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Assimilation of sea-surface temperature and altimetric observations

during 1992–1993 into an eddy permitting primitive equation

model of the North Atlantic Ocean

Charles-Emmanuel Testut*, Pierre Brasseur, Jean-Michel Brankart, Jacques Verron 
Laboratoire des Ecoulements Ge´ophysiques et Industriels (LEGI), UMR 5519, CNRS, B.P. 53X, 38041 Grenoble Cedex, France

Sea-surface temperature (SST) and sea-surface height (SSH) observations collected from space between October 1992 and
December 1993 have been assimilated into a realistic primitive equation model of the North Atlantic Ocean circulation at eddy
permitting resolution. The assimilated SST data originate from AVHRR observations gathered and processed within the NASA
Pathfinder project; the altimetric data consist of SSH maps computed as the sum of a time-invariant dynamic topography and
gridded sea-level anomalies obtained by combining Topex/Poseidon and ERS altimeter data. The assimilation scheme is a
reduced-rank Kalman filter derived from the Singular Evolutive Extended Kalman (SEEK) methodology [J. Mar. Syst. 16
(1998) 323], in which the error statistics is represented in a subspace of small dimension. The error subspace is initialized with a
truncated series of Empirical Orthogonal Functions (EOFs) of the system variability. The analysis algorithm includes a
mechanism to update the forecast error statistics adaptively using all pertinent informations from the innovation vector. Hindcast
experiments have been conducted with a 1/3j model of the North Atlantic basin forced with ECMWF atmospheric reanalyses. 
The impact of the data assimilated during 1993 is assessed by examining how observed (SSH and SST) and nonobserved
variables (such as velocity and thermohaline properties in the interior of the ocean) are modified by the assimilation scheme.

Finally, the validation of the hindcast experiments with independent XBT measurements is performed in order to evaluate the
objective skill of the procedure. The various diagnostics demonstrate the positive impact of the satellite data to hindcast the
upper ocean circulation at eddy permitting resolution and the capacity of the scheme to estimate the geographic distribution of
the forecast error.

Keywords: Data assimilation; North Atlantic Ocean; Operational oceanography; SEEK

1. Introduction

Assimilation algorithms are at the hearth of opera-

tional ocean prediction systems that will be operated

in the future on a routine basis, at resolutions fine

enough to represent oceanic eddies.

The theoretical framework of data assimilation in

meteorology and oceanography is now well estab-

lished: variational methods seek to minimize the

misfit between data and model simulations by opti-

mization of well-chosen sets of control parameters,

while sequential methods proceed by intermittent
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blending of observations and model solutions accord-

ing to their respective accuracy.

The generalized inverse (Bennett, 1992) or adjoint

variational methods (Courtier, 1997; Rabier et al.,

2000) can be used to optimize the initial conditions

and the atmospheric forcings of an ocean simulation,

assuming that the model describes the dynamics

perfectly (e.g., Lee and Marotzke, 1998; Wenzel et

al., 2001; Stammer et al., 2003) or unperfectly (e.g.,

Bennett et al., 1998). In order to ensure rapid con-

vergence of the minimization process, the model

dynamics has to be linear or weakly nonlinear. These

methods have been applied successfully in the context

of equatorial (Weaver et al., 2002) or global models at

coarse resolution. In the case of strongly nonlinear

flows, specific temporal strategies (Luong et al., 1998)

or iterative algorithms (Chua and Bennett, 2001) are

needed to cope with the problem of local minima.

Using the sequential estimation theory, ensemble

Kalman filters and smoothers, which propagate the

error statistics by simulating a limited set of model

trajectories simultaneously, have been investigated in

the context of nonlinear ocean dynamics (Evensen,

1994; Burgers et al., 1998; Evensen and van Leeu-

wen, 2000). Like variational algorithms, the practical

implementation of these methods show that the

numerical resources needed to optimally combine

nonlinear ocean models with observations are equiv-

alent to, at least, a few tens of model integrations

(Brusdal et al., 2003). Considering the computing

power available today, and the need to operate high-

resolution ocean models at global scales routinely

(e.g., every week), cheaper assimilation methods are

required to demonstrate the feasibility of operational

ocean prediction systems.

Several studies have examined how simplified rep-

resentations of the estimation error statistics can reduce

the computational burden of the conventional Kalman

filter with nonlinear models in academic configurations

(e.g., Fukumori and Malanotte-Rizzoli, 1995; Pham et

al., 1998; Voorrips et al., 1999), while applications of

reduced-order Kalman filters into realistic models of

the Tropical Pacific Ocean (Fukumori, 1995; Cane et

al., 1996; Verron et al., 1999) have demonstrated the

usefulness of the concept in quasi-linear regimes.

Concerning the operational prototypes in use to-

day, most of them assimilate data with suboptimal

interpolation methods wherein the background error

covariances are derived from fairly simple schemes

(De Mey et al., 2002; Bell et al., 2000; De Mey and

Benkiran, 2001; Smedstad et al., 2003). These sim-

plified methods are easy to set up and computationally

efficient, but they require external estimates of error

covariances. As a result, the assimilation increments

may not be consistent dynamically, and relevant

statistically. A better use of the data in those systems

can thus be expected from ‘‘advanced methods’’,

which aim at more dynamically and statistically con-

sistent error covariances and state estimates. In the

framework of reduced-order Kalman filters, this goal

can be achieved by specifying multivariate error

subspaces with dynamically balanced covariances,

and by using all pertinent informations from the

model and the data to propagate the error statistics

during the assimilation period.

This issue has motivated the present study, which

examines the implementation of an advanced statis-

tical method into a realistic primitive equation model

of the North Atlantic. A reduced-order Kalman filter

derived from Singular Evolutive Extended Kalman

(SEEK) (Pham et al., 1998) is used to assimilate sea-

surface temperature (SST) and sea-surface height

(SSH) data collected from space between October

1992 and December 1993. Potentially, other data

types such as surface salinity (Durand et al., 2002)

and hydrographic profiles should also be included to

meet operational requirements. However, a first objec-

tive of the present work will be to assess, in a pre-

operational context, the benefit of satellite data assim-

ilation by comparison with independent in situ data.

The analysis step of the SEEK filter is achieved in

a subspace of small dimension which contains the

dominant directions of the background error (Pham et

al., 1998; Ballabrera et al., 2001). The error subspace

used here is initialized with a truncated series of three-

dimensional, multivariate Empirical Orthogonal Func-

tions (EOFs) of a previous model simulation; this

technique allows us to specify error covariances con-

sistently with the model dynamics. In addition, the

SEEK algorithm includes an adaptive mechanism to

update the error subspace with all pertinent informa-

tions left in the innovation vector after the analysis

step (Brasseur et al., 1999; Brankart et al., 2003). A

second objective will be to examine the capacity of

the scheme to propagate the error statistics in a

consistent way throughout the assimilation period,
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and to determine its dominant characteristics in a

realistic North Atlantic model.

The paper is organized as follows. In Section 2, the

model configuration adopted for the assimilation ex-

periment is described. The main characteristics of the

data sets available for assimilation during 1992 and

1993 are reviewed in Section 3, and an evaluation of

the free model with respect to these data is discussed.

The specific aspects of the SEEK assimilation system

implemented for this study are described in Section

4. Section 5 is dedicated to the analysis of one major

assimilation experiment of real SST and SSH satellite

data. Finally, concluding remarks are given in Sec-

tion 6.

2. The model configuration

The assimilation experiments examined in this pa-

per have been carried out with a primitive equation

model of the North Atlantic basin implemented and

validated by the French CLIPPER project (Treguier et

al., 1999).

The numerical code adopted to simulate the ocean

circulation is OPA 8.1, a z-coordinate, primitive e-

quation model developed at LODYC (Madec et al.,

1998) that uses the hydrostatic approximation and the

rigid-lid formulation. Vertical mixing of momentum,

temperature and salinity is computed according to the

TKE closure model developed by Blanke and Dele-

cluse (1993), with enhanced turbulent viscosity in

case of convective situations.

The model domain covers the North Atlantic basin

from 20jS to 70jN and from 98.5jW to 20jE, with a

horizontal resolution of 1/3� 1/3j cos(latitude) (Fig.

1). The vertical discretization is achieved on 42 geo-

potential levels, with a grid spacing that increases

from 12 m at the surface to 200 m below 1500 m

depth. The bathymetry is derived from a smoothing of

the bottom topography prepared by Smith and Sand-

well (1997). The Southern boundary at 20jS, the

Northern boundary at 70jN and the Gibraltar Strait

are closed but the model solution is relaxed toward

climatology within buffer zones defined off Portugal,

in the Norwegian Sea and along the Southern boun-

dary to simulate the supply of Mediterranean Water

and the exchange with the Arctic and South Atlantic

basins. The choice of an eddy permitting resolution

resulted from a balance between the need to represent

the mesoscale turbulence fairly well and the computer

resources needed to assimilate the variability signal

observed by the satellites.

The thermodynamic variables in the model are

initialized using a Northern hemisphere winter season

state from the climatology compiled by Reynaud et al.

(1998). The atmospheric forcing fields of heat, fresh-

water and momentum are derived from the reanalyses

of the ECMWF 6-h forecasts of the 1979–1993

period. In addition, the model surface temperature is

relaxed toward weekly Reynolds SST data in order to

maintain interactivity between the ocean model and

the atmosphere (Barnier et al., 1995). However, the

relaxation term is removed during the assimilation

experiments in order to avoid spurious competition

with the assimilation of SST data. This also allows an

easier diagnostic of the actual impact of the assim-

ilation.

The model was spun up for 8 years, starting from

rest in 1985. Several tests were performed to deter-

mine the most appropriate spin-up length, taking into

account the existence of a slow model drift and the

need to compute realistic modes of variability for

initialization of the assimilation experiments. We

realized that, by comparison with the Reynaud sea-

sonal climatology, too long numerical integrations

tend to deteriorate the three-dimensional distribution

of temperature and salinity; on the other hand too

short integrations leave some dynamical features

unadjusted. A spin-up of 8 years was eventually found

as a good trade-off between dynamical consistency

and fit to climatology.

The integration was pursued until December 1993

to produce a reference run available for further com-

parison with the assimilation experiment. The baro-

tropic stream function averaged between 1989 and

1993 is illustrated in Fig. 1. Some well-known ele-

ments of the North Atlantic circulation are easily

recognized, such as the subtropical gyre, the intensi-

fication of western boundary currents along the Amer-

ican coast, and the subpolar gyre in the Labrador Sea.

A more detailed examination of the currents, how-

ever, reveals a number of unexpected features: the

NAC is not well defined; the intensity of the subpolar

gyre is too strong; the Gulf Stream shows a spurious

recirculation southward with a permanent eddy at

35jN, and a bifurcation of the flow near the Hateras
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Cape advects warm surface water northward on the

continental shelf (see also Fig. 8).

The unsufficient resolution of the numerical model

probably bears part of the responsibility in those

unexpected features, though higher resolution config-

urations still exhibit similar deficiencies (Treguier et

al., 1999). One can thus expect improvements in the

representation of the currents by assimilating satellite

data to constrain the flow field.

3. Sea-surface temperature and altimetric data sets

The time window chosen for the assimilation

experiments extends from October 1992 to December

1993, i.e., a period during which both ECMWF

reanalysis, SST and SLA data products are available

simultaneously.

The SST data consist of composite AVHRR ob-

servations, gathered and processed within the NASA

Pathfinder project. In addition, these products have

been quality controlled, compared with Reynolds

analyses and gridded on maps at 1/4j resolution

every 10 days. In principle, AVHRR observations

cover the entire model domain, but the presence of

clouds, to some extent, restricts the practical avail-

ability of SST data at high latitudes and during the

winter season. An accuracy of 0.5 jC on the

gridded SST products has been assumed, which

corresponds to the sum of errors in acquisition

procedures, processing algorithms and space–time

interpolation.

Fig. 1. Barotropic stream function of the NATL3 reference run averaged between 1989 and 1993 (CI = 10Sv).
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Before the assimilation experiments, SST data

have been used to get a prior evaluation of the

reference run during 1993. Fig. 2 illustrates the bias

between the model SST and the satellite observations

mapped on the model grid. In spite of the flux

correction applied on the surface temperature, a num-

ber of strong anomalies can be pointed out: the

subpolar gyre in the model is too warm of f 2 to 4

jC in average near the surface; a large misfit also

occurs near the African coast, reflecting a weakness in

the representation of the African Upwelling off Sen-

egal; negative values of � 2 to � 4 jC are observed

in Southern sector of the Gulf Stream, while an excess

of 4 to 7 jC in the model SST develops along the

American coast north of 40jN. The latter problem is

partly linked to a systematic error in the Gulf Stream

pathway in the model.

The altimetric data sets considered for the assim-

ilation consist of 10-day maps of SSH at 1/4j reso-

lution, obtained as the sum of a time-invariant

dynamic topography, and SLA data from the AVISO

project. The mean SSH added to SLA maps is derived

from inverse modelling (at 1j resolution) of the

Atlantic circulation (Le Grand, 1998), using the Rey-

naud climatology as a dynamical constraint. The

gridded SLA at 1/4j resolution are calculated by

combining Topex/Poseidon and ERS altimeter data,

with an interpolation between tracks according to the

method described by Le Traon et al. (1998). The

accuracy of the SLA products can be reduced to

f 3 cm RMS in average because of the very efficient

correction of orbit errors on along-track data. How-

ever, due to the lack of accurate tidal corrections, the

SLA data will not be assimilated in several coastal

Fig. 2. Bias (jC) between the simulated model SST and the SST observations during 1993. Dark (light) grey values indicate higher (lower)

temperature in the model than in the observation.
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zones like the Georges Bank or the Great Banks of

Newfoundland. A bulk error of 5 cm RMS on the total

SSH data has been prescribed in the assimilation

system, taking into account the cumulated effect of

measurements, inverse estimates, and mapping proce-

dures.

Using a similar procedure as for SST, the bias

between the SSH of the reference simulation and the

data is diagnosed in order to evaluate systematic

model errors in terms of surface topography (Fig. 3).

The amplitude of the bias is maximum in the mid-

latitude regions. A dipole of negative (north) and

positive (south) sea-level misfit is present on each

side of the Gulf Stream, reflecting the lack of kinetic

energy in the jet by comparison with the mean

currents of the inverse solution. The positive misfit

centered at (50jN; 30jW) denotes the weakness of

the Gulf Stream extension eastward, and its conse-

quences on the North Atlantic drift. In the Labrador

Sea, a negative pattern, exceeding � 20 cm, confirms

the excess of cyclonic circulation in the subpolar Gyre

which was already pointed out in the mean Barotropic

Stream Function (see Fig. 1). Finally, the positive

anomalies extending zonally located at 35jN in the

eastern part of the basin reflect the absence of Azores

Current in the reference run.

As an example of synoptic data, Fig. 4 (top)

represents the SSH field in the Gulf Stream region

that will be used in the assimilation experiment on

October 21, 1992. This picture illustrates the crucial

role of the mean surface topography added to the

observed SLA to derive the absolute SSH data,

resulting in a well-defined frontal structure along the

Gulf Stream. A comparison with the model simulation

Fig. 3. Bias (cm) between the simulated model SSH and the SSH observations (constructed as a sum of a mean SSH and a sea level anomaly)

during 1993. The spatial mean has been set to zero. Dark (light) grey values indicate higher (lower) sea level in the model than in the

observation.
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Fig. 4. Sea surface height (cm) for October 21, 1992 in the Gulf Stream region. Observation (top figure), free model simulation corresponding to

initial first guess of the experiment (middle figure) and data assimilation analysis (bottom figure).
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for the same day (Fig. 4, middle) reveals the lack of

intensity in the surface current, and the wrong posi-

tioning of the meanders and eddies. Additional diag-

nostics (not shown here) indicate that, in general, the

simulations suffer from a deficit in SST and SSH

variability which are explained by the lack of meso-

scale activity in the model.

The observation error that we specify in the assim-

ilation experiments discussed hereafter is not only

related to the accuracy of the gridded SST and SSH

data, but also to the ability of the model to represent

the observed signal. In order to evaluate this represen-

tativeness error, we have examined the RMS differ-

ence between the original data on a 1/4j map and their

projection onto the 1/3j model grid. The standard

deviation of the signal lost during the upscaling

process varies between 0.1 and 0.6 jC for the SST

and between 0.5 and 5 cm for the SSH. During the

assimilation experiment, this signal will be considered

as an additional component of the observation error,

added to the 0.5 jC error on the gridded SST products,

or to the 5 cm error on the gridded SSH products.

4. The assimilation method

The assimilation scheme implemented in these

experiments is sequential, implying that only obser-

vations from the past can influence the current esti-

mate of the oceanic state. The backbone of the

assimilation algorithm is derived from the Kalman

filter theory (Gelb, 1974). The model trajectory is

corrected intermittently through a sequence of assim-

ilation cycles, taking into account the confidence in

the model prediction and the accuracy of the observed

quantities. The assimilation cycles must be long

enough to accumulate a sufficient amount of obser-

vations and correct the model forecast accordingly. A

10-day cycle has been prescribed in the present

experiments, which is the time period needed to

achieve a global coverage of the SSH and SST from

satellites and generate the gridded products described

in Section 3.

4.1. The state vector and the estimation vector

The sequential correction due to the Kalman filter

analysis provides a new estimate of the state vector

which contains all the variables needed to restart the

model. As the observed data only relate to a few

variables of the model state, the assimilation scheme

has to be multivariate, i.e., the whole state vector must

be modified in a consistent manner in addition to the

observed quantities themselves. Given the nature of

the data available for assimilation in this study, a

critical issue will be to correct the subsurface ocean

properties from SST and SSH data only.

In the context of the statistical estimation theory,

this can be achieved as long as the multivariate error

statistics prescribed for the forecast state and the

observations are reliable and robust. In practical

assimilation problems, it is impossible to perfectly

specify the error covariance between all state varia-

bles. The optimality of the Kalman filter is therefore

restricted to the subset of the state vector with

reliable statistical properties, which will be defined

as the estimation vector. In order to update the rest

of the state vector, simple physical constraints such

as the geostrophic balance can be used to complete

the statistical correction. This adjustment should

minimize the occurrence of spurious perturbations

associated to unbalanced increments during the next

model initialization.

Formally, one needs to specify a partition of the

model state vector w in order to distinguish the

estimation vector x from the rest v, so that:

w ¼ ½xjv�: ð1Þ

Strictly speaking, the state vector of the OPA

model described in Section 2 is made of the two-

dimensional barotropic stream function (BSF), and the

three-dimensional arrays of the temperature (T), sal-

inity (S), turbulent kinetic energy (TKE) and horizon-

tal velocity components (U, V). In order to simplify

the expression of the observation operator needed to

compute the misfit between the model state and the

data, the two-dimensional SSH fields is included as a

part of the state vector in spite of the diagnostic nature

of this variable in the rigid-lid approximation.

In order to define the estimation space, we proceed

in two steps: first, we eliminate all state variables

deeper that 1500 m because of the difficulty encoun-

tered in preliminary experiments to specify reliable

and robust error covariances between these variables

and the surface. Second, for the same reason, we

exclude the velocity, the associated barotropic stream
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function, and the turbulent kinetic energy from the

estimation vector: the chaotic nature of the turbulent

kinetic energy makes it difficult to calculate statisti-

cally significant covariances between TKE and the

other state variables. The estimation vector is thus

restricted to the sea surface elevation, the temperature

and the salinity in the upper 1500 m.

Consistently with this partition, each assimilation

cycle includes an analysis step to correct the estima-

tion vector statistically using all pertinent observations

of the system, an adjustment step to re-initialize the

model state vector in a dynamically consistent man-

ner, and a forecast operation to predict the ocean

trajectory up to the next analysis time. These three

steps are described hereafter.

4.2. The analysis step

The statistical method used to update the estimation

vector using the satellite observations is derived from

the Singular Evolutive Extended Kalman (SEEK) fil-

ter, which is a reduced-order assimilation scheme

described in several earlier publications (e.g., Pham

et al., 1998; Verron et al., 1999; Brasseur et al., 1999).

In spite of a reduced dimension of the estimation

space compared to the model state space, a full Kal-

man filter still requires computational resources

exceeding presently available computers, and a further

reduction of the size of the estimation problem is

needed. The SEEK filter has been developed to this

aim, based on a reduced rank representation of the

error covariance matrix associated to the estimation

state.

4.2.1. The reduced order Kalman gain

The reduced-rank approximation of the back-

ground error covariance matrix at time ti can be

written as:

Pf
i ¼ Sf

i S
fT

i ð2Þ

where Si
f is the reduction operator (of dimension n� r)

related to the r modes {Si
f}k defining the error sub-

space. Using conventional notations (Ide et al., 1997),

the analysis step of the SEEK filter takes the form

xai ¼ xfi þ Kiðyi � Hxfi Þ ð3Þ

in which xi
f is the forecast estimation vector (of

dimension n) obtained by model integration up to

time ti; xi
a is the estimation vector after the analysis

step, and yi is the vector of observed quantities of

dimension p (in our case study, gridded maps of SST

and SSH). The gain matrix K can be expressed in

terms of the simplification operator S and the obser-

vation operator H (dimension p� n) relating the

observations to the prediction:

Ki ¼ Sf
i ½I þ ðHSf

i Þ
TR�1HSf

i �
�1ðHSf

i Þ
TR�1 ð4Þ

where R is the observation error covariance matrix.

Eq. (4) shows that the size of the inversion problem is

determined by the error subspace dimension (as long

as the observation error is parameterized with a

diagonal matrix), while the original Kalman gain

requires an inversion in the observation space. As

the number of observations is usually much larger

than the rank of the error subspace used in practice,

the inversion step of the SEEK algorithm is getting

much cheaper than the corresponding computation of

the original Kalman gain.

Finally, the scheme evaluates the error covariance

of the analysis and updates the error subspace accord-

ingly:

Pa
i ¼ ðI � KiHÞPf

i ¼ Sa
i S

aT

i ð5Þ

Sa
i ¼ Sf

i ½I þ ðHSf
i Þ

TR�1HSf
i �
�1=2: ð6Þ

4.2.2. The local approximation

The estimation of small correlations associated

with remote observations is a well-known difficulty

of reduced-order Kalman and ensemble methods

(Houtekamer and Mitchell, 1998). A further simplifi-

cation of the SEEK analysis scheme is thus introduced

(Testut, 2000; Brankart et al., 2003), enforcing to zero

the error covariances between distant variables. This

algorithmic improvement will prevent the spurious

influence of, say, equatorial data at high latitudes

through large-scale signatures in the EOFs.

In practice, this is implemented by assuming that

distant observations have negligible influence on the

analysis. The global system is split into subsystems

for which a traditional analysis is computed: only data

points located within a specified region around the

subsystem will contribute to the Kalman gain.
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In practice, each subsystem includes 2� 2 hori-

zontal grid points (� 43 vertical levels), and the

associated regions of influence extend over 14� 14

grid points, setting an upper bound to the correlation

scales of about 200 km. Note that we did not observe

any discontinuity of the gain between adjacent sub-

systems because the size of the subdomains was taken

large enough to overlap each other in a way that two

neighboring subdomains use almost the same local

data set.

The local gain is an approximation, but it makes

sense since only data points located in the ‘‘neighbor-

hood’’ of a model grid point should have a significant

impact on the analysis for that grid point. Besides, the

regular distribution of the gridded observations (at

1/4j) on the model domain always provides at least a

few data points within each region of influence (if

there were no data available inside the region of

influence, no correction would be applied). Further,

we have observed that this also improves the analysis

because the dimension of the error subspace, relative

to the number of state variables in a particular sub-

system, increases and therefore spans a larger part of

the estimation space.

4.2.3. The error subspace initialization

In most earlier implementations of SEEK, the

dominant EOFs of the system’s variability were used

to initialize the background error covariance (e.g.,

Verron et al., 1999). The initialization of the error

subspace could also be expressed in terms of singular

vectors, breeding vectors or differences between

slightly different model forecasts. A procedure along

these lines was actually tested with some success by

considering the divergence between two model fore-

casts obtained with and without SST relaxation (Tes-

tut, 2000).

In the present work, however, the computation of

EOFs was found easy and robust enough to estimate

relevant error statistics at initial time. We thus per-

formed an EOF analysis of multivariate model dumps

sampled every 10 days from a prior simulation of the

1990–1993 period. In each subsystem defined above,

the local leading modes of the spectrum were retained

out of a series of 154 realizations, preserving in this

way the local dominant features of SSH and SST

covariance simulated by the model (Testut, 2000;

Penduff et al., 2003). In practice, local EOFs are

computed on each subdomain individually with only

the subset of multivariate model variables available on

the subdomain grid. By doing so, we observed that the

model variability can be represented with only a few

local EOFs (we used four local modes here), while a

much larger number of EOFs covering the basin scale

would be required to achieve an equivalent level of

explained variance. The effective rank of the error

covariance matrix is then considerably increased. The

error subspace spanned by these modes specify how

to spread the information from the observed quantities

to the whole estimation vector (e.g., it specifies how

SST and SSH data are correlated to the thermohaline

properties in the upper 1500 m of the water column).

4.3. The adjustment step

The analysis step described above updates the

estimation vector only. Before starting a new forecast,

the remaining part of the state vector v should in

principle be adjusted to the statistical update defined

in the estimation space. This includes the temperature

and salinity variables under 1500 m, the turbulent

kinetic energy, the horizontal velocity components

and the barotropic stream function.

Without the explicit use of in situ observations of

the deep ocean properties, one can hardly expect an

effective correction of the T/S field below 1500 m. In

practice, our assimilation scheme will preserve the

evolution of the deep water mass properties as they

are computed by the model itself. A moderate smooth-

ing of the correction is simply performed to avoid an

abrupt transition between the corrected variables

above 1500 m depth, and those uncorrected below.

Concerning the turbulent kinetic energy (TKE), we

re-diagnose its distribution in space from the other

analysed state variables, in order to restore an approx-

imate balance in the production/destruction terms of

the closure scheme (Blanke and Delecluse, 1993).

Conversely, there is no explicit update of the velocity

field from the previous forecast, but a dynamical

adjustment to the thermohaline update is achieved

by the model within a few time steps (about 1 day

after restart). New solutions are currently examined to

improve the dynamical balance of the state vector

before restart by including the velocity components in

the estimation vector or by enforcing geostrophic

equilibrium.
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A few additional details of the restart procedure

concern the following items:

– the time-integration in OPA is based on a leap-frog

scheme, requiring two successive time-steps to

restart a model run after the analysis step; as only

one analysed state can be calculated every

assimilation cycle, a second ‘‘restart’’ state is

generated by performing a Euler time step first

before the next model forecast;

– due to the nonlinearities of the model physics and to

the existence of a hydrostatic constraint in the model

formulation, the hydrostatic balance of the analysed

state is not guaranteed; a check of the water column

stability is thus performed after the analysis, and an

adjustment based on enhanced vertical diffusion

coefficients takes place if needed;

– in buffer zones, the correction has been switched off

to avoid conflicting interplay between the assim-

ilation updates and the Newtonian relaxation terms.

4.4. The forecast step

The analysis and adjustment steps at time ti supply

a new state vector

wa
i ¼ ½xai jvai � ð7Þ

which is used as initial conditions for a new model

forecast up to time ti + 1:

wf
iþ1 ¼ M½wa

i �: ð8Þ

In addition to the model state, a property of

sequential filters belonging to the Kalman family is

the propagation of the error covariance from one

analysis step to the next using the model dynamics

and a statistical description of the model error. This

error propagation is needed to perpetuate the optimal-

ity of the estimation process with time. Introducing

the low rank approximation into the error covariance

equation and considering the linear tangent model MV,
one gets:

Pf
iþ1 ¼ ðMVSa

i ÞðMVSa
i Þ

T þ Qi: ð9Þ

Two major hurdles arise to explicitly resolve this

equation in the assimilation algorithm. First, the

evolution of the error covariance with the model

equations remains computationally expensive even

with the reduced-rank approximation, requiring r

model integrations in addition to the central forecast

(Eq. 8). Second, one has to specify the explicit

structure of the systematic error Qi; however, a

detailed knowledge of the nature of the model error

is rarely available, and the impact of poorly specified

statistics may be dramatic on the estimation process.

Instead of this formulation, we investigate in this

paper a shortcut to Eq. (9), assuming that the forecast

error covariance matrix can be written as:

Pf
iþ1 ¼ D

1=2
i Pa

i D
1=2
i ð10Þ

where Di
1/2 is a diagonal amplification matrix. The role

of this simple parameterization is to simulate the

cumulated effects of the model error and the dynam-

ical growth of the pre-existing error modes, with the

interesting property to preserve the rank of the error

covariance matrix. Despite its simplicity, such ideal-

ization does not imply that the model is assumed

perfect.

In the general case, the diagonal elements of Di

should be tuned individually to achieve the same error

Table 1

Statistical diagnostics averaged over 1993 for the adaptive

assimilation: RMS misfit between estimated field and observation,

error standard deviation as produced by the SEEK filter

SSH (cm) SST (jC)

NATL3 Basin

Free run/observation misfit 15.1 1.41

Forecast/observation misfit 9.8 1.14

Analysis/observation misfit 4.5 0.74

Forecast error 6.6 1.09

Analysis error 3.0 0.59

Observation error 5.0 0.51

Gulf Stream Region

Free run/observation misfit 24.7 1.92

Forecast/observation misfit 17.1 1.40

Analysis/observation misfit 6.6 0.79

Forecast error 11.1 1.68

Analysis error 3.7 0.58

Observation error 5.2 0.52

11



variance propagation as what could be obtained from

Eq. (9). In this first attempt, we have adopted a further

simplification by assuming for this matrix a block-

diagonal structure which corresponds to the partition-

ing of the system into the subsystems introduced for

the analysis step. A unique amplification factor is thus

associated to each subsystem, the value of which is

prescribed a priori or evaluated using the adaptive

scheme described hereafter.

In Brasseur et al. (1999), it was shown that an

adaptive mechanism can efficiently update the error

subspace of the SEEK filter using the information left

in the innovation vector after each analysis step (i.e.,

the residual innovation vector). A similar idea, also

used by Dee (1995), has been implemented in the

present study to determine the amplification matrix Di

using the same source of information.

The baseline of the adaptive algorithm is to enforce

the consistency between the error variances predicted

by the filter and the ‘observed’ variance captured by the

innovation vector. To achieve this goal, we consider the

classical Eq. (11) from the optimal linear estimation

R þ HPfHT ¼ E½ðy � Hxf Þðy � Hxf ÞT � ð11Þ

in which we introduce Eq. (10). E denotes the math-

ematical expectation operator. Taking the diagonal part

and re-ordering, we obtain

diagðHD
1=2
i Pa

i D
1=2
i HT Þ ¼ Dvi � diagðRÞ ð12Þ

where Dvi
is a diagonal matrix containing the innova-

tion variance vi. Dvi
is estimated from the sequence of

the last innovation vectors weighted with an exponen-

tial decreasing towards the past. In practice, the esti-

Fig. 5. Bias (jC) between the model SST from the assimilation experiment (10-day forecasts) and the SST observations during 1993. Dark

(light) grey values indicate higher (lower) temperature in the model than in the observation.
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mation of vi is done sequentially at each step by

evaluating:

vi ¼ ð1� hÞvi�1 þ hv* ð13Þ
where v* is the square of the current innovation (Testut,

2000; Brankart et al., 2003). A value of 0.2 is pre-

scribed for h, which corresponds to an e-folding time of

50 days for 10-day assimilation cycles. Eq. (12)

expressed that the background error variance should

in average be equal to the innovation variance minus

the observation error variance. Then, a procedure is set

up, which determines adaptively theDi diagonal matrix

(i.e., an amplification factor on each subdomain) in

order to approximately verify the balance expressed by

this equation. Of course, in Eq. (12), we have more

equations than unknowns. So we need to use a criterion

to find the ‘‘best’’ solution. Assuming thatDH
f is the left

hand side of Eq. (12) and Dest is the right hand side, we

adjust the amplification factor to minimize:

trðDf�1
H Dest þ Df

HD�1
est Þ ð14Þ

on each subsystem. This formulation is minimum if DH
f

is equal to Dest, and increase if strong ratio exist

between them.

Despite its simplicity, this method is useful to

control the evolution of the error variance during the

assimilation sequence and preserve the statistical

consistence of the scheme.

5. The assimilation experiments

In this section, we discuss the results of assimila-

tion experiments using the data sets described in

Fig. 6. Bias (cm) between the SSH from the assimilation experiment (10-day forecasts) and the SSH observations during 1993. The spatial mean

has been set to zero. Dark (light) grey values indicate higher (lower) sea level in the model than in the observation.

13



Section 3 during the period from October 1992 to

December 1993. The experiments have been imple-

mented with the help of the SESAM software (Testut

et al., 2001), which is a modular package developed to

manage the various stages of the assimilation chain in

a flexible manner.

The assimilation system needs a few cycles to adjust

the initial error statistics (Testut, 2000), and the first 3

months in 1992 must be regarded as the ‘‘spin-up’’ of

the experiment, while the complete annual cycle of

1993 can be considered as the adequate time interval

for computing the assimilation diagnostics. In addition

to assessing the global solution, we will focus some of

these diagnostics on the Gulf Stream region because of

its critical role on the dynamics of the whole North

Atlantic basin.

The objective assessment of the system is not

trivial because the data with a sufficient space–time

coverage are already used by the assimilation process,

while only a few independent data are available for

Fig. 7. RMS misfit to observation for sea surface height in cm (left column) and sea surface temperature in jC (right column) in the Gulf Stream

region during 1993. Free model simulation (top figures) and 10-day forecast (bottom figures).
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verification. The methodology to evaluate the assim-

ilation experiments will therefore rely on three differ-

ent metrics:

(i) the computation of RMS misfits between the SST

and SSH data fields and their equivalent estimates

from the assimilation sequence (in spite of the fact

that these statistics cannot be considered as an

objective measure of the system’s performance);

(ii) the assessment of unobserved quantities (such as

large-scale currents) by comparison with our

prior knowledge of the ocean circulation;

(iii) and, the validation with fully independent data

sets (e.g., in situ hydrographic profiles).

5.1. Comparison to the satellite data

As a first illustration, the SSH analysis on October

21, 1992 (Fig. 4, bottom) allows a detailed inspection

of how one specific analysis modifies the surface

topography in the Gulf Stream region. The frontal

system associated to the Gulf Stream has been cor-

rected in a positive way with respect to the first guess

shown in Fig. 4 (middle). The mean position of the jet

Fig. 8. Horizontal velocity (cm s� 1) in the Gulf Stream region (at 50 m depth). Free run (top) and 10-day forecast (bottom) are averaged over

1993.
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is more consistent with the SSH map in Fig. 4 (top)

after assimilation, and the magnitude of its meridional

slope is more realistic. The observed mesoscale activ-

ity identified by the presence of eddies along the jet is

also better represented and located in the analysis.

An evaluation of the averaged behaviour of the

assimilation system during 1993 is given by Table

1, which represent the RMS misfits between the

satellite data and the model estimates (in cm for

SSH and jC for SST) in the free run, the 10-day

Fig. 9. Meridional section in the Gulf Stream region (at 72jW) for the velocity (cm s� 1) until 2000 m depth. Free run (top) and 10-day forecast

(bottom) are averaged over 1993.
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forecasts and the analysed states of the assimilation

sequence.

In the North Atlantic basin, a systematic reduction

of the RMS misfit is observed on the SSH, dropping

from 15 cm in the free run to 4.5 cm in the analyses,

i.e., slightly lower than the standard deviation of the

observation error (5 cm). Regarding SST, the RMS

misfit drops from 1.41 jC in the free run to 0.74 jC in

the analysis. Concerning the 10-day forecasts, the

RMS misfits with the data are larger (9.8 cm and

1.14 jC, respectively, for SSH and SST), but they

remain well below the corresponding figures of the

free run. The model is thus able to properly ‘‘ingest’’

the observed information at the analysis time, and to

propagate this information dynamically up to the next

assimilation cycle.

In addition to the model-data misfits, Table 1

provides the average levels of forecast and analysis

errors predicted by the filter in the assimilation experi-

ment. Those errors are systematically smaller than the

corresponding misfits to the data, suggesting that

some noise in the observations has been filtered out

by the scheme. Similar statistics have also been

computed in the Gulf Stream area, showing the same

tendencies but with generally higher figures as a result

of a more intense oceanic variability in that region.

In optimal linear estimation, the error statistics

should verify (Dee, 1995):

R � HPaHT ¼ E½ðy � HxaÞðy � HxaÞT � ð15Þ

indicating that the analysis/observation misfits should

be smaller than the observation errors. Table 1 shows

that these conditions are not satisfied everywhere for

SST and for SSH. The lack of consistency between the

estimated errors and the innovations can be explained

by inadequate values of the observation error varian-

ces (including representativeness errors) which, in the

Gulf Stream region, are probably underestimated. The

estimation of the error statistics could therefore still be

improved, for instance by means of a more complex

adaptive algorithm.

In order to identify the nature of the signal which

has effectively been modified by the assimilation, we

show in Figs. 5 and 6 the bias between the data and

the 10-day forecasts of all assimilation cycles in

Fig. 10. RMS misfit to Reynaud climatology for temperature in jC (left column) and salinity in psu (right column) in the Gulf Stream region

down to 1600 m depth averaged over 1993. The solid curve indicates the free run misfit while the dashed curve shows the 10-day forecast

misfit.
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1993. A significant reduction of the bias can be

observed for both SSH and SST by comparing with

the same quantity computed from the free run (Figs.

2 and 3).

In the Gulf Stream, particularly, the assimilation

leads to an improved agreement with the data. Colder

surface waters are now present north of 40jN, as a

result of a better positioning of the jet, which separates

Fig. 12. Temperature RMS misfit (jC) with respect to XBT profiles in the Gulf Stream region down to 700 m depth averaged over 1993. The

figure presents the free run (solid curve), the 10-day forecast (dashed and dotted curve) and the analysis state (dashed curve).

Fig. 11. Horizontal distributions of XBT profiles, available during 1993 (source SISMER).
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cold waters of subpolar origin and warm waters from

the subtropical gyre. The new slope across the jet is

apparently strengthened, and thus more consistent

with what is expected in reality. The extension of

the Gulf Stream has been modified too, and we

observe a reduction of the bias in the Eastern North

Atlantic accordingly. In the central North Atlantic, a

significant bias was present at 35jN in Fig. 3 because

of a too weak Azores Current in the free run. This

feature has completely been removed by the assim-

ilation (Fig. 6), and this can be partly attributed to the

presence of this feature in the mean surface topog-

raphy added to the SLA data.

In the low latitude region, the 10-day forecast bias

is generally small, and the signature of a too weak

upwelling along the African coast is less visible. The

high latitudes are characterised by some improvement

in the SSH representation. However, the signature of

an important SST bias remains in the Labrador Sea,

and more generally in the subpolar gyre. This can be

explained by the error in the forcing fields which

dominates in that region, and significantly affects the

forecast, which is performed without SST relaxation

in the assimilation runs.

The assimilation of satellite data is also useful to

improve the variability in the regions where the

horizontal grid resolution is not sufficient to properly

simulate the mesoscale turbulence. This is illustrated

by Fig. 7, showing the distribution of RMS difference

between the model runs (reference and assimilation)

and the data. As expected, the maximum of the misfit

amplitude is associated to the Gulf Stream path and its

extension toward the Eastern North Atlantic. How-

ever, the misfits are significantly reduced in the

assimilation run, suggesting a better consistency with

the variability of the surface properties themselves.

One can also notice that the well-marked SSH sig-

nature in the reference run characterising the absence

Fig. 13. Distribution of the amplification factor l in the adaptative assimilation experiment averaged over 1993.
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of zonal extension of the Azores current at 35jN, has
been smoothed out completely in the assimilation.

These statistical results suggest that the assimila-

tion system has the capability to correct the major

model failures diagnosed from the observation of the

surface variables. In addition, these corrections are

sufficiently robust to persist during a 10-day forecast

and impact the following analysis.

5.2. The gulf stream circulation

Another critical issue is to verify the correct

extrapolation of the assimilated information onto

unobserved variables, such as large-scale surface

currents. The velocity field from the 10-day forecasts

is an interesting quantity to diagnose if the correction

of the state vector is sufficiently robust to permit the

adjustment of the dynamics. Note that the new current

structure does not directly result from the analysis

itself because in this experiment the velocity variables

(U, V) are not included in the estimation space.

A focus on the Gulf Stream region (Fig. 8) illus-

trates the positive impact of SST and SSH data on

horizontal currents at 50 m depth and their associated

transports. The assimilation is able to improve the

surface velocity and modify its direction efficiently.

By comparison with the free simulation, the Northern

stream along the American coast and the permanent

eddy near Cape Hatteras have been removed in the

assimilation run. One can also notice a better organ-

ized North Atlantic Current at 45jN, 45jW. In spite of

these improvements, however, the westward extension

of the Gulf Stream is still too ‘‘viscous’’ with respect

to what is expected in reality.

A vertical section through the Gulf Stream at 72jW
(Fig. 9) demonstrates that the assimilation of surface

data consistently modifies the three-dimensional

structure of the flow. The zonal velocity has been

Fig. 14. Distribution of the 10-day forecast error in the adaptative assimilation experiment for the sea surface height (cm) averaged over 1993.
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intensified between the surface and 2000 m depth,

showing a well identified jet located at a more realistic

latitude. The maximum surface flow of the Gulf

Stream occurs now at 35–36jN and, at more than

80 cm s� 1, in agreement with expected values.

5.3. Validation with hydrographic data

The only way to objectively validate the impact of

assimilation is to compare with independent data, i.e.,

data which have not been used at any stage of the

estimation process.

For this purpose, the model tracer fields (T, S) of

the assimilation and the reference runs have been

compared to the Reynaud climatology (Fig. 10). The

climatological equivalent of the temperature and sal-

inity fields have been computed by averaging the

experiment in space and time, in order to compare

the same features as those described by the Reynaud

climatology. The plots represent RMS misfits on the

vertical between the surface and 1600 m depth in the

Gulf Stream region. This comparison is useful to

examine how the assimilation propagates the infor-

mation from the surface to the ocean’s interior and

also from observed to unobserved variables of the

estimation space (e.g., salinity).

By comparison with the free run, the climatology

of the 10-day forecasts has been systematically

improved with respect to both temperature and salin-

ity distributions. This improvement is fairly consistent

throughout the whole water column where the analy-

sis correction is applied (i.e., the upper 1500 m depth).

The mechanism responsible for the modification of

the thermohaline properties is at first order related to

the vertical structure of the multivariate error modes

linking the many variables of the estimation space.

Fig. 15. Distribution of the forecast error for the sea surface height (cm) averaged over 1993 in the assimilation experiment using a constant

amplification factor of l= 5.
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A final assessment of the assimilation perform-

ances has been produced using an ensemble of 2500

XBT profiles collected in the North Atlantic during

the period of the experiment (Fig. 11). These data

have been extracted from a large historical data base

gathered by the SISMER oceanographic data center

(http://www.ifremer.fr/sismer/). We show in Fig. 12

the RMS misfits between the XBT temperature pro-

files and their model counterparts interpolated at the

same times and locations during 1993.

Again, it is fortunate to notice the positive impact

of the assimilation on the thermal field between the

surface and 700 m depth. The analysis profile is better

that the free run by almost 1 jC near the surface, and

0.7 jC down to 500 m depth. The profile calculated

from the 10-day forecasts is slightly worse, remaining

however systematically better than the free run. The

reduction of the misfit results from a smaller bias and

a better representation of the variability in the assim-

ilation.

The vertical structure of the misfits exhibit a local

maximum at 100 m depth, which may be symptomatic

of the difficulty to simulate the mixed layer depth

correctly. This is a common feature of both the free

run and the assimilation experiment (see also Brankart

et al., 2003; Penduff et al., 2003). It is worth remem-

bering here that the relaxation on SST is active on the

free run and inactive in the assimilation experiment,

indicating that the decrease of the misfits just below

the surface is the consequence of different causes.

A minimum RMS misfit is observed between

200 and 300 m, i.e., at a depth not directly affected

by the surface fluxes, but still under the influence

of the mesoscale activity. The comparison with the

XBT data demonstrates a positive impact of the

altimetric data, which play the dominant role on the

Fig. 16. Distribution of the forecast error for the sea surface height (cm) averaged over 1993 in the assimilation experiment using a constant

amplification factor of l = 1.25.
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representation of eddies in the assimilation experi-

ment.

5.4. Forecast error statistics

The possibility to diagnose error statistics as a by-

product of assimilation algorithms is one of the

several motivations to develop advanced methodolo-

gies. Error estimates are useful per se to assign

confidence levels to the oceanic field estimates, but

also to verify the consistency of the prior statistical

hypothesis needed by the methods.

As explained in Section 4, the parameterization of

the forecast error is based on the idea of adaptive

tuning of the forecast error. Informations contained in

the innovation vector are used every assimilation

cycle to compute a geographic distribution of the

amplification factor according to Eq. (12). The results

averaged during 1993 are illustrated by Fig. 13. The

maximum amplification of the forecast error at a 10-

day range takes place in the region of high mesoscale

variability extending on both sides of the Gulf Stream

path. This is a manifestation of the limited skill that

one can expect from eddy permitting models to

predict the synoptic evolution of mesoscale feature.

By contrast, the amplification factor is smaller in the

regions where the growth rates of the forecast error are

representative of a slower dynamics, such as in the

tropical regions.

The associated distribution of the forecast error on

SSH is shown in Fig. 14. As expected, the maximum

of the forecast error is found along the Gulf Stream

path between Cape Hatteras and 40jN, where the

forecast error standard deviation exceeds 20 cm in

some places. Local maxima can also be detected

along the North Atlantic Current extension and the

Azores Current at 35jN. This picture of the forecast

error looks fairly realistic, and can be considered as

relevant of the first guess error statistics in asymptotic

regime.

Two additional assimilation experiments have been

conducted with prescribed amplification factors

homogeneous in space, to test the sensitivity of the

scheme to the adaptive parameterization and to assess

the impact of these choices on the forecast error

patterns. Figs. 15 and 16 show the forecast error

distribution on SSH obtained with D = lI for, respec-
tively, l = 5 and l = 1.25. By comparison with the

adaptive experiment, the averaged amplification factor

corresponding to Fig. 13 was l = 2.7. The main effect

of taking a fixed amplification factor is to flatten the

forecast error over the basin and to disconnect its

distribution from the dynamical regimes. At first

glance, these picture are less relevant of the model

error, which is believed to be higher in the regions of

strong mesoscale activity than elsewhere. In addition,

the general performance of the assimilation scheme

evaluated with respect to independent data or prior

knowledge are significantly worse (Testut, 2000), and

deserve less attention.

6. Conclusion

Hindcast experiments assimilating sea-surface tem-

perature and sea-surface height data during 1993 have

been successfully conducted with an eddy permitting

circulation model of the North Atlantic basin. The

assimilation method is an adaptation of a reduced-

order Kalman filter (SEEK filter) based on a local

parameterization of the background error covariance

and a mechanism to extract all pertinent informations

from the innovation vector adaptively.

This study has demonstrated the positive impact of

satellite data to reconstruct the variability of the upper

ocean circulation in the North Atlantic. In general, a

reduction of the RMS misfit with respect to the

assimilated data has been obtained, reflecting both a

positive impact of the assimilation on the model bias

and a significant improvement of the model in terms of

variability. In addition, the analysis procedure is

shown to be efficient to propagate the information

from the surface SSH and SST data towards unassimi-

lated variables in the interior of the ocean. With respect

to our prior knowledge of the circulation, the pattern of

the mean currents between the surface and 2000 m

depth has been corrected positively in many areas like

in the Gulf Stream region.

The validation of the hindcast results with inde-

pendent data (the Reynaud climatology and XBT

profiles collected during 1993) objectively demon-

strates that the combined use of the two data sets

allows the thermohaline properties of the upper ocean

to be improved almost everywhere between the sur-

face and 700 m depth. The strongest improvements

are located in regions where the mesoscale activity
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dominates the variability signal, like in the Gulf

Stream extension.

In order to make the assimilation system stable and

efficient during long integration periods, a simple

adaptive scheme has been implemented to enforce

the internal consistency between the forecast errors

diagnosed by the filter and the statistics of the

innovation sequence. This adaptive mechanism has

been shown of critical importance to make these

hindcast experiments successful. However, a single

factor has been used to parameterize the amplification

of the error in a given subsystem, irrespective of the

model variable. A possible improvement could be to

discriminate the amplification factor according to the

model variables, as one can expect different error

growth rates for the different physical quantities.

Ensemble forecasts could be performed to examine

this issue in more details.

In spite of these encouraging results, a number of

implementation issues still form the subject of

ongoing developments. The first limitation of the

assimilation system used in this study concerns the

numerical resolution of the model in the regions of

strong mesoscale activity: an horizontal grid size of 1/

3 at mid-latitude only permits the existence of meso-

scale features in the solution, but such a resolution is

still insufficient to resolve the underlying dynamics

explicitly. The poor performances of the model pre-

dictions can be diagnosed from the forecast error

distributions which exhibit quite high values along

the Gulf Stream extension, and also from the too weak

persistence score of the predictions at medium range

(not discussed in the present paper). It will therefore

be essential to reduce the model error as much as

possible, for instance by increasing the horizontal

resolution and by using the best possible atmospheric

forcings.

Another current limitation is due to the use of

gridded SSH and SST products instead of the original

satellite measurements collected along tracks. The

technical difficulties to remove this limitation have

been addressed, and the benefit that can be drawn

from the assimilation of original data without prior

gridding has been evaluated in the context of aca-

demic models of the mesoscale ocean circulation.

Other minor updates concern the implementation of

a dynamical constraint in the adjustment operator to

produce geostrophically balanced analysis states and

thereby, reduce the drift of the model forecast after re-

initialization.

Further investigations have been undertaken re-

cently, which will focus on the complementarity

between the data sets used in this study and in situ

measurements from hydrographic profiles, drifting

buoys or surface salinity fields from climatologies.

A more sophisticated observing system is expected to

provide a better control of a number of the mixed-

layer properties, which are not sufficiently constrained

by satellite observations only.
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