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Abstract

The stability of a rotor system presenting a transverse breathing crack is studied by considering the ef-
fects of crack depth, crack location and the shaft’s rotational speed. The harmonic balance method, in
combination with a path-following continuation procedure, is used to calculate the periodic response of a
non-linear model of a cracked rotor system. The stability of the rotor’s periodic movements is studied in
the frequency domain by introducing the effects of a perturbation on the periodic solution for the cracked
rotor system.
It is shown that the areas of instability increase considerably when the crack deepens, and that the crack’s
position and depth are the main factors affecting not only the non-linear behaviour of the rotor system
but also the different zones of dynamic instability in the periodic solution for the cracked rotor. The
effects of some other system parameters (including the disk position and the stiffness of the supports) on
the dynamic stability of the non-linear periodic response of the cracked rotor system are also investigated.

Keywords: cracked rotor, non-linear vibration, harmonic balance method, stability analysis in the frequency-
domain, rotating machinery.

1 Introduction

The influence of a transverse crack on the vibration of a rotating shaft has been at the focus of attention of
many researchers. Extensive reviews of the dynamic response of cracked rotor systems were published
by Wauer [1] and Dimarogonas [2]. Henry and Avae [3] indicated that the interaction between gravity
and the crack excites resonances at main and sub critical speeds. They noted that the shaft executes re-
spectively two or three loops per shaft revolution at the 1

2 and 1
3 sub-critical speeds. Finally, they pointed

out that shaft imbalances may change the relative size of the loops. Gasch [4, 5] later demonstrated that
opening and closing of the crack (referred to as the breathing effect) during its rotation is due mainly to
the shaft’s self-weight. He suggested that a slight decrease in the natural frequencies and the 2× har-
monic components of the system in the frequency domain could be key indicators for the detection of
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transverse cracks in a rotating shaft. Mayes and Davies [6] analysed both experimentally and theoreti-
cally the effects of a tranverse crack in a rotor. They employed Green’s functions to calculate the dynamic
response of a cracked shaft and concluded that its non-linear response depends on the phase between the
shaft’s imbalance and the position of the crack. They also reported that at 1

2 sub-critical speeds, the vi-
brational amplitude reaches a maximum when the crack is in phase with the shaft’s imbalance, whereas
it is minimised in the case of specific angular separations between the crack and the imbalance. In the
latter case, traditional crack detection techniques could be rendered ineffective.
More recently, several researchers have studied the dynamic response of cracked rotors using theoretical
or experimental methods alone, or by combining both approaches [7–15]. These studies highlight the
possibility of rotor crack detection through the observation of the rotor’s non-linear dynamic behaviour.
The crack reduces the critical speed of the rotor system and produces changes in the amplitude of the 1×,
2× and 3× vibrational harmonics. Depending on the size and location of the crack, the 1×, 2× and 3×
amplitudes may increase or decrease: a slight increase in the crack depth may induced a strong increase
in the 2× harmonic response. Consequently, the detection of variations in the shaft’s orbital movements
at one-half and one-third of the first critical speed can be used as a diagnostic tool.
Similarly, the influence of a single transverse crack on the stability of the periodic response of a rotor
has been studied by various researchers [4, 16–23]. As an example, Gasch [4] studied the influence of
imbalance on the stability of a simple rotor with a transverse crack, and indicated that increased damping
reduces the extent of the unstable region, whereas increased crack depth has the opposite effect. More-
over, the angle between the imbalance and the crack was shown to have an influence on the region of
instability. Zhu et al. [22] demonstrated the presence of unstable regions near the rotational speeds of
1
2×, 1×, and 2× the critical speed, together with narrow regions of instability at lower speeds. They also
indicated that a cracked rotor with high damping is normally stable, even when the crack depth increases.
In order to determine the instability boundaries of a nonlinear cracked rotor system, the Floquet theory is
generally used [20,22,23]. This approach requires the numerical calculation of the state transition matrix
over a period of motion [20, 22]. However, most existing studies that takes into account the stability of
a cracked rotor system, only considers the first threshold speed limits and/or the first instability region
beyond the first critical speed [23].
In the present paper, we propose to analyze and determine the non-linear response and the various re-
gions of instability of a non-linear cracked rotor system, for the first three crtical speeds of the rotor.
Moreover, in order to avoid the transition matrix computation associated with the Floquet method, the
stability analysis is carried out in the frequency-domain, using a method in which a perturbation is ap-
plied to the known harmonic time-domain solution, which is calculated beforehand using the harmonic
balance method.
The present paper is organised as follows: firstly, a description is provided of the rotor system, and of the
method used to model and incorporate the crack, together with a breathing mechanism. Secondly, a brief
explanation is given of the harmonic balance method, which is used to calculate the periodic response of
the non-linear cracked rotor. The algorithm used to calculate the stability of these periodic solutions is
then presented. Finally, the non-linear vibrational amplitudes of the cracked rotor are analysed. Numeri-
cal examples are presented, in which the influence on the stability of the non-linear periodic response of
a cracked rotor system are determined as a function of crack depth, crack location, support stiffness and
disc position.

2 Model of the cracked rotor

The layout of the cracked rotor system under consideration is shown in Figure 1. The rotor is composed
of a shaft of radius R and length L, with one disc of radius RD and thickness hD located at the mid-span.
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All values of the physical parameters are given in Table 1.

2.1 Equation of motion of the uncracked rotor

Using a finite element method, the rotor is discretized into 10 Timoshenko beam finite elements, with
four degrees of freedoms at each node [7]. The axial and torsional degrees of freedom are not considered
here.
Each Timoshenko beam finite element has four degrees of freedom at each node :

(Me
T + Me

R) Ẍe + (ηKe
B − ωGe) Ẋe + (Ke

B + ηωKe
C)Xe = Fe (1)

where ω is the rotational speed. Me
T and Me

R are the translational and rotary mass matrices of the
shaft element. Ke

B is the stiffness matrix and Ke
C the circulatory matrix which describes internal shaft

damping. Ge is the gyroscopic matrix. η defines the coefficient of damping, associated with modal
damping, for the first mode of the system at rest ( ω = 0 ). Fe includes the influence of gravitational
forces.
The disk is modelled as a rigid disk and may be written as(

Md
T + Md

R

)
Ẍd − ωGdẊd = Fd (2)

where Md
T , Md

R and Gd are respectively the translational mass, the rotary mass and the gyroscopic
matrices. Fd defines the imbalance and gravitational forces.
Finally, discrete bearing stiffness components are located at either end of the shaft, after assembling the
various shaft elements and the rigid disc. The equations of the uncracked rotor can be written as

MẌ + DẌ + KX = g (t) (3)

where g (t) contains the balance and gravitational forces. The mass matrix M includes the mass matrices
of the shaft and the rigid disc. The matrix D combines the effects of the shaft’s internal damping,
damping of the supports, and gyroscopic moments. The matrix K includes the stiffness matrices of
the shaft and the supports, together with the circulatory matrix which accounts for the shaft’s internal
damping.

2.2 Crack modelling

Firstly, the presence of a transverse crack introduces local flexibility, due to strain energy concentration
in the vicinity of the tip of the crack under load. In order to provide cross section representation of the
stiffness properties of the crack, Mayes and Davies [24, 25] proposed a theoretical model of a transverse
crack, by reducing the second moment of area of the element at the location of the crack by ∆I , and by
using Green’s functions for the shaft section with the crack. They obtained the expression

∆I = I0

⎛
⎜⎜⎝

R

l

(
1 − ν2

)
F (µ)

1 +
R

l

(
1 − ν2

)
F (µ)

⎞
⎟⎟⎠ (4)

where I0, R , l, and ν are the second moments of area, shaft radius, length of the section and Poisson’s
ratio, respectively. µ is the non-dimensional crack depth and is given by

µ =
h

R
(5)
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where h defines the crack depth of the shaft, as shown in Figure 1. F (µ) defines the non-linear compli-
ance as a function of variations in non-dimensional crack depth µ, which can be derived from a series of
experiments using chordal cracks (see Mayes and Davies [24, 25]). At the transverse crack location, the
stiffness matrix Kcrack is defined (with respect to the principal axes of the crack front) as

Kcrack =
E

l3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12IX 0 0 6lIX −12IX 0 0 6lIX

12IY −6lIY 0 0 −12IY −6lIY 0
4l2IY 0 0 6lIY 2l2IY 0

4l2IX −6lIX 0 0 2l2IX

12IX 0 0 −6lIX

12IY 6lIY 0
Sym. 4l2IY 0

4l2IX

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)

where IX and IY are the new moments of inertia, about the parallel centroidal axes, due to the presence
of the cracked elements. They are given by [14]

IX = ĨX (7)

IY = ĨY − AX̄2 (8)

where X̄2 and A define the uncracked area of the cross-section and the distance from the axis X to the
centroid of the cross section

X̄ =
2

3A
R3γ3 (9)

A = R2
(

(1 − µ) γ +
α

2

)
(10)

where γ is equal to
√

2µ − µ2 for convenience.
As illustrated in Figure 1, α defines the crack angle and is given by

α = 2cos−1 (1 − µ) (11)

Then, the asymmetric area moments of inertia ĨX and ĨY about the X and Y-axes are defined by:

ĨX =
∫ ∫

A
Y 2dA =

R4

4

(
(1 − µ)

(
1 − 4µ + 2µ2

)
γ +

α

2

)
(12)

ĨY =
∫ ∫

A
X2dA =

πR4

4
+ R4

(
2
3

(1 − µ) γ3 +
1
4

(1 − µ)
(
1 − 4µ + 2µ2

)
γ + sin−1 (γ)

)
(13)

In order to model the simple crack breathing phenomenon, it is commonly assumed that gravity deter-
mines the breathing of the crack, due to weight dominance. This reflects the fact that the static deflection
of a cracked rotor is much greater than its dynamic response during rotation. The opening and closing of
the crack may be approximated by a cosine function f(t)

f (t) =
1 − cosωt

2
(14)

where ω defines the rotational speed of the rotor. If f(t) = 0, the crack is closed and has no effect on the
dynamic behaviour of the rotor. If f(t) = 1, the crack is fully open.
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2.3 Equations of motion of the cracked rotor

Finally, the equations of the cracked rotor can be written as

MẌ + DẊ + (K − Kc (t))X = g (t) (15)

where M and K are the mass and stiffness matrices of the complete uncracked rotor. g (t) contains the
balance and gravitational forces. It may be noted that the global stiffness matrix of the rotor consists of
a constant component K and a time dependent component Kc = f (t)Kcrack.
As previoulsy indicated, the crack can open and close due to the self-weight bending and out-of-balance
forces acting on the rotating shaft. This phenomenon means that the Equations 15 of the cracked rotor
are non-linear. Therefore, in order to obtain the non-linear responses of the cracked rotor system, the
Harmonic Balance Method will be used.

Figure 1: Finite-element model of the rotor and the cracked-beam section.

Notation Description Value
R radious of the rotor shaft 0.005m
L length of the rotor shaft 0.5m

RD outer radius of the disk 0.025m
hD thickness of the disk 0.015m
E Young’s modulus of elasticity 2.1 1011N.m−2

G shear modulus 7.7 1010N.m−2

ρ density 7800kg.m−3

ν Poisson ratio 0.3
η coefficient of damping 1 10−6

m mass unbalance 1g
e eccentricity of the mass unbalance 0.01m

Ks stiffness of supports 2 106N.m−1

ω1 first critical speed of the uncracked rotor 317rad.s−1

ω3 second critical speed of the uncracked rotor 1898rad.s−1

ω5 third critical speed of the uncracked rotor 3332rad.s−1

Table 1: Value of the physical parameters
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3 Non-linear analysis

Due to the complexity of non-linear systems, and the considerable time and effort needed to solve them,
many methods have been developed in order to simplify and reduce non-linear equations. The reader
may wish to refer to [26–28] for a survey of some recent developments and alternative approaches.
One of the most popular techniques used to approximate the non-linear responses of a system is the
harmonic balance method in which the non-linear solution is assumed to be a truncated Fourier series.
With this method, stability analysis can be applied to the derived periodic solutions, by making use of
small perturbations.
The present section provides an overview of the Harmonic Balance Method and associated stability
analysis, which have been essential to the determination of results presented in this paper. We refer the
interested reader to [14] for an extensive overview of this non-linear method.

3.1 Harmonic balance method

In order to determine the periodic solutions of the non-linear cracked rotor system, the previous non-
linear equations of motion of the cracked rotor may be rewritten as

MẌ + DẊ + KX = fNL (X, ω, t) (16)

with

fNL (X, ω, t) =
1
2

(1 − cosωt)Kcrack.X + g (t) (17)

The non-linear dynamic response of the rotor can also be approximated by a finite Fourier series with a
fundamental frequency ω:

X (t) = B0 +
m∑

k=1

(Bk cos (kωt) + Ak sin (kωt)) (18)

where m represents the number of harmonics considered in the solution. B0, Ak and Bk (with k =
1, · · · ,m) define the unknown coefficients of the finite Fourier series. The number of harmonic coeffi-
cients is selected on the basis of the number of significant harmonics expected in the non-linear dynamic
response.
Moreover, it is assumed that the non-linear force fNL can be approximated by a finite Fourier series of
order m

fNL (X, ω, t) = C0 +
m∑

k=1

(Ck cos (kωt) + Sk sin (kωt)) (19)

Substituting Equations 18 and 19 into Equation 16, and balancing the harmonic terms yields a set of
(2m + 1) ∗ n equations (where n is the number of degrees of freedom for the complete cracked rotor)⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K
Λ1

. . .
Λk

. . .
Λm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B0

Γ1
...

Γk
...

Γm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C0

Θ1
...

Θk
...

Θm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
...
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(20)

where

Λk =

[
K − k2ω2M −kωD

kωD K − k2ω2M

]
(21)
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Γk =

[
Ak

Bk

]
(22)

Θk =

[
Sk

Ck

]
(23)

The resulting harmonic terms are then balanced and the unknown coefficients
[

B0 Γ1 · · · Γk · · · Γm

]
can be found. The roots of Equation 20 may be found by using a Newton-Raphson algorithm or the Broy-
den method.
To establish the relation between the forcing and the displacement coefficients (i.e. B0 and Γk, and C0

and Θk, respectively) the Alternate Frequency-Time strategy is employed: Cameron and Griffin [29]
suggested that the truncated Fourier expression fNL could be calculated by applying an iterative process,
which is outlined by the following:

[
B0 Γ1 · · · Γk · · · Γm

]T ⇒ X (t) ⇒ fNL (X, ω, t) ⇒
[

C0 Θ1 · · · Θk · · · Θm

]T
(24)

Firstly, an estimation of the Fourier coefficients (B0 and Γk) is used to synthesize the displacement
X (t). The latter vector is then used to evaluate the nonlinear forces fNL (X, ω, t) in the time domain.
Finally, Fourier analysis of these forces gives the coefficients C0 and Θk.
Moreover, due to the fact that the non-linear behaviour is estimated over a range of rotational speeds for
the cracked rotor, a path-following continuation [30] is applied in conjunction with the harmonic balance
method, in order to estimate the non-linear response of the cracked rotor system when the rotational speed
increases. The estimated point on the solution branch is predicted at a chosen arc length by applying the
Lagrangian polynomial extrapolation method. Any point on the solution branch is represented at (Xi, ωi)
where Xi and ωi define the Fourier coefficients and the rotational speed of the cracked rotor. Then, the
arc length between two consecutive points (Xi, ωi) and (Xi+1, ωi+1) is given by

∆Si+1 =
√(

(Xi+1 −Xi)
T (Xi+1 − Xi) + (ωi+1 − ωi)

2
)

i = 0, . . . , 2 (25)

The estimation of the following point at distance ∆S may be predicted by using the Lagrangian extrap-
olation scheme [

X4

ω4

]
=

3∑
i=1

3∏
j=0,i�=j

(
S3 − Sj

Si − Sj

)[
Xi

ωi

]
i = 0, . . . , 3 (26)

with the arc length parameters given by ∆S0 = 0, S1 = ∆S1, S2 = S1 + ∆S2, S3 = S2 + ∆S3 and
∆S4 = S3 + ∆S.

3.2 Stability analysis

Even if the non-linear solution for the cracked rotor can be calculated by the harmonic balance method,
the stability of this solution is not predicted by the algorithm. Stability in the time-domain is usually
determined by the well-known Floquet multipliers and by determining the monodromy matrix [30]. This
procedure is however both time consuming and costly to implement. In order to conserve the inherent
advantages of the frequential method (low computational costs and greater speed when compared with
direct integration), frequential stability analysis can be performed at the end of the previous iteration
procedure [31]. It should be recalled that the results given by stability analysis of a non-linear cracked
system are directly related to the number of harmonics used. A sufficient number of the latter must be
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therefore be used, to prevent the analysis from artificially degrading the diagnosis.
The proposed approach is based on the effect of a perturbation Y around the periodic solution X∗:

X = X∗ + Yeλt (27)

By substituting this relation into Equation 16, one has

MẌ
∗
+DẊ

∗
+KX∗+eλt

(
λ2MY + λ

(
2MẎ + DY

)
+ MŸ + DẎ + KY

)
= fNL

(
X∗ + eλtY

)
(28)

Applying the harmonic balance procedure to the resulting equation of motion, one obtains

ΛZ∗ +
(
Λ + λΞ1 + λ2Ξ2

)
Z̄eλt = bNL

(
Z∗ + eλtZ̄

)
(29)

where Z∗ and Z̄ are the vectors containing the Fourier coefficients of X∗ and Y, respectively. bNL

defines the vector containing the Fourier coefficients of fNL.
The matrices Λ, Ξ1 and Ξ2 are given by

Λ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K
Λ1

. . .
Λk

. . .
Λm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(30)

Ξ1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D
∆̃1

. . .

∆̃k

. . .

∆̃m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(31)

Ξ2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M
M

. . .
M

. . .
M

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(32)

with

Λk =

[
K − k2Ω2M −kΩD

kΩD K − k2Ω2M

]
(33)

∆̃k =

[
D −2kΩM

2kΩM D

]
(34)

The linearization of bNL (X) with respect to eλtZ̄ gives:

bNL

(
Z∗ + eλtZ̄

)
≈ bNL (Z∗) + JbNL

(Z∗) · eλtZ̄ (35)
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where JbNL
is the Jacobian matrix of the function bNL. Considering Equations 29-35, one obtains the

eigenvalue problem (
λΞ1 + λ2Ξ2 + Λ − JbNL

(Z∗)
)
Z̄ = 0 (36)

Finally, the determination of the eigenvalues of Equation 36 provide us with information related to the
stability of the cracked rotor. The solution for the cracked rotor is stable if the real part of all eigenvalues
is negative, since the perturbation Yeλt of Equation 27 decays with time. If at least one of the eigenvalues
has a positive real part, the solution is unstable.

4 Results and discussions

4.1 Unbalanced response of the cracked rotor

Before discussing the stability of the non-linear periodic solutions for the cracked rotor system, and in-
vestigating the effects of the crack and other system parameters on its dynamic stability, a brief summary
is given of the main dynamic characteristics of a cracked rotor system.
Figures 2 and 3 show the vertical and horizontal steady-state responses of the cracked and uncracked
rotor at a position 0.15m along the shaft, for two different positions of the imbalance location. Figures
4(a) and (b) show the vertical steady-state responses of the cracked shaft for each of its nodes.
Firstly, it may be observed that the horizontal and vertical responses of the cracked rotor reveal a decrease
in the critical speeds of the rotor system (see marks 3, 6, 7, 9, 11 and 12) due to the reduction in system
stiffness induced by the presence of the crack. Table 2 shows how the pulsations ωcracked

i of the cracked
rotor system vary as a function of the crack’s depth and location.
However these variations in critical speed, between the cracked and uncracked rotors, are too small to
enable the existence of a crack to be detected in a rotating shaft.
Secondly, it appears that the motion of the cracked rotor is complicated due to the existence of the 2×
and 3× frequencies of the rotational speed in the vibration signals (see marks 1, 2, 4, 5 and 8 in Figures
2- 4). However, it should be recalled that the period of these motions is equal to the period of the exciting
force. For example, the vertical response of the cracked rotor at 1

3 and 1
2 of the first critical speed (see

marks 1 and 2 in Figures 2-4) generates highly prominent 2× and 3× frequency components, which are
well known clues for the detection of a tranverse crack in a rotating shaft. For the horizontal response
of the cracked rotor at 1/2 of the first critical speed (see mark 8 in Figures 2-3), it appears that the 2×
frequency component is predicted when the running speed is approximately 1

2 of the first critical speed,
although this resonance is quite small when compared to the 2× and 3× frequency components observed
for vertical displacements. Moreover, vertical response peaks of the cracked rotor are also present at12 of
the second and third critical speeds (see marks 4 and 5 respectively), but are quite small when compared
to those observed at 1

2 of the first critical speed (see mark 2).
As illustrated in Figures 5(b), the orbits at 1

2 of the first critical speed exhibit the well-known double
loop, typical of a cracked shaft rotating close to half its critical speed [15]. Similarly, a triple loop is
observed at 1/3 of the first critical speed (see Figure 5(a)). Finally, a distorsion of the orbits is observed
at 1

2 the second critical speed, and the inner loop does not appear, as illustrated in Figure 5(c).
It may thus be concluded that the first measure to be taken, towards the detection of cracks in rotating
systems, should be based on the observation of vibrations near to 1

2 and 1
3 of the first critical speed of the

rotor. It it also recalled that the crack depth and location clearly affect the critical speeds of the cracked
rotor and the vibrational amplitudes of the sub-critical resonances [14, 15].
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Figure 2: Vertical and horizontal steady-state responses of the cracked and uncracked rotor at 0.15m
of the left end with the imbalance situated at 0.1m from the left end (−− uncracked, − cracked with
Lcrack = 0.175m and µ = 1)
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Figure 3: Vertical and horizontal steady-state responses of the cracked and uncracked rotor at 0.15m
of the left end with the imbalance situated at 0.25m from the left end (−− uncracked, − cracked with
Lcrack = 0.225m and µ = 1)
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(a) Imbalance at 0.1m, Lcrack = 0.175m and µ = 1
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(b) Imbalance at 0.25m, Lcrack = 0.225m and µ = 1

Figure 4: Vertical displacements for the cracked shaft for two imbalance locations
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µ Lcrack (m) ωcracked
1 ωcracked

2 ωcracked
3 ωcracked

4 ωcracked
5 ωcracked

6

1 0.225 299 314 1884 1895 3200 3308
1 0.175 305 315 1839 1887 3319 3330
1 0.125 310 316 1811 1882 3257 3318
1 0.075 314 317 1836 1887 3222 3312

0.9 0.225 305 314 1889 1895 3245 3308
0.8 0.225 309 314 1892 1895 3273 3309
0.7 0.225 312 314 1893 1895 3291 3310
0.5 0.225 314 315 1896 1896 3312 3316

0.25 0.225 316 316 1897 1897 3326 3326

Table 2: Values of the cracked pulsations ωcracked
i (in rad.s−1) of the rotor system versus the non-

dimensional crack depth µ and the crack location Lcrack

4.2 Stability of the periodic solutions

Perhaps the most significant and catastrophic effect of the presence of a transverse crack in a rotating shaft
is the induced stiffness asymmetry, which can lead to instability in the rotor system. Figure 6 illustrates
various regions of dynamic instability. The first plot shows the non-linear response of a cracked rotor
system, in which the shaded vertical bars indicate regions of instability. The second plot indicates the
maximum real part of the eigenvalues obtained from the eigenproblem described by Equation 36, where
a value greater than zero means that the periodic solution of the cracked rotor system is unstable.
The cracked rotor system is thus stable at rotational speeds near to 1

2× and 1× the first critical speed,
even though there is an increase in the maximum real part of the eigenvalues at frequencies near to the
first critical speed, as illustrated in Figure 6.
In the following we investigate the influence of crack depth and location, position of the disk and stiffness
of the supports, on the main regions of dynamic instability.

4.2.1 Influence of crack location

Figures 7, 8 and 9 indicate the main regions of dynamic instability for a cracked rotor system, as a func-
tion of crack location (the non-dimensional crack depth µ is equal to 1, corresponding to the loss of half
of the shaft’s area). We recall that the periodic solution for a cracked rotor system is unstable if the
maximum real part of the eigenvalues is greater than zero.
When the first main region of dynamic instability is considered (Figure 7), it can be seen that the crack’s
influence on stability is greater when it is located at mid span, than when it is closer to the antinodal
points. Moreover, it can be seen that a small additional region of dynamic instability follows the main re-
gion, if the crack is located near to the middle of the shaft, as illustrated in Figure 7 (for Lcrack = 0.175m
and Lcrack = 0.225m).
Figure 8 illustrates, for the second main region of dynamic instability (between 2100rad/s and 2250rad/s),
variations in stability as a function of crack location. As opposed to the behavior observed in the first
region of instability, here it can be seen that the smallest zone of dynamic instability occurs when the
crack is situated at the middle of the shaft. This is due to the fact that the second main region of dynamic
instability can be associated with the vibrational mode which has a node at the middle of the shaft (i.e.
the third and fourth pulsations of the cracked rotor).
Figure 9 illustrates the system’s behavior in the third main region of dynamic instability (between
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Figure 5: Evolution of the orbits at various position on the shaft around the static deflection (with
Lcrack = 0.175m and µ = 1)
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Figure 6: Instability zones on the vertical responses of the cracked rotor at 0.1m of the left end and max-
imum real part of the eigenvalues (−imbalance at 0.25m, Lcrack = 0.175m and µ = 1; −− imbalance
at 0.1m, Lcrack = 0.175m and µ = 1)
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3400rad/s and 3750rad/s), as a function of crack location (when the crack is closer to nodes of the
fifth and sixth pulsations of the cracked rotor). It is observed that the smallest region of dynamic insta-
bility is obtained when the crack is located at one third of the shaft length. Considering Figures 8 and
9, it can be seen that changes in stability limit are significant when the crack is closer to the antinodal
points. An increase in the regions of dynamic instability is accompanied by a decrease in the stability
threshold. In conclusion, the influence of a crack’s location on the regions of instability is quite similar
to that which it has on pulsations: as indicated in Table 2, the pulsations of a cracked rotor system are
unchanged when the crack is situated at a node.
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Figure 7: Effects of the crack position on the first region of dynamic instability for the non-dimensional
crack depth µ = 1 (− Lcrack = 0.075m, − − Lcrack = 0.125m, −. − Lcrack = 0.175m, ... Lcrack =
0.225m)

4.2.2 Effects of crack size

Figures 10, 11 and 12 illustrate the behavior of the main regions of dynamic instability of a cracked rotor
system, as a function of variations in size of the crack. For these three regions, the location of the crack
has been chosen in such a way as to highlight the largest zones of instability.
It can be seen that as the crack depth decreases, the regional stability is correspondingly diminished.
Moreover, in each case the stability threshold falls quite considerably when the crack depth is increased
(see Figures 10, 11 and 12).
If the non-dimensional crack depth µ is equal to 1 (corresponding to the loss of half of the shaft’s
cross-section), two regions of dynamic instability arise, at frequencies of approximately 618rad/s and
632rad/s, as shown in Figure 10. The second and third main regions of dynamic instability exist only
for deep cracks: they disappear if the non-dimensional crack depth µ is respectively less than 0.9 or 0.8,
as shown in Figures 11 and 12.
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Figure 8: Effects of the crack position on the second region of dynamic instability for the non-
dimensional crack depth µ = 1 (− Lcrack = 0.075m, − − Lcrack = 0.125m, −. − Lcrack = 0.175m,
... Lcrack = 0.225m)
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Figure 9: Effects of the crack position on the third region of dynamic instability for the non-dimensional
crack depth µ = 1 (− Lcrack = 0.075m, − − Lcrack = 0.125m, −. − Lcrack = 0.175m, ... Lcrack =
0.225m)
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Figure 10: Effects of the crack size on the first region of dynamic instability for the crack location
Lcrack = 0.225m (− µ = 0.25, −− µ = 0.5, −. − µ = 0.75, ... µ = 1)
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Figure 11: Effects of the crack size on the second region of dynamic instability for the crack location
Lcrack = 0.175m (− µ = 0.5, −− µ = 0.8, −. − µ = 0.9, ... µ = 1)
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Figure 12: Effects of the crack size on the third region of dynamic instability for the crack location
Lcrack = 0.225m (− µ = 0.75, −− µ = 0.8, −. − µ = 0.9, ... µ = 1)

4.2.3 Influence of support stiffness

Figure 13 illustrates the evolution of stability, within the main instability zones, as a function of variations
in stiffness of the supports (for two different crack locations and a non-dimensional crack µ equal to 1).
As previously explained, the instability zones decrease when the crack is closer to the nodal points (see
Figure 13(a) for the second region of instability, situated between 1600rad/s and 2400rad/s, and Figure
13(b) for the third region of instability, situated between 2400rad/s and 4000rad/s). By selecting
the crack location in such a way as to obtain the largest zones of instability, Figures 14, 15 and 16
illustrate the changes which occur within the main instability regions, as a function of variations in
support stiffness. By taking into account the previous results, and the changes in dynamic behaviour of
the cracked rotor system as a function of the supports’ stiffness, the rotational speed can be normalised
with respect to the (2i − 1)th pulsation of the associated cracked rotor.
The values of the uncracked and cracked rotor systems are given in Table 3 as a function of support
stiffness and crack location.
It can be clearly observed that the influence of the supports’ stiffness is in general quite considerable: the
second and third regions of dynamic instability are strongly reduced if the supports become more flexi-
ble, as illustrated in Figures 15 and 16, and the threshold speed limits decrease with increasing support
stiffness. It should however be noted that support stiffness does not have a strong influence on stability
in the first main region of dynamic instability (see Figure 14): the instability area and threshold speed
limits are only slightly decreased when the supports become more flexible. Finally, it is verified that the
cracked rotor system still remains stable at rotational speeds in the vicinity of1

2× and 1× the first critical
speed.
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(a) µ = 1 and Lcrack = 0.225m
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(b) µ = 1 and Lcrack = 0.175m

Figure 13: Effects of the supports’ stiffness on the main regions of dynamic instability (− Ks =
2 107N.m−1, −− Ks = 2 106N.m−1, −. − Ks = 5 105N.m−1, ... Ks = 2 105N.m−1)
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Figure 14: Effects of the supports’ stiffness on the first region of dynamic instability for µ = 1 and
Lcrack = 0.225m (− Ks = 2 107N.m−1, − − Ks = 2 106N.m−1, −. − Ks = 5 105N.m−1,
... Ks = 2 105N.m−1)
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Figure 15: Effects of the supports’ stiffness on the second region of dynamic instability for µ = 1 and
Lcrack = 0.175m (− Ks = 2 107N.m−1, − − Ks = 2 106N.m−1, −. − Ks = 5 105N.m−1,
... Ks = 2 105N.m−1)
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Figure 16: Effects of the supports’ stiffness on the third region of dynamic instability for µ = 1 and
Lcrack = 0.225m (− Ks = 2 107N.m−1, − − Ks = 2 106N.m−1, −. − Ks = 5 105N.m−1,
... Ks = 2 105N.m−1)

Stiffness (N.m−1) ω1 ω2 ω3 ω4 ω5 ω6

2 105 302 302 1473 1473 2239 2239
5 105 312 312 1735 1735 2843 2843
2 106 317 317 1898 1898 3332 3332
2 107 319 319 1949 1949 3493 3493

Lcrack (m) ωcracked
1 ωcracked

2 ωcracked
3 ωcracked

4 ωcracked
5 ωcracked

6

2 105 0.225 286 299 1468 1472 2176 2228
0.175 291 300 1450 1469 2229 2238

5 105 0.225 295 309 1725 1733 2749 2826
0.175 300 310 1693 1727 2834 2842

2 106 0.225 299 314 1884 1895 3200 3308
0.175 305 315 1839 1887 3319 3330

2 107 0.225 301 316 1934 1946 3347 3466
0.175 306 317 1885 1938 3476 3491

Table 3: Values of the uncracked pulsations ωi and the cracked pulsations ωcracked
i (in rad.s−1) of the

rotor system versus the supports’ stiffness
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4.2.4 Influence of disk location

Figure 17 indicates the influence of the disk’s location on the main instability zones, for two locations of
the crack (the non-dimensional crack µ is equal to 1).
Firstly, it can be observed that the maximum real part of the eigenvalues is slightly affected by the disk
position. This is due to the fact that the gyroscopic influence of the disk varies when it is moved along
the shaft, from the middle towards the left end of the cracked rotor.
As previously seen, the position of the crack affects the stability of the non-linear periodic solution:
Figure 17(a) shows that the second region of instability (between 1900rad/s and 2300rad/s) decreases
if the crack is closer to the nodal point of the second mode, which is situated at the middle of the rotor.
Figure 17(b) shows that the third region of instability (between 3400rad/s and 4500rad/s) decreases
when the crack approaches the third-way point at the left end of the rotor, where one of the nodal points
of the third mode is located.
For each region of dynamic instability, the location of the crack is then chosen in such a way as to
obtain the largest area of instability, when the non-dimensional crack depth is equal to 1. As previously
explained, the rotational speed of the cracked rotor is normalized by the (2i − 1)th pulsation of the
associated cracked rotor for the ith main region of dynamic instability. Table 4 shows how the pulsations
of the cracked and uncracked rotor vary as a function of disk location.
Figure 18 illustrates the influence of disk location on the first main region of dynamic instability. It can
be seen that the region of dynamic instability is minimized when the disk is located at the middle of the
cracked rotor. The region of dynamic instability increases when the disk moves from the middle towards
either end of the shaft. However, Figure 18 indicates that the normalized threshold critical speed reaches
a minimum when the disk is located at the middle of the shaft.
Figure 19 illustrates the resulting variations in the second main region of dynamic instability: the position
of the disk has a significant influence on this region and on the extent of dynamic instability. From this
figure, it can be seen that the region of dynamic instability reaches a minimum when the disk is located
at the left end of the shaft. The largest unstable region is obtained when the disk is located at one third of
the length of the shaft. However, the normalized critical rotation speed reaches its lowest when the disk
is positioned at the middle of the shaft.
Figure 20 illustrates the influence of disk location on the third main region of dynamic instability. The
minimum normalized threshold speed limit and the largest region of dynamic instability occur when the
disk is located towards the left end of the shaft, near to the 1

3 way point of its total length.
Finally, the cracked rotor system still remains stable at rotational speeds near to 1

2× and 1× its first
critical speed.
In conclusion, the influence of disk’s position on the size of the unstable region and on the normalized
threshold speed limits appears to be very complex.
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(a) µ = 1 and Lcrack = 0.225m
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(b) µ = 1 and Lcrack = 0.175m

Figure 17: Effects of the disk location on the main regions of dynamic instability (− Ld = 0.1m,
−− Ld = 0.15m, −. − Ld = 0.2m, ... Ld = 0.25m)
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Figure 18: Effects of the disk location on the first region of dynamic instability for µ = 1 and Lcrack =
0.225m (− Ld = 0.1m, −− Ld = 0.15m, −. − Ld = 0.2m, ... Ld = 0.25m)
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Figure 19: Effects of the disk location on the second region of dynamic instability for µ = 1 and
Lcrack = 0.175m (− Ld = 0.1m, −− Ld = 0.15m, −. − Ld = 0.2m, ... Ld = 0.25m)
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Figure 20: Effects of the disk location on the third region of dynamic instability for µ = 1 and Lcrack =
0.225m (− Ld = 0.1m, −− Ld = 0.15m, −. − Ld = 0.2m, ... Ld = 0.25m)

Disk position (m) ω1 ω2 ω3 ω4 ω5 ω6

0.25 317 317 1898 1898 3332 3332
0.2 325 325 1738 1738 3716 3716
0.15 351 351 1511 1511 3968 3968
0.1 398 398 1393 1393 3526 3526

Lcrack (m) ωcracked
1 ωcracked

2 ωcracked
3 ωcracked

4 ωcracked
5 ωcracked

6

0.25 0.225 299 314 1884 1895 3200 3308
0.175 299 314 1884 1895 3200 3308

0.2 0.225 306 322 1725 1736 3554 3685
0.175 309 322 1685 1729 3683 3710

0.15 0.225 334 348 1507 1510 3814 3940
0.175 332 348 1472 1504 3932 3962

0.1 0.225 380 395 1390 1393 3375 3499
0.175 380 395 1376 1390 3460 3515

Table 4: Values of the uncracked pulsations ωi and the cracked pulsations ωcracked
i (in rad.s−1) of the

rotor system versus the disk position
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5 Conclusion

The dynamic characteristics and stability of the non-linear periodic solutions for a cracked rotor are
analyzed in this paper. The stability analysis is carried out by applying a perturbation to the non-linear
periodic solution, previously computed using the harmonic balance method.
Firstly, the influence of a tranverse crack on the dynamic characteristics of a cracked rotor is discussed.
It is demonstrated that the vibrational behaviour of a cracked rotor is complicated by the presence of
the 2× and 3× resonances of the system response, when the running speed is approximately one-half or
one-third of one of the critical speeds. It is shown that the shaft executes respectively two or three loops
per shaft revolution, when the rotational speed of the cracked rotor passes through one half or one third
of the critical speed.
Secondly, it is shown that the rotor system may in some cases lose its stability when cracks appear. The
influence of crack size and location are significant for the main regions of dynamic instability, which
expand with the crack increases in depth. Disk location and support stiffness influence the main regions
of dynamic instability when cracks appear, whereas flexible rotor supports can reduce both the threshold
speed limits and the extent of the regions of instability.
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[28] Sinou, J.-J., Thouverez, F., and Jézéquel, L., 2004. “Methods to reduce non-linear mechanical
systems for instability computation”. Archives of Computational Methods in Engineering: State of
the Art Reviews, 11(3), pp. 257–344.

27



[29] Cameron, T. M., and Griffin, J. H., 1989. “An alternating frequency time domain method for
calculating the steady state response of nonlinear dynamic systems”. ASME Journal of Applied
Mechanics, 56, pp. 149–154.

[30] Cardona, A., Lerusse, A., and Geradin, M., 1998. “Fast fourier nonlinear vibration analysis”.
Computational Mechanics, 22, pp. 128–142 .

[31] Groll, G., and Ewins, D. J., 2001. “The harmonic balance method with arc-length continuation in
rotor/stator contact problems”. Journal of Sound and Vibration, 241(2), pp. 223–233.

28


