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A demonstration study of three advanced, sequential data assimilation methods, applied with the nonlinear Miami Isopycnic

Coordinate Ocean Model (MICOM), has been performed within the European Commission-funded DIADEM project. The data

assimilation techniques considered are the Ensemble Kalman Filter (EnKF), the Ensemble Kalman Smoother (EnKS) and the

Singular Evolutive Extended Kalman (SEEK) Filter, which all in different ways resemble the original Kalman Filter.

In the EnKF and EnKS an ensemble of model states is integrated forward in time according to the model dynamics, and

statistical moments needed at analysis time are calculated from the ensemble of model states. The EnKS, as opposed to the

EnKF, update the analysis also backward in time whenever new observations are available, thereby improving the estimated

states at the previous analysis times. The SEEK filter reduces the computational burden of the error propagation by representing

the errors in a subspace which is initially calculated from a truncated EOF analysis.

A hindcast experiment, where sea-level anomaly and sea-surface temperature data are assimilated, has been conducted in the
North Atlantic for the time period July until September 1996. In this paper, we describe the implementation of ensemble-based

assimilation methods with a common theoretical framework, we present results from hindcast experiments achieved with the
EnKF, EnKS and SEEK filter, and we discuss the relative merits of these methods from the perspective of operational marine

monitoring and forecasting systems. We found that the three systems have similar performances, and they can be considered
feasible technologically for building preoperational prototypes.

Keywords: North Atlantic; Assimilation methods; Operational ocean forecasting

1. Introduction

An ocean monitoring and prediction system must

rely on integrated use of available remotely sensed
* Corresponding author.

E-mail address: kari.brusdal@hydro.com (K. Brusdal).
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and in situ measured observations together with

dynamical models to achieve a best possible estima-

tion of the true state of the ocean. Such integrated use

of observations and model tools is best done using so-

called data assimilation methods which provide a

mean for optimal combination of the information

about the real world contained in observations and

the information about dynamical processes described

by the models. The assimilation of observations

allows numerical ocean models to simulate realistic

meso-scale features of the ocean, i.e., the model

evolution can be kept close to the true state of the

ocean, and one avoids that the model drifts away from

the observed state.

In the EC MAST-III-funded project, Development

of Advanced Data Assimilation Systems for Opera-

tional Monitoring and Forecasting of the North Atlan-

tic and Nordic Seas (DIADEM), three state-of-the-art

advanced data assimilation techniques have, for the

first time, been implemented with the Miami Isopyc-

nic Coordinate Ocean Model (MICOM) to build a

preoperational marine monitoring and forecasting sys-

tem. The data assimilation methods considered are the

Ensemble Kalman Filter (EnKF) by Evensen (1994),

the Ensemble Kalman Smoother (EnKS) by Evensen

and van Leeuwen (2000) and the Singular Evolutive

Extended Kalman (SEEK) filter by Pham et al.

(1998), which all are based on dynamically consistent

estimates of the model error statistics.

The EnKF and EnKS schemes are based upon

Monte Carlo forecasting or ensemble integration to

compute the time evolution of error statistics. Monte

Carlo methods avoid problems associated with the

traditional Extended Kalman Filter (EKF), see, e.g.,

Evensen (1992), which neglects contributions from

higher-order statistical moments when solving the

error covariance equation. The Monte Carlo methods

considered in this paper represent an alternative to

integrating the error covariance equation (as in EKF)

and are equivalent to solving the equation for the time

evolution of the probability density function for the

model error statistics. All the statistical information

(mean state and its error covariance) needed at anal-

ysis time can then be computed from the ensemble of

model states. The EnKF was first introduced in

Evensen (1994), where it was applied with success

in a twin experiment and intercompared with the EKF.

In Evensen and van Leeuwen (1996), it was used in a

realistic application for the Agulhas Current assimilat-

ing Geosat altimeter data into a quasi-geostropic

model. The EnKS bears a strong resemblance with

the EnKF; the difference is that whenever new obser-

vations are available during the forward integration,

new analyses are calculated for all previous and the

current time. Consequently, the first guess for the

EnKS equals the EnKF solution, and subsequent

smoother estimates are improvements of the first

guess solution.

The SEEK filter reduces the computational burden

of the error propagation by representing the model

error in a subspace of small dimension. The initial

error covariance is represented as a truncated series of

orthogonal perturbations from an Empirical Orthogo-

nal Function (EOF) analysis. The error subspace

spanned by these EOFs evolves during the assimila-

tion according to the model dynamics. The prediction

error statistics are approximated from this error sub-

space, where only the dominant modes of variability

are retained from the EOF analysis. As the number of

dominant modes to be considered in the subspace is

usually smaller than the size of the ensemble, the

computational burden of the evolution error cova-

riance with the SEEK can be reduced compared with

the EnKF and EnKS. The SEEK filter has been

applied in an academic test case in Pham et al.

(1998). In Brasseur et al. (1999), they implemented

an improved version of the SEEK filter which pro-

gressively learns the statistical structure of the esti-

mation error from the residual innovation.

The purpose of this work is to validate the imple-

mentation of the three assimilation schemes in a

hindcast experiment in the North Atlantic covering

the time period July till September 1996. MICOM is a

dynamic and thermodynamic isopycnic ocean general

circulation model which has certain properties that

make it ideal for use in a data assimilation system,

e.g., it allows for updating the vertical density profile

solely by moving layer interfaces up and down. In the

data assimilation experiment presented in this paper,

satellite observations of Sea-Level Anomalies (SLA)

from radar altimeter data and Sea-surface Temperature

(SST) from AVHRR data are assimilated into the

ocean model. The capability of EnKF, EnKS and

SEEK schemes to track the true evolution of the

ocean will be examined, interpreted and, to some

extent, intercompared.
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In Section 2, the Ocean General Circulation Model,

MICOM and the model setup is presented. A theoret-

ical presentation of the three data assimilation techni-

ques and implementation issues are given in Section 3.

A discussion and comparison of the EnKF and the

SEEK filter is given in Section 3.7. Section 4 describes

the processing of the satellite observations used, and

Section 5 presents the setup of the assimilation experi-

ment. Finally, the numerical results of the hindcast

experiment followed by a discussion and conclusions

are given in Sections 6 and 7, respectively.

2. Model description

The Miami Isopycnic Coordinate Ocean Model

(MICOM) was developed by Bleck and Boudra

(1986), Bleck et al. (1989, 1992) and Smith et al.

(1990) at the University of Miami. MICOM is char-

acterized by the use of potential density as the vertical

coordinate. This is possible since density is a mono-

tonic function of depth. The motivation for using an

isopycnic ocean model is that mixing along neutral

surfaces, i.e., approximately surfaces of constant den-

sity, is orders of magnitude larger than the mixing

across density surfaces. Hence, in MICOM, the ocean

is divided into a number of constant density layers

where the density increases with depth. The interac-

tion between the different layers is mostly through

hydrostatic pressure forces, but also includes explic-

itly prescribed diapycnal mixing and convection pro-

cesses. The isopycnic nature of the model allows for

high resolution in areas with large density gradients,

and artificial mixing only occurs along density surfa-

ces where it is negligible compared to the prescribed

eddy mixing.

The upper layer is treated as a bulk mixed layer

which allows for horizontal variations in the thermo-

dynamic variables and density. It is based on an

implementation of the Kraus–Turner mixed layer

formulation (Bleck et al., 1989) and the formulation

by Gaspar et al. (1990). This allows the model to use

realistic heat and freshwater fluxes and to interact with

a dynamic and thermodynamic ice model.

The model solves a number of equations consisting

of the momentum equation for the velocity vector, one

conservation equation for salt or heat, a continuity

equation for mass conservation and, finally, the hydro-

static pressure equation which relates pressure to

depth (see Bleck et al., 1992). Temperature is calcu-

lated by integrating a transport equation, and the

salinity can then be diagnosed from the equation of

state since the reference density of the layer is known.

The model permits motion in all layers (contrary to

reduced gravity models which suppress the barotropic

mode), and in order to reduce the numerical cost of

carrying the barotropic waves, a split-explicit scheme

is used (Higdon and Bennett, 1996).

In MICOM, it is assumed that all model layers exist

everywhere in the model domain. The thicknesses of

the layers are entirely determined by the time evolving

model equations, and special transport algorithms are

required to maintain positive thickness for the model

layers at all times. The internal layers (below the upper

mixed layer) will outcrop to the bathymetry and to the

upper mixed layer and they are, therefore, allowed to

become massless with zero thickness. There are ther-

modynamic variables in all layers.

Vertical mixing processes include parameteriza-

tions for diapycnal mixing (transfer of salt and poten-

tial temperature between layers), convection (when

the mixed layer water becomes denser than the iso-

pycnal layers below) and entrainment/detrainment of

mixed layer water (due to deepening/retreat of the

mixed layer depth).

3. Data assimilation methods

The theoretical foundation for the three assimila-

tion schemes, i.e., the EnKF, the EnKS and the SEEK

filter, is now given in order to make it possible for the

reader to understand the fundamental differences

between them.

Given a vector of l measurements, daR
l with an

error covariance matrix WaR
l� l, and a model state

vector, yaR
n with its error covariance matrix

Pf
aR

n� n. A linear variance minimizing analysis then

becomes

ya ¼ yf þ Kðd �Hyf Þ: ð1Þ

The superscripts, ‘a’ and ‘f’, respectively, denote

analysis and forecast. The matrix HaR
l� n is the

observation operator which ‘‘measures’’ the model
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variables at the location of the observations, i.e., the

‘‘innovation vector’’, d�Hyf, computes the misfit

between the observation vector and the model pre-

diction. The matrix KaR
n� l is the Kalman gain

given as

K ¼ PfHTðHPfHT þWÞ�1: ð2Þ

Finally, the error covariance matrix for the ana-

lysed estimate becomes

Pa ¼ ðI � KHÞPf : ð3Þ

As is well known, these equations are optimal, in

the sense of variance minimizing, for linear models,

and the optimal estimate is the maximum likelihood

estimator for Gaussian distributed prior probability

densities for the model and measurement errors.

However, in our case, the model is nonlinear, so the

optimality is not assured.

In between measurement times, the model state and

the associated error covariance matrix is evolved in

time according to the model dynamics (assuming a

linear model),

ykþ1 ¼ Fyk ; ð4Þ

where F is the model operator. The error covariance

equation is given by

Pkþ1 ¼ FPkF
T þ Q; ð5Þ

where Q is the model error covariance matrix repre-

senting the uncertainties in the model formulation.

With a nonlinear model

ykþ1 ¼ f ðykÞ; ð6Þ

the error covariance equation is written on the same

form as above, but F is now the tangent linear

operator or Jacobian of the nonlinear model operator,

f evaluated at the current value of the model state

vector. Thus, a linearization is applied leading to a

linear equation for the evolution of the error cova-

riance statistics. This is exactly the algorithm used in

the so-called Extended Kalman Filter (EKF).

3.1. Ensemble Kalman Filter

The EnKF was designed to resolve two major

problems related to the use of the EKF with non-

linear dynamics in large state spaces. The EKF

applies a closure scheme where third- and higher-

order moments in the error covariance equation are

discarded. This linearization has been shown to be

invalid in a number of applications, e.g., Evensen

(1992) and Miller et al. (1994). In fact, the equa-

tion is no longer the fundamental equation for the

error evolution when the dynamical model is non-

linear. In Evensen (1994), it was shown that a

Monte Carlo method can be used to solve an

equation for the time evolution of the probability

density of the model state, as an alternative to

using the approximate error covariance equation in

the EKF.

For a nonlinear model where we appreciate that the

model is not perfect and contains model errors, we can

write it as a stochastic differential equation (on con-

tinuous form) as

dy ¼ fðyÞdt þ gðy; dqÞdq: ð7Þ

This equation states that an increment in time will

yield an increment in y, which, in addition, is

influenced by a random contribution from the stochas-

tic forcing term, gdq, representing the model errors.

The dq describe a vector Brownian motion process

with covariance Qdt. Because the model is nonlinear,

g is not an explicit function of the random variable dq

so the Ito interpretation of the stochastic differential

equation has to be used instead of the Statonovitz

interpretation Jazwinski (1970).

When the model errors are additive, i.e., when g(y,

dq)dq = g(y)dq, one can derive the Fokker–Planck or

Kolmogorov’s equation which describes the time

evolution of the probability density /(y) of the model

state,

B/

Bt
þ
X

i

Bðfi/Þ

Byi

¼
1

2

X

i;j

B
2/ðgQgTÞij
ByiByj

; ð8Þ

where fi is the component number i of the model

operator f and gQgT is the covariance matrix for the

model errors.

This equation does not apply any important

approximations and can be considered as the funda-

mental equation for the time evolution of error sta-

tistics. A detailed derivation is given in Jazwinski

(1970). The equation describes the change of proba-
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bility density in a local ‘‘volume’’ which is dependent

on the divergence term describing a probability flux

into the local ‘‘volume’’ (impact of the dynamical

equation) and the diffusion term which tends to flatten

the probability density due to the effect of stochastic

model errors. If Eq. (8) could be solved for the

probability density function, it should be possible to

calculate statistical moments like the mean state and

the error covariance for the model forecast to be used

in the analysis scheme.

The EnKF applies a Markov Chain Monte Carlo

(MCMC) method to solve Eq. (8). The probability

density can be represented using a large ensemble of

model states, and by integrating these model states

forward in time according to the model dynamics

described by the stochastic differential Eq. (7), this

ensemble prediction is equivalent to solving the

Fokker Planck equation using a MCMC method. This

procedure forms the backbone for the EnKF.

The analysis in the EnKF is based on Eqs. (1)–(3),

but now assumes that the covariance matrix P
f can be

represented by the forecast ensemble of model states.

In the EnKF, the update is performed on each ensem-

ble member separately, such that the new ensemble

automatically has the correct spreading. This makes

the scheme very efficient, avoiding the need for

resampling algorithms to generate the new ensemble

from the updated covariance each time measurement

have been assimilated. Furthermore, the storage of the

huge covariance matrix is not required. The imple-

mentation of the filter is discussed in more detail

below.

By using these widely adapted Eqs. (1)–(3) for

computing the analysis, the fundamental assumption

is that the probability densities of the model pre-

diction and the measurements are both close to a

Gaussian. This is an implicit approximation when

using the EKF since higher-order statistical moments

are discarded and only the error covariance matrix is

evolved in time. However, the EnKF applies a fully

nonlinear evolution of error statistics and will pre-

dict non-Gaussian error statistics if the dynamical

model is nonlinear. The nonlinear filter equations, or

analysis equations, becomes more difficult to use in

practical applications and are discussed in Evensen

and van Leeuwen (2000). One preliminary conclu-

sion is that if sufficient number of measurements

with Gaussian distributed errors are available, then

the model state will stay close to a Gaussian

distribution, too. Unfortunately, no general theorems

are available to quantify these statements, but in

some papers this assumption has been tested by

investigating the magnitude of the third-order

moment, or even of higher-order moments (see,

e.g., the works by van Leeuwen, 2001; Natvik and

Evensen (2003a,b, this issue). The experience from

EnKF applications with relatively low-resolution

(eddy permitting) ocean models seems to be that

the Gaussian assumption adopted in the analysis

equations is not so bad after all. Clearly, this needs

further investigation.

3.2. Ensemble Kalman smoother

The EnKS is a sequential algorithm which builds

on the EnKF. It uses the same assumption as the EnKF

about Gaussian statistics at analysis times. Previous

work by van Leeuwen (2001) had shown that a

nonsequential ensemble smoother (ES) can be formu-

lated, but the assimilation time interval is restricted, at

least for nonlinear models. van Leeuwen and Evensen

(1996) had earlier found that the EnKF results were

superior to the ES results due to the assumption of

Gaussianity. In the ES, this assumption is used for the

probability density over the whole integration interval,

while the EnKF only makes it at analysis times. More

importantly, however, is the fact that the prior estimate

in the ES (the mean of an ensemble of model runs

over the whole time interval), is rather poor and

actually resembles the model climatology. An impor-

tant result was found by Evensen and van Leeuwen

(2000), where it was pointed out that any smoother

solution can be obtained sequentially as long as

measurement errors are uncorrelated in time. A new

smoother was derived from basic principles which

uses the EnKF solution as a first guess and computes

further updates backward in time to obtain the

smoother solution. Thus, the EnKS computes an

additional contribution to the EnKF analysis from

future measurements, which leads to a further

improvement in the estimate. The additional smoother

updates do not involve backward integrations as in

many other smoother algorithms, with all their poten-

tial problems. Instead, the assumption of Gaussianity

is made again, so that the smoother solution can again

be written in terms of covariances using a slightly
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modified form of the Kalman update Eqs. (1) and (2).

The analysis equation now becomes

yaðt � sÞ ¼ yf ðt � sÞ þ Kðt; sÞðd �Hyf ðtÞÞ; ð9Þ

where t denotes the time for the current data set and s

is the time instant for the smoother update. The

Kalman gain K(t,s) is now using the covariance of

the model state between the times t and s,

Kðt; sÞ ¼ Pf ðt; sÞHTðHPf ðt; tÞHT þWÞ�1 ð10Þ

Interestingly, no further model integrations have to

be carried out to obtain the EnKS from the EnKF.

Even the inversion of HPfHT +W, when computing

the Kalman gain, becomes the same as in the EnKF.

One only needs to store the relevant part of the EnKF

ensemble at those times where the smoother solution

is needed. Obviously, this is computationally a very

efficient scheme. The implementation issues are fur-

ther discussed below, being very close to those of the

EnKF.

3.3. Singular evolutive Extended Kalman Filter

A critical issue for the application of Monte Carlo

methods is the determination of a minimum number of

ocean states needed to properly solve the forecast

error equation and to estimate the characteristics of the

forecast distribution. Due to the huge dimension of the

numerical ocean state vector, the convergence of a

Monte Carlo method may be slow, and the required

computation may quickly exceed available resources.

A further simplification of the propagation of error

statistics may be achieved using the concept of an

error subspace. Assume that m random members are

necessary to sample the probability distribution (or

actually the error covariance matrix). An EOF decom-

position of the ensemble may show that only a few

dominant directions in the state space, rbm, are

needed to explain the spreading of the ensemble (or

actually the error covariance matrix).

The idea of the SEEK filter is to compute these r

dominant directions to parameterize the error cova-

riance at the initial time of an assimilation sequence

and to solve the Kalman Filter equations in terms of

that subspace afterward (Pham et al., 1998). Depend-

ing on the norm of the error modes and the importance

of nonlinear effects, the propagation of the forecast

error can be achieved using the nonlinear model (in a

similar way as in the EnKF) or using a tangent linear

approximation of it (Verron et al., 1999).

While the EnKF computes the analysis in a space

spanned by the m random ensemble members, the

SEEK computes the analysis in the space spanned by

the r dominant EOFs. Further, while the EnKF

updates the error statistics by performing an analysis

for each ensemble member, the SEEK filter updates

the statistics of the error covariance in the reduced

space directly.

In order to compensate for the EOF truncation and

more generally for the limitations inherent to the error

subspace parameterization, an adaptive mechanism is

included in the SEEK filter which performs a con-

sistency check between the error statistics predicted

by the filter and the information contained in the

innovation vector (Brasseur et al., 1999). In the

present application, this mechanism operates through

the self-tuning of the model error in order to achieve a

balance between the expected and the observed inno-

vation variance (Brankart et al., 2003).

3.4. Practical implementation of the EnKF

The EnKF and EnKS analysis schemes have been

implemented in a similar manner, the difference is that

the EnKS implementation has been extended such that

the observations also update model states backward in

time. Therefore, the following description of the

analysis implementation is valid for both the EnKF

and EnKS.

The model state is denoted by yaR
n, and the

ensemble of forecasted model states are stored in a

matrix AaR
n� m, where n is the number of elements

in the model state and m is the number of members in

the ensemble.

An ensemble approximation of the forecast error

covariance matrix is given by

Pf
e ¼

1

m� 1
ðAf � A

f
ÞðAf � A

f
ÞT; ð11Þ

where each column of the matrix Af contains the mean

of the ensemble, y
f
¼ ð1=mÞ

P

j¼1
m

yf
j . The ensemble

mean is considered to be the best guess estimate (it is

the variance-minimizing estimate), and the spreading

of the ensemble around the mean gives the error

variance in the ensemble.
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In order to obtain a variance minimizing analysis

scheme, we also have to create an ensemble of

observation vectors, djaR
l, which is generated by

adding vectors of observation noise, ejaR
l, to the

observations, d, i.e.,

dj ¼ d þ ej; j ¼ 1; . . . ; m; ð12Þ

where each ej is picked randomly from a Gaussian

distribution with zero mean and standard deviation

determined by error covariance matrix for the meas-

urements, W. The ensemble of measurements can be

stored in the columns of a matrix

D ¼ ðd1; d2; . . . ; dmÞaR
l�m: ð13Þ

In the analysis scheme, each ensemble member, yj,

j = 1, . . ., m is updated according to

ya
j ¼ yf

j þ Keðdj �Hyf
j Þ; ð14Þ

or written in matrix form,

Aa ¼ Af þ KeðD�HAf Þ; ð15Þ

where the Kalman gain computed from the ensemble

is

Ke ¼ Pf
eH

TðHPf
eH

T þWÞ�1: ð16Þ

Define now the ‘‘measurements’’ of the ensemble

perturbations

Se ¼ HðAf � A
f
Þ; ð17Þ

and

Ce ¼ ðHPf
eH

T þWÞ ¼
SeS

T
e

m� 1
þW ¼ UeKeU

T
e : ð18Þ

where Ue contains the eigenvectors of Ce and Ke the

corresponding eigenvalues. The Ce
� 1 matrix is com-

puted from an eigenvalue decomposition of Ce, since

this makes it possible to handle the situation where C

is singular (this may occur if dependent measure-

ments are used and if the number of measurements is

larger than the number of ensemble members). In

order to avoid this problem, the spectrum of the

eigenvalues is truncated to only retain significant

nonzero eigenvalues and the pseudo inverse of Ce

is approximated by Ce
� 1=UeKe

� 1Ue
T. The analysis

Eq. (15) now becomes

Aa ¼ Af þ
1

m� 1
ðAf � A

f
ÞSTeUeK

�1
e UT

e ðD�HAf Þ:

ð19Þ

Following the analysis step, each individual mem-

ber of the ensemble is integrated forward in time until

the next time observations are available using the

stochastic Eq. (7). The prediction of error statistics

would be exact in the case of an infinite ensemble

size. Simulation of model errors is included in a

realistic way (if the model error statistics is actually

known). Thus, the major approximations used in the

EnKF are related to the use of a finite ensemble size

and the use of a Gaussian assumption on the predicted

error statistics at analysis time.

3.5. Practical implementation of the EnKS

The EnKS analysis can be computed using the

same formula (Eq. (19)) for different prior times s just

by writing it as

Aaðt�sÞ ¼ Af ðt�sÞ þ
1

m� 1
ðAf ðt�sÞ�A

f
ðt � sÞÞ

�STeUeK
�1
e UT

e ðD�HAf Þ: ð20Þ

Thus, it is not necessary to recompute the coeffi-

cients already used in the EnKF analysis. The analysis

error at the prior times is diagnosed from the updated

ensemble as

Pa
eðt � sÞ ¼

1

m� 1
ðAaðt � sÞ � A

a
ðt � sÞÞ

� ðAaðt � sÞ � A
a
ðt � sÞÞT: ð21Þ

3.6. Practical implementation of the SEEK filter

The general equations of the SEEK analysis are

quite similar to their EnKF and EnKS counterparts,

although several differences exist in the numerical

algorithm. The major difference is linked to the fact

that only one oceanic state is corrected with the data,

while the error statistics are modified in the reduced

space.
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In practice, the conventional procedure to evaluate

the initial error covariance assumes that (i) the cova-

riance of the oceanic variability can be used as a proxy

of the initial error covariance; (ii) the model varia-

bility is identical to the real ocean variability; (iii) a

sample of model snapshots adequately represents the

model variability; and (iv) the EOF analysis of the

sample is dominated by r significant modes.

With r being the dimension of the error subspace,

the forecast error covariance matrix of the SEEK filter

can be computed as

Pf
s ¼

1

r � 1
Nf ðNf ÞT; ð22Þ

where Nf
aR

n� r initially contains the r dominant

vectors of the EOF decomposition. Thus, Nf takes

the role of the Af�Af in the EnKF. At the analysis

step, the ocean state vector is updated according to the

same equation as Eq. (14) in the EnKF, i.e.,

ya ¼ yf þ Ksðd �Hyf Þ; ð23Þ

where

Ks ¼ Pf
sH

TðHPf
sH

T þWÞ�1 ð24Þ

is the Kalman gain as computed in the SEEK filter.

Clearly, the basic analysis equations in theEnKFand the

SEEK are similar. Themajor difference is that while the

SEEK filter uses the error subspace Nf to represent the

prediction error statistics, the EnKF uses the ensemble

perturbations, Af�Af (see discussion below).

Defining the ‘‘measurements’’ of the elements in

the error subspace

Ss ¼ HNf ; ð25Þ

and when using some algebraic transformations, the

Kalman gain from the SEEK can be rewritten as

Ks ¼ Nf ððr � 1ÞI þ STsW
�1SsÞ

�1
STsW

�1 ð26Þ

This form for the Kalman gain is particularly useful

since it allows for a simple computation of the analysed

error subspace Na.The expression requires the inverse

of an r� rmatrix but rather than computing an explicit

inversion, we proceed with an eigenvalue decomposi-

tion of the symmetric positive definite matrix

1

r � 1
STsW

�1Ss ¼ UsKsU
T
s ð27Þ

This allows for a reformulation of the Kalman gain,

as

Ks ¼
1

r � 1
NfUsðI þ KÞ�1

UT
s S

T
sW

�1; ð28Þ

and, finally, the analysis update becomes

ya¼yf þ
1

r�1
NfUsðI þ KÞ�1

UT
s S

T
sW

�1ðd�Hyf Þ:

ð29Þ

The error covariance of the updated state is given

as usual in terms of the Kalman gain

Pa
s ¼ ðI � KsHÞPf

s ; ð30Þ

or, using Eq. (28),

Pa
s ¼

1

r � 1
NfUsðI þ KÞ�1

UT
s ðN

f ÞT ¼
1

r � 1
NaðNaÞT;

ð31Þ

where we define

Na ¼ NfUsðI þ KÞ�1=2
UT

s : ð32Þ

This last equation describes the transformation of

the error subspace associated to the analysis step, and

is the counterpart of Eq. (19) in the EnKF.

The subsequent model forecast is then achieved

with the best estimate (Eq. (29)) as initial conditions:

yf ¼ f ðyaÞ; ð33Þ

while the dynamical propagation of the associated

error covariance is computed as an ensemble integra-

tion of the error subspace components:

Ñf
j ¼

1

a
ðfðya þ aNa

j Þ � f ðyaÞÞ: ð34Þ

a is a scalar parameter which determines the size of

the error modes to be considered for the nonlinear

model integrations. This parameter is typically of

order 1, but it can be adjusted according to the actual

spread of the perturbations around the central state. If

the model is perfectly linear, the forecast error modes

will not be affected by the numerical value specified

for a.
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As in Pham et al. (1998), the model error is taken

into account by means of a ‘‘forgetting’’ factor

qa[0,1], leading to:

Nf
j ¼

1

q
Ñf

j : ð35Þ

where a value of q < 1 leads to an amplification of the

prediction errors.

Because a model is characterized by several

dynamical regimes and the model error probably is

inhomogeneous in space, the q coefficient is deter-

mined as a function of the spatial coordinates to get an

approximate balance between the expected and the

observed innovation variance Brankart et al. (2003).

In practice, we estimate the variance of the innovation

vector from the full sequence of its realizations up to

the current time giving a larger weight to the most

recent events (an exponential decay of about 2 months

was used for the experiments presented below).

3.7. Discussion

Some particular issues related to both the EnKF

and the SEEK are discussed below.

3.7.1. Subsampling of data

The estimation of the small correlations associated

with remote observations is a well-known difficulty of

ensemble methods (Houtekamer and Mitchell, 1998).

In both the EnKF and the SEEK, a local parameter-

ization is used in the forecast error covariance matrix,

enforcing to zero the correlation coefficients between

distant state variables. In practice, this is implemented

by assuming that distant observations have negligible

influence on the analysis. The global system is split

into small subsystems where the traditional analysis is

computed for each of these. Here, it was chosen to

update variables grid-point by grid-point in the hori-

zontal dimensions using a radius of influence param-

eter in order to limit the number of observations to be

used when updating each grid-point. Only data points

located within a circle with a specified radius of

influence, centered at the particular model grid-point

to be updated, will contribute in the update. This is an

approximation but it makes sense since only data

points located in the ‘‘neighborhood’’ of a model

grid-point should have a significant impact on the

analysis for that grid-point. Further, this algorithm

leads to a reduction in the numerical cost (since the

inversion of the full W is replaced with many inver-

sions of small subparts of W, one for each model grid-

point). Further, we have observed that this also

improves the analysis since the size of the ensemble

in the EnKF, or the error subspace in the SEEK,

relative to the number of state variables at a particular

grid-point is of the same order and, therefore, span a

larger part of the model state space.

3.7.2. Consistency check

In addition to the purely statistical procedure used in

the analysis schemes, there are several dynamical

constraints that must be satisfied following an analysis

step to ensure that one proceeds with a dynamically

acceptable model state. Of particular importance in

isopycnal models is that the isopycnic layers always

must have a positive thickness. Since the Kalman

analysis is written in the context of linear estimation

theory, it is not easily capable of taking such a con-

straint into account. Thus, following an analysis step

eventually negative layer thicknesses must be reset to

zero. This has been observed to happen occasionally,

often in connections with already thin layers in the

forecast, when strong updates are computed based on

large differences between a model forecast and accu-

rate (and highly weighted) observations. A number of

additional adjustments are also implemented in order to

respect common-sense criteria (the density of the

mixed layer must be lower than the density of the layer

underneath; the temperature of sea water must always

be higher than the freezing point, the salinity must be

positive) or to keep the system within a reasonable

range (temperature lower than 32 jC and salinity

between 10 and 39 psu). These checks were applied

on the best guess estimate in the SEEK. In the EnKF,

only a consistency check on the layer thicknesses was

performed after analysis. Still, no problems with non-

physical temperature and salinity values occurred dur-

ing the assimilation experiment.

3.7.3. Comparison of EnKF and SEEK

Finally, we attempt to provide an explanation of

the differences and similarities between the EnKF and

the SEEK. The previous discussion has shown that

both methods start out with the same basic assump-

tions for a linear unbiased variance minimizing anal-

ysis scheme.
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3.7.3.1. Representation of error statistics. A major

difference resides in the way error statistics is

represented. The EnKF applies a random ensemble

of model states which samples the model probability

density function. The larger number of model states

contained in the ensemble, the better it will represent

the probability density function. Thus, a very accu-

rate representation can be obtained by using a large

enough ensemble. The SEEK filter computes an

orthogonal error subspace which should contain the

dominant variability of the system. This subspace

could initially be determined by using the dominant

singular vectors from a singular value decomposition

(SVD) of an ensemble of model state perturbations,

A�A, or alternatively using the dominant eigenvec-

tors of an error covariance matrix. In practical

applications it is computed from an SVD of a

number of model states anomalies subsampled from

a representative model simulation. Using the orthog-

onal error subspace, it is possible to represent the

error statistics using a smaller number of EOFs than

the number of ensemble members normally needed

in the EnKF.

3.7.3.2. One model state vs. ensemble mean as best

estimate. The EnKF computes an analysis for each

model state in the ensemble. The only reason for

doing this is that one then gets a new ensemble which

has the correct error covariance statistics for the

analysis. Thus, there is no need for an additional

resampling to create a new ensemble for the further

integration, as is seen in some of the more sophisti-

cated nonlinear filters (Anderson and Anderson, 1999;

Evensen and van Leeuwen, 2000; Pham, 2001). Note

also that in the EnKF, it is possible to compute the

analysis for the ensemble mean directly from

y
a
¼ y

f
þ

1

m� 1
ðAf � A

f
ÞSTeUeK

�1
e UT

e ðd �Hy
f
Þ:

ð36Þ

This equation should be compared with the SEEK

analysis (Eq. (23)), which updates a single-model

state used as the best estimate (see below).

3.7.3.3. Specification of model errors. Another dif-

ference resides in the specification of the model

errors. In the EnKF, this error is taken into account

by means of stochastic forcing during the ensemble

forecast. This allows for the use of realistic random

model errors spanning the whole n-dimensional model

space. Thus, if the actual model errors are known or

can be estimated, it is possible to introduce a realistic

simulation of them.

In the SEEK filter, the so-called forgetting factor,

q, is used. This is a number which is multiplied with

the EOFs in the error subspace to increase the error

variance. Note that the error subspace is changing

with the forgetting factor because q is space-depend-

ent. This is an approximate way of introducing the

effect of model errors, and it could probably be done

more consistently if needed. On the other hand, model

error statistics is normally poorly known, justifying

the use of a simplistic but efficient modeling of them.

This approach also has the merit to allow the use of a

simple adaptive mechanism to tune the forecast error

according to the statistics of the innovation sequence

and in this way to enforce internal consistency of error

statistics Brankart et al. (2003).

3.7.3.4. Prediction of error statistics. It is of interest

to compare the procedure used for the prediction of

error statistics in the EnKF and the SEEK. First, note

that the error components used in the SEEK could be

defined as Nj =Ujrj, where Uj is the singular vector j

and rj the corresponding singular value of an SVD of

the ensemble perturbations Af � Af . On matrix form,

this would just be N =UA. In the EnKF, the time

evolution of error statistics is modeled by integration

of each individual ensemble member forward in time

according to the stochastic form of the model equa-

tions. On matrix form, this process can be written as

Af ¼ fðAaÞ þ q ¼ f ðA
a
þ ðAa � A

a
ÞÞ þ q

¼ fðA
a
þ Ua

S
aðVaÞTÞ þ q: ð37Þ

Thus,

Af � A
f
¼ f ðA

a
þ Ua

S
aðVaÞTÞ þ q

� f ðA
a
þ Ua

S
aðVaÞTÞ: ð38Þ

The EnKF evolves an ensemble where each indi-

vidual perturbation (ensemble member) consists of all

directions in U space using the linear combination

defined in VT. Following an ensemble integration, a
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new SVD could be formed which would define a set

of new orthogonal directions and with a new set of

singular values holding information about the error

variance change obtained during the integration. Note

that only U and � are needed to compute Pe.

Eq. (38) can be compared with the prediction Eq.

(34) used for the error components in the SEEK which

evolves an ensemble where member j contains a

perturbation proportional to and along an independent

direction Nj. The EnKF integrates ensemble members

which all may hold contributions from all directions in

U. The equations for the EnKF and the SEEK also

differ in the use of the ensemble mean and the

‘‘central forecast’’ as the best estimate. Following an

integration of the r error subspace components Nj, an

orthogonalization procedure is used to produce a new

set of independent error components.

For a linear model, the ensemble integration Eq.

(34) for the EnKF becomes

Af � A
f
¼ FUa

S
aðVaÞT þ q; ð39Þ

where we have used that Ua
S
aðVaÞTu0 , while the

error prediction Eq. (34) used in the SEEK can be

written on matrix form as

Ñf ¼ FNa ¼ FUa
S
aðIaÞT; ð40Þ

where I is just the identity matrix. When neglecting

the model error implementation in the EnKF and the

SEEK (i.e., q = 1 in Eq. (35)), the time evolution in

the SEEK and the EnKF will give identical results (for

linear model dynamics), when the same number of

orthogonal directions are used. Note that for a linear

model, the ensemble mean, y, becomes identical to

the central forecast used in the SEEK. Eqs. (39) and

(40) show that the only difference is the choice of

ensemble used. In the EnKF, any unitary matrix (all

columns orthonormal to each other) can be used for V,

where a different V just represents a different ensem-

ble of model states in the same error subspace. The

identity matrix is one such matrix, of course.

For a nonlinear model, the time evolution will

clearly be different for the two methods since there

are nonlinear interactions between the error modes.

However, the same will be true between two different

V’s in the EnKF. However, both approaches are

funded on sound mathematical theory.

3.7.3.5. The analysis equations. The transforma-

tions used for the Kalman gain in the SEEK (see

Eqs. (26)–(28)) are only needed for the computation

of the analysed error components Nj
a, and the SEEK

analysis (Eq. (29)) can also be solved on the form,

ya ¼ yf þ
1

r � 1
NfSTsUVsKV

�1
s UV

T
s ðd �Hyf Þ:

ð41Þ

where the following decomposition is used:

Cs ¼ ðHPf
sH

T þWÞ ¼
SsS

T
s

r � 1
þW ¼ UVsKVsUV

T
s :

ð42Þ

Thus, the similarity of the analysis in the SEEK

and the EnKF is obvious when Eq. (41) is compared

with the EnKF analysis equation for the ensemble

mean (Eq. (36)).

4. The remotely sensed data

The observed parameters assimilated in the

MICOM model are Sea-Level Anomaly (SLA) and

Sea-Surface Temperature (SST). The same data set is

assimilated by the EnKF, the EnKS and SEEK. It

consists of gridded SLA and SST on a 1/4j grid every

10 days derived from the available satellite data for

the assimilation experiment period.

4.1. Sea-level anomalies gridded products

The SLA data set assimilated into MICOM con-

sists of data obtained from NASA/CNES TOPEX

POSEIDON (T/P) and ESA ERS satellite altimeter

observations after correction and interpolation on the

1/4j horizontal grid every 10 days.

In order to get the most homogeneous data set to

be used in the interpolation, we have used state-of-

the-art correction algorithms for both satellites. We

have used the NASA-JGM3 orbit for T/P and the D-

PAF precise orbit with reference to TOPEX ellipsoid

for ERS. The wet tropospheric corrections come

from the TMR radiometer for T/P and from

ATSR-M radiometer for ERS. The ERS radiometer

wet tropospheric correction has been extrapolated

near the coast in order to avoid the pollution of the

radiometer data by the continent near the coastline.
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This interpolation allows to retrieve a significant

amount of altimeter data points near the shore where

the wet tropospheric correction is flagged ‘‘bad

data’’. Dry tropospheric correction comes from

ECMWF atmospheric fields. The ionospheric cor-

rection is computed from the dual frequency altim-

eter for TOPEX after applying a 300-km Lanczos

filter, from DORIS data for POSEIDON, and from

the BENT model for ERS. The ocean tide, and the

loading effect are corrected using CSR3.0 model

(Eanes and Bettadpur, 1996). The electromagnetic

bias is corrected using BM4 formula (Gaspar et al.,

1994) for T/P and � 5.5% of the significant wave

height for ERS. The inverse barometer correction is

applied. The instrumental noise is reduced applying

a Lanczos low pass filter along each track. The

anomalies are computed as departures from a 3-year

mean pass (1993–1995) for T/P, and a mean pass

for the same period mean using T/P data to correct

for orbit error and oceanic signal for ERS.

Fig. 1. The difference between the 1-year SLA variance (in cm2) observed by T/P and ERS. Top panel: before Long Wavelength Errors (LWE)

are removed, bottom panel: after LWE removal.
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The interpolation of along track data onto the 1/4j

grid was done using an optimal interpolation method

described by Traon et al. (1998). The originality of

this interpolation method is that the long wavelength

errors along each track which are mainly radial orbit

errors are explicitly taken into account in the inversion

by adding extra off-diagonal terms in the observation

error covariance matrix. This method improves con-

siderably the results in terms of horizontal coherence

(between each ground track) and also in terms of

consistency between the different satellite data sets as

we can see in Fig. 1, which shows the difference

between the SLA variance obtained with ERS and

with T/P for a 1-year period. The differences are high

in energetic regions because the two satellites do not

have the same repeat period and thus the same

sampling of the meso-scale. We see that the long

wavelength error removal reduces the differences,

especially in the regions where the effect of the

atmospheric forcing is stronger (near Antarctica),

which indicates that the two data sets are more

homogeneous after correction.

Fig. 2. Top panel: 1-year (1993) average of the differences between our SST product and Reynolds SST. Lower panel: 1-year standard deviation

of the differences between our SST product and Reynolds SST.
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4.2. Sea-surface temperature

To simplify the assimilation procedure, we have

chosen to produce coherent gridded SST and SLA

data sets. Thus, daily SST images from the NASA

Pathfinder AVHRR with 9-km horizontal resolution

has been interpolated to same 1/4j resolution grid as

the SLA data set described above, with the same

temporal frequency of 10-day period. Thus, the same

space timescales are expected to be resolved by both

data sets.

Only night images were used in order to avoid

the potential problem of skin SST occurring during

sunshine at daytime. The data were gridded using a

spatial median filter and a temporal mean at 1/4j

horizontal resolution every 10 days. All data points

from the daily images closer than 18 km (two 9-km

pixels in the original images) to the estimation point

were selected and the median value was retained.

Doing so, we get gridded SST every day. The

spatial median filter allows to avoid the effect of

spurious data points near the clouds. The temporal

mean was then computed so that we get a SST

value for a, as large as possible, number of grid-

points, especially when the cloud coverage is heavy,

while keeping the high frequency signals that can be

sampled with a 10-day period. In order to do so, we

have computed the average of all the good points

available on the 1/4j grid for an 11-day time period

around the estimation date. This means that for

some grid-points in cloudy regions, the average

does not correspond to an 11-day mean value, but

to an average obtained with an uneven sampling of

the 11-day period. Even so, there are still several

places in the world where there is no valid measure-

ment of SST during the 11-day period. When this is

the case, a missing value ‘‘flag’’ is put in the

product instead of a SST value, which implies that

the SST is not assimilated at this grid-point.

We have compared our gridded SST with the

Reynolds SST over the year 1993. The comparison

shows as expected that Reynolds SST is smoother

than our gridded SST. Our gridded SST is colder than

the Reynolds SST (0.4 jC). This is mainly due to the

fact that we use only night images. We can see in Fig.

2 that our gridded SST is generally colder than

Reynolds SST in cold areas (North of Kuroshio and

Kuroshio extension, upwelling along the African

coast, North of the Gulf stream, Irminger current, east

Greenland current) and warmer in warm areas (south

of Gulf stream, in the convergence zone, on the

eastern flank of the Labrador current, North of the

ACC) which indicates that our gridded product is

better capable to reproduce the temperature gradients

in these regions than Reynolds SST. The differences

are larger in highly energetic areas. The highest stand-

ard deviations occur east of south India, near Panama

and southeast of Madagascar. These differences in the

equatorial band can be explained by the cloud cover-

age which is high in these areas, and by the occasional

presence of aerosols (Reynolds corrects for the effect

of aerosols while we do not). In these area, our

gridded SST are generally colder than Reynolds SST.

5. Description of experiment

5.1. Model configuration

The MICOM model, described in Section 2, has

been implemented on a grid covering the North Atlan-

tic, the Nordic Seas and the Arctic Ocean. The model

grid is an orthogonal curvilinear grid with enhanced

resolution in the Nordic Seas, as shown in Fig. 3, with

enhanced resolution in the Nordic Seas. The size of the

grid cells is approximately 20 km in the North Sea, 40

km in the Gulf Stream region and 80 km in the

subtropical gyre. The grid has 140� 130 grid-points

in the horizontal, while the number of layers in the

vertical is 17 (including themixed layer). This results in

309,400 grid-points which each holds four variables

(layer thickness, temperature and two velocity compo-

nents). With the additional four two-dimensional var-

iables (barotropic pressure, two velocity components

and another thermodynamic variable for the mixed

layer), the total number of unknowns in the model state

becomes 130� 140� (17� 4 + 4) = 1,310,400. This is

a substantially sized model state compared to previous

assimilation experiments using sophisticated assimila-

tion techniques. The use of a variable model resolution

and a large model domain allow us to apply ‘‘closed’’

boundaries far from the area of interest where a

relaxation to climatology is applied.

The model bathymetry was interpolated from the

ETOPO-5 data set named DS759.2 from the Terrain-

Base project conducted by the National Geophysical
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Data Center and World Data Centers-A for Solid

Earth Geophysics and for Marine Geology and Geo-

physics (NGDC/WDC-A).

5.2. Model forcing

The model is forced by atmospheric data from

ECMWF, which is available on an approximately

1�1j grid and with six hourly resolution. This

includes full thermodynamic forcing with computa-

tion of heat and freshwater fluxes in addition to the

transfer of wind stress. The atmospheric fluxes are

computed from air temperature, relative humidity,

dew-point temperature, cloud cover, precipitation

and mean sea-level pressure, and wind stresses are

derived from the atmospheric wind data.

In the EnKF and EnKS runs, a weak SST relaxa-

tion was applied, while this was excluded in the runs

with the SEEK filter. All the simulations used a weak

relaxation for the fresh water fluxes. The timescale for

the SST and SSS relaxation was 60.0 days.

5.3. Model initialization

The model was initialized using outputs from a

simulation which started from Levitus temperature

and salinity data and with twice the horizontal grid

resolution used in the assimilation experiments. This

model was first run for 10 years in a spin-up simu-

lation subject to monthly averaged climatological

forcing data. Another 5 years of simulation were

carried out until June 1996, forcing the model with

interannual atmospheric data from the ECMWF.

5.4. Initialization of assimilation experiments

An ensemble of 150 model states was created for

June 1, 1996 by perturbing layer interfaces in the

Fig. 3. The diadem1 model grid used in the assimilation experiment.
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model state resulting from the simulation in Section

5.3. The perturbations were drawn from a sample of

smooth pseudo-random fields with mean equal to zero

and a prescribed covariance. The algorithm described

by Evensen (1994) was used to generate the fields.

Evensen (1994) also presented an algorithm for intro-

ducing a specified predetermined correlation between

a sample of pseudo random fields by choosing each

new sample as a specific linear combination of the

original fields. Multiplication of each pseudo-random

field, having zero mean and variance equal to one,

with a constant r will lead to a new sample with

variance equal to r.

The initial ensemble was, thus, created by adding

smooth and vertically correlated pseudo-random fields

drawn from a sample with mean equal to zero and for

each vertical layer the variance represents 10% of the

layer thickness at that location. This results in a

sample of model states which all have a slightly

different stratification. These differences should be a

measure of our confidence in the watermass character-

istics of the model initial conditions. From this initial

ensemble, a short spin-up simulation is required to

ensure that the model state for each individual ensem-

ble member is in dynamic balance.

The ensemble spin-up was done by a 1 month

integration until July 3, 1996 (day 184). The mean of

the ensemble at day 184 represents the best guess

estimate of the true state of the ocean in the EnKF and

EnKS, and was used as the initial condition for the

SEEK assimilation experiment. The spreading of the

ensemble represents a measure of the error covariance

of this best guess estimate in the EnKF and EnKS.

In the SEEK filter, the variability of a prior

simulation of year 1993 was sampled every 5 days,

and the first seven EOFs of the sequence (explaining

more than 95% of the total variance) was used to build

the initial error subspace.

Indeed, an open question related to the practical

implementation of assimilation systems is the speci-

fication of the background error, whose impact on the

assimilated trajectory can remain during several

cycles after initialisation. As there is no unique answer

to this question, the idea beyond the use of EOFs is to

investigate the relevance of a subspace initialised from

the natural variability of a prior run, by comparison

with initial ensemble covariances obtained by perturb-

ing layer interfaces using prescribed statistics.

5.5. Random atmospheric forcing

Model errors include both errors of model physics

(forcing errors, errors in parameterization, etc.) and

errors in the numerical solution methods. In the EnKF,

EnKS and in the spin-up of the ensemble, it is

assumed that the dominant model errors are connected

to misspecifications of atmospheric forcing fields used

to compute the surface fluxes. Thus, we have treated

the atmospheric forcing as a stochastic process and

added spatially and temporally correlated random

fields to the atmospheric data. Hence, random atmos-

pheric forcing has been added in order to simulate

modeling errors. Pseudo-random fields have been

calculated from a Gaussian distribution with zero

mean and given standard deviation and were added

to the atmospheric forcing data. The random fields are

independent for each member and the horizontal

decorrelation length is 1500 km. For the different

atmospheric fields, we have used the following stand-

ard deviations: r air temperature = 3.0 jC, r wind speed =

5.0 m s� 1, rwind stress = 0.5 g cm� 1 s2.

As pointed out by an anonymous reviewer, the wind

speed enters the equations through the nonlinear model

operator. This means that the noise is not additive, and

it is difficult to derive an equation for the full proba-

bility density, like Kolmogorov’s equation (Eq. (8)).

However, this poses no serious problem on the ensem-

ble methods presented here because we still can use Eq.

(7) for the model evolution. As mentioned in Section

3.1, this equation is meaningful when the Ito interpre-

tation is used. Thus, eventhough an evolution equation

for the probability density is not known, we can

approximate its evolution by applying ensemble inte-

grations (and in the limit of an infinite number of

ensemble members, an exact evolution is obtained).

5.6. Observations errors

The observations are gridded data sets derived

from satellite measurements. Thus, the observation

errors will be spatially correlated with a correlation

determined by the horizontal scales of the objective

analysis scheme used in the gridding process. In order

to model this correlation, we have for the EnKF and

EnKS assumed a spatial correlation function

corrði; jÞ ¼ expð�distði; jÞ2=dist02Þ; ð43Þ
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where dist(i,j) is the spherical distance between

observation point i and j and dist0 = 10 km is a

chosen decorrelation length parameter. Elements Wij

in the error covariance matrix are, thus, given by

r(i)r( j)corr(i,j), j,i = 1, 2, . . ., l, where l is the

number of observations. In the SEEK filter, a func-

tion similar to Eq. (43) is used except that the

distances are computed in grid cell units.

Except for in the Nordic Seas, the resolution in the

model grid is coarser than the observations grid,

hence, the SLA data describes fine-scale variations

that the model is not capable of assimilating. In the

SLA assimilation context, this fine-scale variation in

observed SLA data is considered as noise. The

observed SLA data, dSLA, is, therefore, written as

dSLA ¼ yt
SLA þ em þ er; ð44Þ

where em is the measurement error and er is a term

that is due to the representation error in the model.

The true SLA data is given by yt
SLA . The error

statistics for em is assumed to be Gaussian with zero

mean and standard deviation equal to 0.05 m.

In order to approximate statistics for em, we have

used 100 SLA data sets (a data set every 10 days

starting July 3, 1996) and smoothed these data sets

by averaging according to the model resolution. The

smoothing of the SLA data is done by averaging

the original SLA data within a box centered at each

model grid-point. The size of the averaging box

decreases with increasing model resolution and,

therefore, depends on the typical distance between

two neighboring model grid cells. Moreover, the

averaging is performed grid-point by grid-point, and

the resulting SLA data is constant within the

average box. A SLA data remains undefined if the

original SLA data is undefined. The smoothed SLA

field on measurement day k and observation grid-

point (i,j) is denoted dij
k, and equals the mean value

of the observations located within the averaging

box. The SLA variance due to the representation

error in the model is then given by

where nrt is the number of times a SLA data is

defined at gridpoint (i,j) in the SLA data set.

The total variance for the SLA data is given by

vij ¼ vðemÞ þ vijðerÞ: ð46Þ

A similar approach is not considered for the

observed SST data since the SST field is smoother

than the observed SLA field. The standard deviation

of the SST measurement errors is set to 0.5j C and the

radius of influence, which is used in the subsampling

of data, is set to 40 km.

5.7. The assimilation and free-run experiment

The data assimilation experiment was run in hind-

cast mode, starting on July 3, 1996 and ending 60

days later on September 1, 1996. Satellite data were

assimilated every 10 days on a region spanning from

100jW to 40jE and 10jS to 80jN in the EnKF and

EnKS assimilation runs, and up to 70jN in the SEEK

assimilation run. For the SLA assimilation, we needed

a mean Sea-Surface Height (SSH) field in order to

generate the model-predicted SLA field. This is

because the satellite data are given as SLA data while

the model output is SSH data. The model SLA is

calculated by subtracting a mean SSH field from the

model SSH field. This mean SSH field has been

generated as a time mean of SSH fields from a

high-resolution model simulation with MICOM. The

model has been run for 3 years and SSH fields have

been sampled throughout this time period. A time

mean SSH field has been calculated from the sampled

SSH states. The resulting SSH mean field is given in

Fig. 4. The signature of the large-scale features of the

North Atlantic surface circulation is imprinted on the

mean SSH, with essentially the cyclonic circulation of

the subpolar gyre, the anticyclonic circulation of the

subtropical gyre and the intensification of the western

boundary current. The Gulf Stream and the North

Atlantic drift, however, are not properly reproduced

and display a number of flaws typically found with

medium-resolution models, i.e., spurious anticyclonic

eddy at Cape Hatteras and overshooting of the Gulf

Stream northward. These flaws are not crippling for

this demonstration study, but a better mean SSH will

be needed at a later stage for improving the realism of

the assimilation products.
vij ¼

1

nrt � 1

X

nrt

k¼1

ðdk � d
k
Þ2ij; ð45Þ
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In addition, a so-called free-run simulation was

performed for the same time period as the assimilation

experiment. In this experiment, the model run in free

mode, i.e., with no assimilation of SLA and SST data.

The results from the assimilation runs and the free-run

have been intercompared in Section 6 in order to

assess the impact of assimilating SLA and SST data.

6. Discussion of results

The focus of this section is put on the interpretation

and examination of the impact of the assimilation for

each of the assimilation schemes. In order to do so,

various diagnostics have been computed; we consid-

ered plots of the observed data, the difference between

the forecast and observed data, the difference between

the analysis and observed data and the difference

between free-run model data and observations. The

innovation plots have been studied to examine to

which extent the different data assimilation schemes

‘‘force’’ the model state towards the observations. In

addition, the assimilation schemes have been vali-

dated by calculating the Root Mean Square Error

(RMSE) values of the innovation fields, i.e., the

difference between the modelled data and observed

data before and after the analysis. The impact of

assimilating SLA and SST over time has also been

examined by plotting observed and simulated temper-

ature, salinity, zonal and meridional velocity for the

upper 500 m for a selected location in the Gulf

Stream. Finally, we compared the assimilation results

with independent XBT data from the TOGA/WOCE/

CLIVAR data bases, made available by the SYSMER/

IFREMER data center in Brest.

6.1. Correlations between MICOM variables

The SEEK filter, EnKF and EnKS are all multi-

variate assimilation schemes, which means that all the

model variables are updated in a systematic manner

according to the approximations of the covariances

between the variables. The correlations between the

variables are calculated using the ensemble of model

states in the EnKF and EnKS, while the SEEK filter

uses the dominant modes of its error subspace. Some

of the model variables are more correlated than

others, as can be seen from Fig. 5. Plots of correla-

tions between SSH and SSH, mixed layer density

(TH(1)), mixed layer thickness (DP(1)) and SST are

given left and similar correlations plots for SST are

given right. The calculations are done using the EnKF

Fig. 4. The annual averaged SSH field used in the assimilation experiments.
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Fig. 5. Correlations between MICOM variables corresponding to location 37jWand 57.5jN, calculated from EnKF forecast ensemble day 184.
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forecast ensemble on day 184, the specific location

chosen is 37jW and 57.5jN. At this point, the SSH–

SSH and SST–SST correlations are identical to one

and decrease with increasing distance from the chosen

point. The horizontal decorrelation length scales in the

SSH–SSH and SST–SST correlation plots are not

equal. This is due to the fact that SSH is more

influenced by dynamical processes in the ocean, while

SST is more dominated by smooth atmospheric con-

ditions. The other plots show weak correlations

between the variables involved, except from the

SST–TH(1) and SST–DP(1) correlation plots that

show a rather strong negative correlation between

the variables. This confirms the expectation that a

warming of the mixed layer should lead to a reduction

of the mixed layer thickness and density.

6.2. Sea-level anomalies

The upper-left plot in Fig. 6 shows the observed

SLA on day 184, which is the first day of the

assimilation experiment. The middle-left plot shows

the forecast of SLA and the lower-left plot shows the

innovation between the observed SLA and the SLA

forecast on day 184. Clearly, there are large discrep-

ancies in the model produced and observed SLA,

especially in the central Gulf Stream region. The large

discrepancies are expected since the Gulf Stream

extension is a highly energetic area dominated by

strong meso-scale activity which is not resolved by

the coarse resolution in the model. Another model

problem is also related to the well-known northward

shift of the Gulf Stream separation, which means that

the model will have the wrong placement of the Gulf

Stream front.

The right plots in Fig. 6 show the innovation

between the observed SLA and the EnKS analysis

(upper), the EnKF analysis (middle) and the SEEK

analysis (lower). The best result is obtained with the

EnKS scheme which updates the SLA field using

future measurement of SLA and SST up till day

244.

The SLA innovation plots for day 244 are given in

Fig. 7. The upper-left plot shows the difference

between the free-run and observed SLA, while the

difference between the observed and EnKF/EnKS

forecast of SLA and the observed and SEEK SLA

forecast are given in the middle-left and lower-left

plots, respectively. In general, the differences between

the observed SLA and EnKS/EnKF forecast of SLA

have decreased from day 184 to day 244 (compare

lower-left plot in Fig. 6 and middle-left plot in Fig. 7).

The discrepancies have especially decreased outside

the coast of South America, in the central Gulf Stream

region and in the Norwegian Sea. This is because the

assimilation of SST and SLA keeps the model state

close to the observed data. A similar comparison for

the SEEK forecast of SLA shows a strong reduction in

innovation values along the South America coast lines

and in the Gulf Stream.

The right plots in Fig. 7 show the SLA innovation

fields for the EnKS analysis (upper), the EnKF

analysis (middle) and the SEEK analysis (lower). By

comparing the innovation fields corresponding to the

forecast and analysed SLA (respectively left and right

plots in Fig. 7), it is clear that both the EnKF, EnKS

and SEEK assimilation schemes ‘‘force’’ the SLA

field towards the observed SLA data. Moreover, in

the central Gulf Stream region, the difference between

the observed and analysed SLA data is smaller in the

SEEK run than in the EnKF/EnKS run. This can be

explained by the fact that the Gulf Stream region is

high variability area and, consequently, the subspace

span by the dominant error modes in the SEEK filter

is larger in this region than in regions with less

variability. In the northern Norwegian Sea, the SEEK

assimilation (as opposed to the EnKF and EnKS runs)

results in relatively large discrepancies between the

model data and the observations.

The EnKF and EnKS analysis are very similar on

day 244. They are, however, not identical because the

observation field has been smoothed according to the

model grid resolution in the EnKS assimilation. This

smoothing procedure has been necessary in order to

reduce the total number of observations in the EnKS

analysis.

To summarize, in general, a time reduction of the

discrepancies between the SLA forecast and the SLA

observations can be found for all assimilation

schemes. Moreover, in general the quality of the

free-run SLA (as compared to the observed data) is

worse than the quality of forecasts produced in the

assimilation runs. In addition, the EnKS analyses are

generally closer to the observed data than the SEEK

and EnKF analyses. This could be due to the smoother

properties of the EnKS.

20



Fig. 6. Numerical results for SLA field, day 184 1996.
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Fig. 7. Numerical results for SLA field, day 244 1996.

22



Fig. 8. Numerical results for SST field, day 184 1996.
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Fig. 9. Numerical results for SST field, day 244 1996.
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Fig. 10. Variances in EnKF forecast ensemble, on day 184 (left) and 244 (right). SST (upper), SSH (middle) and mixed layer thickness (lower).
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6.3. Sea-surface temperature

Plots of observed and forecasted SST on day 184

are given in Fig. 8, upper left and middle left,

respectively. The difference between the two data

fields is given in the lower left plot. Large discrep-

ancies, due to the coarse model resolution and the

unrealistic Gulf Stream separation at Cape Hatteras,

are found in the central Gulf Stream region. The

model SST is generally higher than the observed

SST between latitudes 10jN and 40jN. The differ-

ence between the observed and the updated SST

fields resulting from the EnKS, EnKF and SEEK

analyses are seen in the right plots in Fig. 8. It is

clear that the analyzed fields are more similar to the

observed SST than the forecast fields are indicating

that the assimilation schemes give model updates

that are close to the observations. Moreover, the

EnKS analysis is somewhat further away from the

observations than the EnKF analysis, especially in

the Gulf Stream region. This can be explained by

the fact that the model temperature of the mixed

layer is in direct contact with the atmosphere and,

therefore, changes on the timescale of the atmos-

pheric changes. Hence, the SST has a rather short

decorrelation scale and the correlations are negli-

gible after 10 days. Consequently, the EnKS assim-

ilation of SST data backward in time seems to be

unnecessary and even seems to bring noise into the

system (due to artificial time correlations in the

ensembles corresponding to different data assimila-

tion times). Since the SLA field has a much longer

time decorrelation scale than the SST field, the

EnKS behaves differently within the SLA assimila-

tion context.

The numerical results for the SST field on day 244

are given in Fig. 9. By comparing the plots of the

difference between observed SST and EnKF forecast

of SST on day 184 (lower left in Fig. 8) and day 244

(middle left in Fig. 9), we observe that the discrep-

ancies between the model and observations have

decreased almost everywhere in the model domain.

The same tendency is seen for the SEEK forecasts of

SST indicating that the data assimilation efficiently

forces the model SST to follow the evolution in time

of the observed SST. This can also be confirmed by

Fig. 11. Subdomains used in the RMSE calculations.
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comparing plots of the difference between free-run

and observed SST, with the corresponding plots of

SEEK and EnKF forecasts (see left plots in Fig. 9).

The right plots in Fig. 9 show the difference between

the observed and model SST after assimilation of SLA

and SST. Again, the plots clearly show that all

assimilation schemes efficiently update the model

SST towards the observed SST.

Note that the EnKF forecast of SST is typically

closer to the observations than the SEEK forecasts.

This can partly be due to the SST relaxation that has

only been applied in the EnKF and EnKS runs. In

general, the updates in SST are larger in the EnKF and

EnKS runs than in the SEEK filter run. On the other

hand, strong SLA updates can be found both in the

SEEK and EnKS assimilation runs. This is perhaps

due to the different ways the model error covariances

are calculated in the EnKF and SEEK filter. Possibly,

the variances (errors) in model SLA are higher in the

SEEK run than in the EnKF run, and vice versa for the

SST field. In all cases, the analysis corrects the model

field towards the observed data field and typically the

innovation between observations and model forecast

data decreases as a function of time (not shown). The

innovation plots for the free-run, SEEK and EnKF

assimilation runs clearly indicate that the quality of

Fig. 12. Time series of RMSE values for subdomains 1 (left) and 2 (right).
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the SST and SLA forecasts typically improves when

assimilating SLA and SST. However, the quality of

the forecast from the assimilation runs is slightly

worse in some specific regions (compared to the

observations). This can be due to the relatively coarse

resolution in the model or the assumption on Gaussian

statistics that is made in the analysis schemes.

6.4. Time evolution of modelling errors

The modelling errors for the different variables in

the model are approximated from the ensemble of

model states in the EnKF and EnKS and from the

dominant error modes in the SEEK filter. For the

EnKF and EnKS, the size of the modelling errors is

determined by the spreading of the model states in the

ensemble. Using the ensemble of model states to

calculate the variances for the different model varia-

bles, the modelling errors can be investigated. Fig. 10

shows the variances in the SST, SSH and mixed layer

thickness on day 184 (left) and day 244 (right). By

comparing the leftmost and rightmost plots, it can be

seen that the modelling error for these variables

typically decreases as a function of time. This is an

effect of the EnKF assimilation scheme that efficiently

decreases the distance between the ensemble mem-

bers. Hence, even though the spreading of the ensem-

ble members increases during the forecasting of the

Fig. 13. Time series of RMSE values for subdomains 3 (left) and 4 (right).
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ensemble, the effect of the assimilation over time is a

general reduction in ensemble variance.

By comparing the patterns in the residual plot for

the SLA field in Fig. 7 (middle left) and the SLA

variances plot for day 244 in Fig. 10 (middle right),

we can observe that the modelling of the SLA errors

is to some extent consistent with the observed

residuals. It is consistent in the sense that low and

high residual values in Fig. 7 generally correspond to

high variance values in Fig. 10. The exception is

outside the West coast of Africa. Similar observa-

tions are made when comparing the residual and

variances plots for the SST fields in Fig. 9 (middle

left) and Fig. 10 (upper right). The magnitude of the

SLA and SST residual errors on the other hand are

not necessarily consistent with the magnitude of the

square root of the corresponding variances. This can

be due to the way the modelling errors are incorpo-

rated through the random atmospheric forcing, e.g.,

the specific standard deviation values chosen for the

different atmospheric forcing fields might be appro-

priate in some regions of the ocean and not appro-

priate in others.

6.5. Root mean square error of innovation fields

In order to measure the typical ‘‘distance’’ in phase

space between the predicted or analysed model state

Fig. 14. Time series of RMSE values for subdomains 5 (left) and 6 (right).
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and the corresponding observed state, we consider the

RMSE norm given by

RMSEðxÞ ¼ sqrt
1

p

X

p

j¼1

x2j

!

; ð47Þ

where xj= dj� (HY)j and p is the number of grid-points

where observations are defined. The RMSE value is

calculated in specific predefined subdomains of our

model domain (see Fig. 11). Since the SEEK filter has

not assimilated data in coastal zones, only data that are

measured at locations where ocean depth exceeds 500

m contribute in the calculations. The RMSE is also

calculated using data from a free-run simulation in

order to study the impact of the data assimilation on

the model state. The effect of the data assimilation can

be examined by intercomparing the RMSE values

corresponding to the free-run simulation and the model

runs with data assimilation, respectively.

The RMSE values that result from the free-run,

EnKF, EnKS and SEEK filter assimilation cycles can

be found in Figs. 12–15. The upper plots in the figures

show the RMSE values for the SLA fields and the

lower plots show the corresponding RMSE values for

the SST fields. The SLA–RMSE values in the different

subdomains indicate that the typical distance between

model and observed SLA is reduced when data assim-

ilation is applied in the model run (compare free-run

Fig. 15. Time series of RMSE values for subdomains 7 (left) and 8 (right).

30



RMSE values and RMSE values resulting from the

EnKF, EnKS and SEEK filter assimilation cycles).

Moreover, in most subdomains, e.g., subdomains 1, 4

and 6, the EnKS analysed SLA fields typically give the

smallest RMSE values. Again, this is due to the

smoothing properties of the EnKS. In subdomain 3,

however, the SEEK filter performs better than the

EnKS. Moreover, the SLA–RMSE values calculated

Fig. 16. Time–depth sections of observed and simulated temperature (left) and salinity (right). EnKF data (upper), free-run data (middle) and

SEEK data (lower).
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from the SEEK forecasts are even smaller than the

SLA–RMSE values calculated from the EnKF analysis

in this region. Also in subdomain 5, the SEEK perform-

ance is the best. Both subdomains 3 and 5 are high

variability areas, i.e., regions where the SEEK filter has

shown to provide strong updates. In other subdomains,

Fig. 17. Time–depth sections of observed and simulated zonal velocity (left) and meridional velocity (right). EnKF data (upper), free-run data

(middle) and SEEK data (lower).
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typically with less variability, the performance of the

various assimilation schemes is generally in the favor

of the EnKS.

The SST–RMSE values calculated from the SEEK

forecast are generally larger than the corresponding

RMSE values from the EnKF and EnKS forecasts.

This can be due to the SST relaxation that has been

considered in the EnKF and EnKS runs. In some

cases, the SST–RMSE values from the SEEK run are

even larger than the SST–RMSE values from the free-

run, see, e.g., subdomain 1 in Fig. 12. The exceptions

can be found in subdomains 6, 7 and 8, i.e., in the area

close to the equator. From the lower plots in Figs. 12–

15, it is seen that the EnKF-analysed SST fields

typically result in smaller RMSE values than the

EnKS-analysed SST fields. This is due to the rela-

tively short decorrelation timescale for the SST field.

6.6. Time–depth sections

The assimilation of SST and SLA impacts the

model state not only in the surface layer, but also in

the isopycnic layers below. In order to examine this

effect on the temperature, salinity, zonal and meri-

dional velocities, we have plotted the time evolution

of these variables at a selected location in the Gulf

Stream region (� 45jW, 42.2jN) in Figs. 16 and 17.

The temperature sections for the EnKF, free-run

and SEEK simulations are given in Fig. 16, upper left,

middle left and lower left, respectively. The plots

include the observed SST, which is given in the fictive

top layer with negative depth. The effect of the

assimilation is clearly seen for all runs. The isopycnic

layers are adjusted at each assimilation step, the

adjustment in the SEEK filter is generally stronger

than in the EnKF run. In both the SEEK filter and

EnKF, the simulated temperatures in the mixed layer

adjust towards the observed SST every assimilation

update. However, since there is a negative correlation

between SST and the mixed layer depth, a decrease in

mixed layer thickness is expected when the model

SST is increased towards the observed SST. This is

only found in the EnKF temperature section plot. A

stronger impact of the observed SLA in the SEEK

Fig. 18. XBT–RMSE plots for the EnKF and EnKS runs (upper) and the SEEK run (lower).
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Fig. 19. The localisation of the XBT data on day 244 (upper) and the corresponding RMSE versus depth plot for the free-run, EnKF, EnKS and

SEEK assimilation runs (lower).
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filter than in the EnKF may explain this result. Only

the upper 500 m of the ocean is plotted, since the

updates below are rather weak.

The salinity section is given in rightmost plots in

Fig. 16. Clearly, the data assimilation does not impact

the salinity values in the isopycnic layers much, i.e.,

the salinity update is rather small within each iso-

pycnic layer. However, by comparing the free-run and

assimilation salinity fields it is seen that the time

evolution of the salinity is changed due to the assim-

ilation of SLA and SST. Hence, the assimilation

(especially the SEEK assimilation) has an indirect

effect on the salinity conditions.

The updates in zonal and meridional velocity are

rather weak in the EnKF sections and strong in the

SEEK sections, see Fig. 17. Hence, the two assim-

ilation schemes approximate the covariances between

the velocity components and the observed data types

in a completely different manner. The SEEK filter

approximates strong correlations while the EnKF

approximates weak. This is probably due to the differ-

ent ways the error space (covariances) is represented

and propagated forward in time within the SEEK and

EnKF.

6.7. Validation using independent XBT data

XBT data has been extracted from the TOGA/

WOCE/CLIVAR data bases on day 184 and every

10 days throughout the assimilation experiment. The

number of profiles extracted is 21 on day 184, 25 on

day 194, 13 on day 204, 9 on day 214, 26 on day 224,

16 on day 234 and 35 on day 244. Only data measured

on the following depths has been considered: 10, 100,

300, 500, 800 and 1000 m. The corresponding model

data from the free-run, EnKF, EnKS and SEEK filter

assimilation runs has been calculated, by measuring

the data in the specific isopycnic layers that are

located at each depth and location. XBT–RMSE

values were calculated using all the XBT data col-

lected throughout the assimilation period. Fig. 18

(upper) shows the XBT–RMSE values as a function

of time for the free-run, EnKF and EnKS simulations.

In general, the RMSE values resulting from the

assimilation runs are lower than the corresponding

values from the free run. The same tendency can

clearly be seen in Fig. 18 (lower), which shows

XBT–RMSE values for the free-run and SEEK filter

simulations. Hence, these results show that the assim-

ilation schemes generally improve the ocean circula-

tion. On day 194, the XBT–RMSE value for the

EnKF forecast is noticeably higher than the XBT–

RMSE values for the SEEK forecast (but still lower

than the free-run XBT–RMSE value). This can be

explained by the fact that the random atmospheric

forcing in the EnKF forecasting of the ensemble of

model states introduces a relatively large modelling

error in the temperature field. Hence, the effect of

tuning the standard deviation values in the random

atmospheric forcing should be further investigated. It

should be noted that the number of measurements is

limited and in addition the model and XBT data are

measured on the same day but not necessarily on the

same point of time.

Fig. 19 (upper) shows the location of the XBT data

profiles on day 244, while Fig. 19 (lower) shows the

RMSE values as a function of depth on this day. The

RMSE values, which are plotted for both the free run,

the EnKF, EnKS, SEEK runs (both before and after

assimilation) indicate that the effect of assimilating

SLA and SST is most enhanced in the upper 200–300

m of the ocean. Moreover, the lowest RMSE values

and strongest corrections after assimilation are found

in the SEEK run on this specific day. However all the

assimilation runs typically give smaller RMSE values

than the free run on day 244, indicating a positive

effect from the assimilation on the ocean circulation.

7. Conclusions

In this work, the SEEK, EnKF and EnKS assim-

ilation schemes have been applied with the ocean

general circulation model, MICOM, in the North

Atlantic. The multivariate schemes have shown to

efficiently update the model state using real satellite

measurements of SLA and SST.

The impact of assimilating the ocean surface data is

clearly seen, especially on the SLA and SST fields,

but also on the salinity fields, subsurface temperature,

the thickness of the isopycnic layers and velocity

fields. In general, the assimilation of SLA and SST

improves the model fields with respect to real obser-

vations. Validation against independent XBT in situ

data indicates that the model temperature resembles

the real data more closely in the assimilation runs than
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in the free run. The assimilation schemes are however

not able to fully compensate for the model error in

high variability areas such as the central Gulf Stream

region. One reason can be the relatively coarse model

resolution in this area, which makes the model unable

to reproduce fine-scale variations in the observations.

In order to get more realistic results, it will be needed

to primarily improve the model itself by refining the

resolution and using more accurate atmospheric forc-

ings.

The general conclusion of this work is, however,

that all methods performed well enough to participate

to the development of preoperational prototypes and

real-time demonstrations. The results of the assimila-

tion experiments support the statement that the three

systems have similar performances. However, because

the implementations of the EnKF, the EnKS and the

SEEK filter were a bit different, and because a good

independent data set with global coverage was lack-

ing, a thorough investigation of the relative perform-

ances of the methods was not quite possible.

From the technological point of view, we have

shown that both methods are feasible for this kind of

problem, and both have their merits and disadvantages.

From the hindcast experiments, we learned that an

ensemble size of about 150 is sufficient to obtain an

EnKF that works satisfactorily. The same number is

needed for the EnKS. The EnKS is slightly more

expensive than the EnKF because some extra matrix–

vector operations have to be performed. In contrast, the

SEEK filter could be run with a number of error modes

of order 10 only. Given the tremendous growth of

computer power expected in the coming years, ensem-

ble methods are, thus, perfectly suitable to develop

prototypes of ocean monitoring and forecasting sys-

tems.

Last but not least, it must be mentioned that

ensemble-based data assimilation methods do not

require much recoding given the original model code.

This means that model updates are easily handled in

such systems, showing another strong point in favour

of these methods.

In the EU-funded TOPAZ project, the preopera-

tional ocean monitoring and forecasting system estab-

lished in the DIADEM project will be further

developed. Encouraged by the promising data assim-

ilation results in DIADEM, the assimilation system

will be subject to further developments with, e.g.,

assimilation of in situ and buoy data, sea-surface

salinity, ice concentration and thickness. Especially,

we will in the future focus on the multivariate impact

of assimilating these data types using independent

data resources to validate the assimilation results.
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