameters. But quasi-steady state approximation could also be viewed as a
way to study the dynamical properties of gene regulatory networks which are

7 K =
k
−1

k1
in Henri-Michaëlis-Menten’s case, K =

k
−1+k2

k1
in Briggs-Haldane’s.
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Fig. 2. Numerical simulations of the variable G(t). The horizontal axis give the time t.
The vertical one gives the value of G. For both simulations, n = 3, G(0) = 0.5,
M(0) = 1, P (0) = 1, γ0 = 1, α = 1, θ = 10, ρf = 10, ρb = 5, β = 50, δM = 5, δP = 10
and k+

i = 100 for each i. On the leftmost picture, k−

i = 100 thus Ki = (100/100)i = 1
for each i. On the rightmost one, k−

i = 2000 thus Ki = (100/2000)i = 0.05i for each i.
The red (system 1) and the blue (system 2) curves almost coincide. The green [1, last
system page 69] curve is the lower one on both pictures.

invariant for a range of reactions mechanisms since the mechanisms involved in
the fast reactions may not need to be known in detail. This issue is important
[24]. This shows that the development of algorithmic and accurate quasi-steady
state approximation methods is an important research domain in the field of
algebraic biology.
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