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Abstract

The objective of this article is to present a sharp result to determine when the cut locus for a class of metrics on a two-sphere of

revolution is reduced to a single branch. This work is motivated by optimal control problems in space and quantum dynamics

and give global optimal results in orbital transfer and for Redfield equations in quantum control.

Résumé

Le but de cet article est de présenter une condition suffisante permettant de garantir que le lieu de coupure d’une classe de

métriques sur la 2-sphère de révolution est réduit à une branche simple. Ce travail est motivé par des problèmes de contrôle

optimal en mécanique spatiale et mécanique quantique. Des résultats globaux d’optimalité sont obtenus en transfert orbital ainsi

que dans le cas des équations de Redfield en contrôle quantique.
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1. Introduction

The purpose of this article is to improve recent advanced results concerning the structure of the conjugate and cut

loci on a two-surface of revolution [21,22] to analyse optimal control problems for both space and quantum control
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dynamics.

The determination of the cut and conjugate loci on a complete two-surface of revolution is a standard and difficult

problem in Riemannian geometry. For a real analytic two-sphere, the cut locus at each point is a finite tree, whose

extremities are conjugate points. This was stated by Poincaré [16] and proved by Myers [15].

The structure theorem of the cut locus of a point on a 2-dimensional Riemannian manifold was established by

Hebda ([12]) and generalized by Shiohama and Tanaka ([18]) for the cut locus of a compact subset in an Alexandrov

surface. By the structure theorem (see [18, Theorem A]), the cut locus is a local tree and is a union of countably

many rectifiable Jordan arcs and the endpoints.

Still, the precise computations is a complicated problem and the complexity is to estimate the ramifying branches.

Besides a construction due to Gluck and Singer [10] proves that there exists a smooth strictly convex surface of

revolution, homeomorphic to S
2, whose cut locus is not stratifiable.

Even on an ellipsoid of revolution, the computation is not a standard exercice (in [3], the foreseen conjugate and

cut loci are given as a conjecture). On an oblate ellipsoid the cut locus of a point different from the pole is a subarc

of the antipodal parallel. For a prolate ellipsoid, the same holds replacing parallel by opposite meridian. In the first

case the Gauss curvature is monotone increasing from the north pole to the equator and decreasing in the second

case.

This result is a consequence of a general result in [22] : given a smooth metric on S
2 of the form dr2 +m2(r)dθ 2,

where r is the angle along the meridian and θ the angle of revolution. Assume the following :

1. m(π − r) = m(r)(reflective symmetry with respect to the equator)

2. The Gauss curvature is monotone non decreasing (resp. increasing) along a meridian from the north pole to the

equator.

Then the cut locus of a point different from the pole is a simple branch located on the antipodal parallel (resp.

opposite meridian).

This gives a nice computable criterion to decide whenever the cut locus is reduced to a simple branch. In paral-

lel in recent research projects on geometric optimal control in orbital transfer or quantum control the optimality

analysis can be reduced to optimal control problem on two-sphere of revolution for which the generalization of the

previous result is crucial in several direction : first of all the monotonicity of the Gauss curvature is not satisfied,

secondly the metric can have singularities. The key step is to relate the simple structure of the cut and conjugate

loci to a tame property of the extremal flow.

The organization of this article is the following. In section 2, we present the systems from space and quantum

dynamics motivating the analysis. In section 3, we give the sharp optimality result needed for the analysis in the

Riemannian case, with application to our examples in section 4. The analysis is extended in section 5 to deal with

almost Riemannian metrics on two-spheres of revolution encountered in our systems analysis and in parallel in

extensions of Gauss-Bonnet theorem [1]. In a concluding section we discuss in details the contributions of this

article as well as possible extensions.

It is also worth pointing that our analysis is related to homotopy methods in optimal control, deforming the

round sphere S
2 and keeping simple conjugate and cut loci to be compared to the opposite construction of [10] to

generate complex such loci.

2. Motivating examples

2.1. Orbital transfer

The two-input coplanar transfer system [6] is modelled by a 2π-periodic system on a three-dimensional manifold

M, of the form :
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dq

dl
= u1F1(q, l)+u2F2(q, l)

where the state q represents the geometric coordinates of the osculating ellipse, e.g. q = (n,e,θ), where n is

the mean motion, e the eccentricity and θ the argument of the pericenter. The angular variable is the longitude

l ∈ S
1, while the trajectories are parameterized by the cumulated longitude l ∈ R. When considering the energy

minimization problem, the maximum principle tells us that the minimizers have to be selected among extremal

curves solutions of the Hamiltonian

H(q, p, l) =
1

2
(H2

1 +H2
2 )(q, p, l)

where the Hi’s are the Hamiltonian lifts Hi(q, p, l) =< p,Fi(q, l) >, i = 1,2. If low thrust is applied, we consider

the long time behavior of the system which is approximated by the system with the averaged Hamiltonian

H(q, p) =
1

2π

∫ 2π

0
H(q, p, l)dl.

Averaging generates Lie brackets of the initial vector fields, so that the averaged Hamiltonian turns to be a full rank

quadratic form in the adjoint variable p, thus associated to a Riemannian metric. The computed expression is

g =
dn2

9n1/3
+

2n5/3

5(1− e2)
de2 +

2n5/3

(5−4e2)
e2dθ 2.

Such a metric can be normalized with n = (5ρ/2)6/5, e = sinr so that :

g = dρ2 +(ρ2/c2)g

where c =
√

2/5 and g = dr2 +m2(r)dθ 2 with

m2(r) =
sin2 r

1− (4/5)sin2 r
.

By homogeneity, we can restrict our optimality analysis to the Riemannian metric g with r ∈ [0,π/2], where

the pole e = 0 corresponds to circular orbits, while e = 1 corresponds to parabolic orbits. It can be extended to an

analytic metric on a two-sphere of revolution, where (r,θ) are the spherical coordinates.

If we now come back to the original system modelling coplanar orbit transfer and fix the direction of the control,

we obtain a single-input periodic system of the form :

dq

dl
= uF(q, l)

and an interesting case motivated by cone constraint due to electro-ionic propulsion is the so-called tangential case

when the control has to be directed in the velocity. By averaging, we obtain again a full rank averaged Hamiltonian.

A remarkable feature is that the same geometric coordinates remain orthogonal for the new metric which writes [5]

gt =
dn2

9n1/3
+n5/3[

1+
√

1− e2

4(1− e2)3/2
de2 +

1+
√

1− e2

4(1− e2)
e2dθ 2].

In the two-input case, the change of variables e = sinr only consisted in lifting the Poincaré disk on which (e,θ)
are polar coordinates onto S

2, where (r,θ) are the standard angles. To normalize now, we set again n = (5ρ/2)6/5

and slightly twist the previous lifting according to :

e = sinr
√

1+ cos2 r

to obtain the normal form :

gt = dρ2 +(ρ2/ct)gt
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with ct = c2 = 2/5 and gt = dr2 +m2
t (r)dθ 2,

m2
t = sin2 r(

1− (1/2)sin2 r

1− sin2 r
)2.

In both cases we can define a homotopy deforming the round metric on S
2 introducing gλ = dr2 +XRλ (X)dθ 2,

setting X = sin2 r, while R0 = 1, Rλ (X) = R(λX) and we have :

• bi-input case R(X) = 1
1−X

and we have for λ ∈ [0,1] a homotopy from the round metric λ = 0, to the orbital

transfer for which λ = 4/5, while the limit case λ = 1 is singular, since R has a pole for X = 1.

• tangential case R(X) = ( 1−X/2

1−X
)2 and we have for λ ∈ [0,1] a homotopy from the round metric λ = 0 to the

orbital transfer which is singular since R has a pole of order two for X = 1.

2.2. Quantum control

We consider a dissipative two-level quantum system whose dynamics is governed by the Redfield form of the

Lindblad equation, see [20], [7] for the details :

q̇1 =−Γq1 +u2q3

q̇2 =−Γq2 −u1q3

q̇3 = γ−− γ+q3 +(u1q2 −u2q1)

where the state space q = (q1,q2,q3) is restricted to the Bloch ball : q2
1 +q2

2 +q2
3 ≤ 1, and the control is of the form

u = u1 + iu2, u1, u2 being two real functions, |u| ≤ 1 and the three parameters Γ, γ−, γ+ describing the interaction

with the environment and satisfying constraints : Γ ≥ γ+
2
≥ 0, γ+ ≥ |γ−|.

To minimize the effect of dissipation, we consider the problem of minimizing time of transfer, but the energy

minimization problem shares similar properties.

The system is written

q̇ = F0(q)+u1F1(q)+u2F2(q)

and introducing the Hamiltonian lifts Hi =< p,Fi(q) >, i = 0,1,2 outside the switching surface Hi = 0, i = 1,2 the

maximal principle tells us that time optimal control trajectories are extremals solutions of the Hamiltonian vector

field :

H(q, p) = H0(q, p)+(
2

∑
i=1

H2
i (q, p))1/2.

Since |u| ≤ 1, the problem is invariant by change of coordinates and feedback transformations of the form u =
β (q)v, where β (q) is an orthogonal matrix.

We consider only the case where γ− = 0. Since the Bloch ball is invariant, we introduce the spherical coordinates

q3 = r cosφ , q1 = r sinφ cosθ , q2 = r sinφ sinθ and using the relations :

r2 = q2
1 +q2

2 +q2
3

ρ = lnr

θ = arctanq2/q1

φ = arccosq3/r

and the feedback transformation v1 = cosθu1 +u2 sinθ , v2 = −sinθu1 +u2 cosθ , the system takes the form :
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ρ̇ =−(Γsin2 φ + γ+ cos2 φ)

θ̇ =−(cotanφ)v1

φ̇ = v2 +
sin2φ

2
(γ+ −Γ)

If we consider the Hamiltonian systems describing the evolution of generic extremals we get

H = −pρ(Γsin2 φ + γ+ cos2 φ)+ pφ
sin2φ

2
(γ+ −Γ)+R

where R is respectively (H2
1 + H2

2 )1/2 in the time minimal case and 1
2
(H2

1 + H2
2 ) in the energy minimization case,

with :

H1 =−pθ cotanφ

H2 = pφ .

We observe the following.

• If γ+ = Γ both extremal flows are a suspension of the extremal flows associated to the metric on the two-sphere

S
2 with coordinates (r = φ ,θ) given by :

g = dr2 +(tan2 r)dθ 2

and corresponds to the limit case λ = 1 for the homotopy of the previous section, in the bi-input case.

• If γ+ 6= Γ, the Hamiltonians admit ρ and θ as cyclic coordinates, hence pρ and pθ are first integrals. A more deep

analysis reveals that the optimality analysis is related to a geometric perturbation of the previous case for which :

• For fixed pρ , the reduced Hamiltonians are associated to a one parameter family of optimal control problems on

the two-sphere of revolution.

• For each such problem, the extremal flow shares similar properties to the case γ+ = Γ, which allows to make the

computation of the conjugate and cut loci tractable.

3. Conjugate and cut loci on a two-sphere of revolution

The objective of this section is to characterize when the cut locus of a point different from the pole on a two-

sphere of revolution is reduced to a single segment and the conjugate locus has the standard astroid shape. This

is based mainly on the analysis in [22] but for extensions it is decoded from the properties of the extremal flow

only. This is not restrictive since in complete Riemannian 2D-manifold the computation of the cut locus is obtained

by evaluating the separating line of a point q0, L(q0) where minimizers starting from q0 are intersecting while the

conjugate locus is limit points of intersecting neighboring extremals or equivalently the envelope of such extremals.

A compact Riemannian manifold (M,g) homeomorphic to a 2 - sphere is called a 2-sphere of revolution, if M

admits a point p such that for any two points q1,q2 on M with d(p,q1) = d(p,q2), where d( · , ·) denotes the

Riemannian distance function, there exists an isometry f on M satisfying f (q1) = q2 and f (p) = p. The point p

is called a pole of M. It is proved in [22] that each pole of a 2 - sphere of revolution has a unique cut point, which

is also a pole of the 2-sphere. By fixing a pole p on a 2 - sphere M of revolution, we introduce geodesic polar

coordinate (r,θ) around the pole p. The Riemannian metric g is expressed as g = dr2 + m(r)2dθ 2 on M \ {p,q},

where

m(r(x)) :=

√
g

((
∂

∂θ

)

x

,

(
∂

∂θ

)

x

)
, (1)

and q denotes the unique cut point of p. The Gaussian curvature G at a point x ∈ M \{p,q} is equal to

G(x) = −m′′(r(x))
m(r(x))

. (2)
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Each unit speed geodesic µ : R −→ M passing through the pole p is called a meridian. Since q is the unique cut

point of p, µ passes through q. It is easily checked that µ is periodic, i.e., µ(r +4a) = µ(r), where 2a := d(p,q).
Each curve r = c ∈ (0,2a) is called a parallel.

Let γ(s) = (r(s),θ(s)) be a unit speed geodesic on the manifold M. Then, there exists a constant ν such that

m(r(s))2 ·θ ′(s) = m(r(s))cosη(s) = ν (3)

holds for any s, where η(s) denotes the angle ∠(γ̇(s),(∂/∂θ)γ(s)) made by γ̇(s) := dγt (∂/∂ s) and (∂/∂θ)γ(s) .
The relation (3) is called the Clairaut relation, and the constant ν is called the Clairaut constant of γ . Since γ is

unit speed, it follows from (3) that

r′(s) = ε(r′(s))

√
m(r(s))2 −ν2

m(r(s))
, (4)

where ε(r′(s)) denotes the sign of r′(s). In particular, r′(s) = 0 if and only if m(r(s)) = |ν |. Hence, the geodesic γ
stays in the closure of a connected component of (m◦ r)−1(|ν |,∞), and if m(r(s)) = |ν | at s = s0, then γ is tangent

to the parallel r = r(s0). It follows from (3) and (4) that

θ(s2)−θ(s1) ≡ ε(r′(s))
∫ r(s2)

r(s1)
f (r,ν)dr mod 2π (5)

holds, where

f (r,ν) =
ν

m(r)
√

m(r)2 −ν2
,

if r′(s) 6= 0 on (s1,s2), and moreover the length L(γ|[s1,s2]) of γ|[s1,s2] equals

L(γ|[s1,s2]) = ε(r′(s))
∫ r(s2)

r(s1)

m(r)√
m(r)2 −ν2

dr (6)

if r′(s) 6= 0 on (s1,s2). Hereafter, we assume that the function m satisfies

m(r) = m(2a− r) (7)

for any r ∈ (0,2a), where 2a = d(p,q). The parallel r = a is called the equator of M. By (7), M is reflectively

symmetric with respect to the equator.

For technical reasons, we introduce the Riemannian universal covering manifold

M̃ :=
(
(0,2a)×R,dr̃2 +m(r̃)2dθ̃ 2

)

of (M \{p,q},dr2 +m(r)2dθ 2). Note that the equations (3), (4), and (6) hold for geodesics on M̃. The equation (5)

is replaced by

θ̃(γ̃(s2))− θ̃(γ̃(s1)) = ε((r̃ ◦ γ̃)′(s))
∫ r̃(γ̃(s2))

r̃(γ̃(s1))
f (r,ν)dr. (8)

Here, we assume that (r̃ ◦ γ̃)′(s) 6= 0 on (s1,s2). For each ν ∈ [0,m(a)], let γ̃ν denote a unit speed geodesic on M̃

with the Clairaut constant ν emanating from a point on r̃−1(a). Since γ̃ν satisfies the Clairaut relation,

∠( ˙̃γν(0),(∂/∂ θ̃)γ̃ν (0)) = arccos
ν

m(a)

holds.

Lemma 3.1 If m′ 6= 0 on (0,a), then for each ν ∈ (0,m(a)), the geodesic γ̃ν intersects r̃ = a again at a point

γ̃ν(t0(ν)), and the function, which is called the half period function of M̃,

ϕ(ν) := 2

∫ a

ξ (ν)

ν

m(r)
√

m(r)2 −ν2
dr (9)

is well-defined and is equal to θ̃(γ̃ν(t0(ν)))− θ̃(γ̃ν(0)). Here, ξ (ν) := (m|[0,a])
−1(ν).
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Proof. Choose any ν ∈ (0,m(a)) and fix it. We may assume that (r̃◦ γ̃ν)′(0) < 0, since (7) holds. It is clear from (4)

that γ̃ν stays in r̃−1[ξ (ν),2a−ξ (ν)]. Since m′ 6= 0 on (0,a), it follows from [19, Lemma 7.1.7] that (r̃◦ γ̃ν)′(t1) = 0

for some t1 > 0, i.e., γ̃ν is tangent to the parallel arc r̃ = ξ (ν) at γ̃ν(t1). From (8), we get

θ̃(γ̃ν(t1))− θ̃(γ̃ν(0)) =
1

2
ϕ(ν). (10)

Since (r̃ ◦ γ̃ν)′(t) > 0 for any t > t1 sufficiently close to t1 and (r̃ ◦ γ̃ν)′(t) 6= 0 on (t1, t) if r̃ ◦ γ̃ν < 2a−ξ (ν), there

exists t0(ν)(> t1) such that r̃ ◦ γ̃ν(t0(ν)) = a and r̃ ◦ γ̃ν < a on (t1, t0(ν)). Hence γ̃ν intersects r̃ = a again at the

point γ̃ν(t0(ν)). Since θ̃(γ̃ν(t0(ν)))− θ̃(γ̃ν(t1)) is equal to ϕ(ν)/2, the proof of our lemma is complete. ✷

It is not difficult to calculate the parameter value t0(ν) in Lemma 3.1. From (6) and (7), we get

t0(ν) = 2

∫ a

ξ (ν)

m(r)√
m(r)2 −ν2

dr. (11)

Since

m√
m2 −ν2

=

√
m2 −ν2

m
+

ν2

m
√

m2 −ν2
,

we obtain

t0(ν) = 2

∫ a

ξ (ν)

√
m(r)2 −ν2

m(r)
dr +νϕ(ν). (12)

Lemma 3.2 If the cut locus of a point q on the equator r = a is a subset of the equator, then the function ϕ(ν) is

well-defined and monotone non-increasing on (0,m(a)).

Proof. If the cut locus Cq of q consists of a single point, then it is clear that ϕ(ν) is constant. Thus, we may

assume that Cq is a subarc of the equator. Let q0 be an endpoint of Cq. First we will prove that q0 := γm(a)(t0) is

conjugate to q := γm(a)(0) along γm(a), where γm(a) denotes the subarc of the equator joining q to q0. Since γm(a)

does not contain a cut point of q in its interior, it is a minimal geodesic segment joining q to q0. If γm(a) is the

unique minimal geodesic segment joining q to q0, then it is clear that q0 is conjugate to q along γm(a). Hence we

suppose that there exists a minimal geodesic segment α : [0, t0]−→M joining q and q0 which bounds a disc domain

D together with γm(a)|[0,t0]. Here, we may assume that (r ◦α)′(0) < 0 and (r ◦ γm(a))
′(0) < 0 by (7). Since D has

no cut point of q, any geodesic segment β emanating from q with (r ◦ β )′(0) < 0 must pass through the point

q0, if ∠(β̇ (0), γ̇m(a)(0)) < ∠(α̇(0), γ̇m(a)(0)). Thus, we get a geodesic variation of γm(a)|[0,t0], which is a family of

geodesic segments joining q to q0. Hence, we have proved that q0 is a conjugate point of q along γm(a). This implies

that the Gaussian curvature G is positive on the equator. Since m′′(a) = −G(q)m(a) < 0 by (2) and m′(a) = 0, m′

is positive on (a− δ ,a) for some δ > 0. Suppose that m′(b) = 0 for some b ∈ (0,a). From [19, Lemma 7.1.4],

the parallel r = b is a geodesic. By choosing the maximal b(< a) satisfying m′(b) = 0, we may assume that m′ is

positive on (b,a). Thus, m(r) > m(b) on (b,a]. Suppose that the geodesic γm(b) is tangent to a parallel. Here, for

each ν ∈ [0,m(a)), γν denotes the unit speed geodesic emanating from q with the Clairaut constant ν satisfying

(r ◦ γν)′(0) < 0. From (4), the possible parallel, to which γm(b) is tangent, is the geodesic parallel r = b, but γm(b)

can not be tangent to another geodesic r = b. Hence, (r ◦ γm(b))
′(0) 6= 0, and in particular, γm(b) does not intersect

the equator again (see [19, Figure 7.1.2] on the behaviour of such a geodesic). Since M is compact, there exists

a cut point of q along γm(b). This contradicts the assumption that Cq is a subarc of the equator. Therefore, m′ is

non-zero on (0,a) and the function ϕ(ν) is well-defined on (0,m(a)). It is now clear that γν intersects the equator

again at γν(t0(ν)) and θ(γν(t)) ≤ π for any ν ∈ (0,m(a)) and any t ∈ (0, t0(ν)]. Here, for a technical reason, the

geodesic polar coordinates (r,θ) are chosen so as to satisfy θ(γν(0)) = θ(q) = 0. In particular, ϕ(ν) ≤ π for any

ν ∈ (0,m(a)).
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Next, we will prove that ϕ is monotone non-increasing. Choose any two numbers ν1 < ν2 in (0,m(a)) and fix

them. By the Clairaut relation and the inequality,

arccos
ν1

m(a)
> arccos

ν2

m(a)
,

the geodesic γν2
|(0,δ ) lies in the domain Dν1

bounded by the equator and γν1
|[0,t0(ν1)] for some δ > 0. Since Cq is a

subset of the equator, the geodesic segment γν2
lying in Dν1

does not pass through γν1
|(0,t0(ν1)), but passes through

the equator and intersects at γν2
(t0(ν2)). Thus, γν2

(t0(ν2)) is a point on the subarc of the equator with endpoints

γν1
(0) and γν1

(t0(ν1)), and in particular, ϕ(ν2) ≤ ϕ(ν1) holds. ✷

Lemma 3.3 If m′ 6= 0 on (0,a) and the function ϕ : (0,m(a))−→R is monotone non-increasing, then the cut locus

of each point on the equator r = a is a subset of the equator.

Proof. Let γν , ν ∈ [0,m(a)], denote the geodesic emanating from a point q on the equator that was defined in

the proof of Lemma 3.2. It follows from Lemma 3.1 that for each ν ∈ [0,m(a)), γν intersects the equator again

at γν(t0(ν)). Choose any ν ∈ (0,m(a)) and fix it. It follows from [19, Proposition 7.2.3] that γν(t1) is the first

conjugate point of q along γν if and only if

∂θ

∂ν
(r(γν(t1)),ν) = 0, (13)

where

θ(r,ν) :=
∫ a

ξ (ν)
f (r,ν)dr +

∫ r

ξ (ν)
f (r,ν)dr. (14)

Notice that it follows from [19, Proposition 7.2.2] and [19, Corollary 7.2.1] that there is no conjugate point of q

along γν |[0,t], if (r ◦ γν)′ 6= 0 on [0, t). It is clear from (7) that

θ(r,ν) = ϕ(ν)−
∫ a

r
f (r,ν)dr (15)

holds. Hence,

∂θ

∂ν
(r ◦ γν(t),ν) = ϕ ′(ν)−

∫ a

r(γν (t))
fν(r,ν)dr < 0, (16)

if r ◦ γν(t) < a, since ϕ ′(ν) ≤ 0 on (0,m(a)). Note that

fν(r,ν) =
m(r)

(m(r)2 −ν2)
3
2

> 0.

Thus, there is no conjugate point of q along γν |[0,t], if γν([0, t]) ⊂ r−1(0,a). By taking the limit in (16), we may

prove that there is no conjugate point of q along γm(0)|[0,t], if γm(0)([0, t]) ⊂ r−1[0,a). Therefore, we have proved

that there is no conjugate point of q along γν |[0,t], if γν([0, t]) ⊂ r−1[0,a) and ν ∈ [0,m(a)).

Suppose that there exists a cut point x 6∈ r−1(a) of q. From (7), we may assume that x is a point in r−1[0,a). Let

γν1
: [0,d(q,x)] −→ M denote a minimal geodesic segment joining q to x. We may assume that x is conjugate to

q along γν1
. Otherwise, there exists a minimal geodesic segment γν1

|[0,d(q,x)], ν2 ∈ [0,m(a))\{ν1}, joining q to x.

Thus, both geodesic segments bound a disc domain D. Since the cut locus Cq in D has no circle, we may find an

endpoint y ∈ r−1(0,a) in Cq ∩D. The endpoint y is conjugate to q along any minimal geodesic segment joining q

to y. Therefore, by exchanging x and y, we may assume that x is conjugate to q along γν1
. This contradicts the fact

that there is no conjugate point of q along γν |[0,t], if γν([0, t]) ⊂ r−1[0,a). Therefore, the cut locus of q is a subset

of the equator. ✷
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Choose any point q in M, which is not a pole. We introduce geodesic polar coordinates (r,θ) around the pole

p on M satisfying θ(q) = 0. Put u := r(q) ∈ (0,2a). For each ν ∈ (0,m(u)], let αν ,βν : [0,∞) −→ M denote the

geodesics emanating from q = αν(0) = βν(0) with the Clairaut constant ν satisfying

(r ◦αν)′(0) ≤ 0 ≤ (r ◦βν)′(0).

Hence, from the Clairaut relation,

∠(α̇ν(0),(∂/∂θ)q) = ∠(β̇ν(0),(∂/∂θ)q) = arccos
ν

m(u)
.

From (7), the geodesics αν and βν intersect again at (r,θ)−1(2a−u,ϕ(ν)) = αν(t0(ν)) = βν(t0(ν)) (see [22], or

[11]).

Lemma 3.4 Assume that m′ 6= 0 on (0,a) and that ϕ is monotone non-increasing. Then, for each ν ∈ (0,m(u)],
αν |[0,t0(ν)] is minimal. Furthermore, each point of r−1(2a−u)∩θ−1[ϕ(m(u)),π] is a cut point of q.

Proof. Since the geodesic γm(0) meets the equator again at the antipodal point of γm(0)(0), we have limν↓0 ϕ(ν) =
π. Thus, 0 < ϕ(ν)≤ π for any ν ∈ (0,m(a)), since ϕ is monotone non-increasing. If ϕ(m(u)) = π, then ϕ(ν) = π
for any ν ∈ [0,m(u)]. Hence the cut locus of q consists of a single point. It is now clear that both geodesics

α|[0,t0(ν)] and β |[0,t0(ν)] are minimal for any ν ∈ [0,m(u)]. Hence we may assume that ϕ(m(u)) < π. Choose any

point x ∈ r−1(2a−u)∩θ−1[ϕ(m(u)),π). From (6), the length t1 of α equals

∫ 2a−ξ (ν1)

u

m(r)√
m(r)2 −ν2

1

dr +
∫ 2a−ξ (ν1)

2a−u

m(r)√
m(r)2 −ν2

1

dr (17)

(if α = βν1
|[0,t1]), or to

∫ u

ξ (ν1)

m(r)√
m(r)2 −ν2

1

dr +
∫ 2a−u

ξ (ν1)

m(r)√
m(r)2 −ν2

1

dr (18)

(if α = αν1
|[0,t1]). By (7) and (11), both equations (17) and (18) equal

t1 = 2

∫ a

ξ (ν1)

m(r)√
m(r)2 −ν2

dr = t0(ν1). (19)

Therefore, αν1
|[0,t0(ν1)] and βν1

|[0,t0(ν1)] are minimal geodesic segments joining q to x. Furthermore, for any ν ∈
ϕ−1(θ(x)), αν |[0,t0(ν)] and βν |[0,t0(ν)] are minimal, since t0

′(ν) = νϕ ′(ν) by (12). Since x is arbitrarily taken, this

implies that αν |[0,t0(ν)] and βν |[0,t0(ν)] are minimal for any ν ∈ (0,m(u)] with ϕ(ν) < π, hence for any ν ∈ (0,m(u)]
from the limit argument. Therefore, αν |[0,t0(ν)] is minimal for all ν ∈ (0,m(u)). The second claim is clear, since

each point of r−1(2a−u)∩θ−1(ϕ(m(u)),π] is joined by two minimal geodesic segments αν |[0,t0(ν)] and βν |[0,t0(ν)]

for some ν ∈ [0,m(u)), and the cut locus is closed. ✷

Theorem 3.5 Let (M,dr2 + m(r)2dθ 2) denote a 2-sphere of revolution, where m : (0,2a) −→ (0,∞) is a smooth

function satisfying (7). If the cut locus of a point on r = a is a subset of r = a, then, the cut locus of a point q with

r(q) ∈ (0,2a)\{a} is a subset of the antipodal parallel r = 2a− r(q).

Proof. Let q ∈ r−1((0,2a)\{a}) be any point, and set u := r(q). Since M is reflectively symmetric with respect

to the meridian passing through q, the set r−1(2a−u)∩θ−1[ϕ(m(u)),2π −ϕ(m(u))] is a subset of Cq by Lemma

3.4. Choose any cut point x of q. Then, we have a minimal geodesic segment γ joining q to x. Since we may assume

9



that 0 < θ(x)≤ π , γ is equal to αν1
, or βν1

for some ν1 ∈ [0,m(u)]. Here ν1 denotes the Clairaut constant of γ . The

point x is not an interior point of αν1
|[0,t0(ν1)], or βν1

|[0,t0(ν1)], since both segments are minimal. Furthermore, γ is a

subarc of αν1
|[0,t0(ν1)], or βν1

|[0,t0(ν1)], since γ is minimal. Hence,

x = αν1
(t0(ν1))(= βν1

(t0(ν1))).

Since r(αν1
(t0(ν1))) = 2a− u and ϕ(m(u)) ≤ ϕ(ν1) = θ(x) ≤ π , any cut point of q is a point of r−1(2a− u)∩

θ−1[ϕ(m(u)),2π −ϕ(m(u))], which is a subarc of the antipodal parallel of q. ✷

Theorem 3.6 Let (M,dr2 + m(r)2dθ 2) denote a 2-sphere of revolution, where m : (0,2a) −→ (0,∞) is a smooth

function satisfying (7). Assume that the cut locus of a point on r = a is a subset of r = a. If the function ϕ defined

by (9) is such that ϕ ′′(ν) ≥ 0 on (0,m(a)) and ϕ ′′(ν) > 0 whenever ϕ ′(ν) = 0, then the first conjugate locus of

any point q which is not a pole of M has exactly four cusps. Recall that the function ϕ is defined in (9).

Proof. Choose any point q ∈ M which is not a pole. Set u := r(q)∈ (0,2a). It follows from [19, Proposition 7.2.3]

that αν(tc(ν)) is the first conjugate point of q along αν if and only if

∂θα

∂ν
(r(αν(tc(ν))),ν) = 0, (20)

where

θα(r,ν) =
∫ u

ξ (ν)
f (r,ν)dr +

∫ r

ξ (ν)
f (r,ν)dr. (21)

From (7), it is clear that

θα(r,ν) = ϕ(ν)−
∫ 2a−u

r
f (r,ν)dr (22)

holds. Hence,
∂θα

∂ν
(r,ν) = ϕ ′(ν)−

∫ 2a−u

r
fν(r,ν)dr, (23)

where

fν(r,ν) =
m(r)

(m(r)2 −ν2)
3
2

.

From (20) and (23), it follows that

ϕ ′(ν) =
∫ 2a−u

uα (ν)
fν(r,ν)dr, (24)

where uα(ν) = r(αν(tc(ν))). Hence, the first conjugate point of q along αν is given by

θ = θα(uα(ν),ν), r = uα(ν). (25)

Since we assume that ϕ ′(ν) ≤ 0 for each ν ∈ (0,m(u)),

2a−u ≤ uα(ν) (26)

by (24). Furthermore, ϕ ′(ν) = 0 if and only if 2a−u = uα(ν). By differentiating (24) with respect to ν , we have

ϕ ′′(ν)+
∫ uα (ν)

2a−u
fνν(r,ν)dr = − fν(uα(ν),ν)u′α(ν). (27)

Since fνν(r,ν) = 3νm(r)(m(r)2 − ν2)−5/2 > 0 and ϕ ′′(ν) ≥ 0, u′α(ν) ≤ 0 on (0,m(u)). If u′α(ν) = 0, then, by

(27), ϕ ′′(ν) = 0 and 2a− u = uα(ν). This implies that ϕ ′′(ν) = ϕ ′(ν) = 0. This contradicts the assumption of
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our theorem. Therefore, u′α(ν) < 0 on (0,m(u)). In particular, there is no cusp on the open arc defined by (25),

ν ∈ (0,m(u)). Let ν ∈ (0,m(u)) be any fixed number. The velocity vector vα(ν) of the curve by (25) is given by

vα(ν) = f (uα(ν),ν)u′α(ν)

(
∂

∂θ

)

αν (tc(ν))

+u′α(ν)

(
∂

∂ r

)

αν (tc(ν))

. (28)

Hence, vα(ν) is parallel to

f (uα(ν),ν)

(
∂

∂θ

)

αν (tc(ν))

+

(
∂

∂ r

)

αν (tc(ν))

.

Since lim
ν↓0

f (uα(ν),ν) = 0 and lim
ν↑m(u)

f (uα(ν),ν) = ∞,

lim
ν↓0

1

‖vα(ν)‖vα(ν) =

(
∂

∂ r

)

α0(tc(0))

(29)

and

lim
ν↑m(u)

1

‖vα(ν)‖vα(ν) =
1

m(αm(u)(tc(m(u))))

(
∂

∂θ

)

αm(u)(tc(m(u)))

, (30)

where ||vα(ν)|| :=
√

g(vα(ν),vα(ν)). Hence the subarc of the conjugate locus given by (25) is tangent to the

parallel r = r(αm(0)(tc(0))) at αm(0)(tc(0)) and to the opposite meridian θ−1(π) at αm(u)(tc(m(u))).
Next, we will argue about the first conjugate locus of q along βν ,ν ∈ (0,m(u)). It follows from [19, Proposition

7.2.3] that βν(t f (ν)) is the first conjugate point of q along βν if and only if

∂θβ

∂ν

(
r(βν(t f (ν))),ν

)
= 0, (31)

where

θβ (r,ν) =
∫ 2a−ξ (ν)

u
f (r,ν)dr +

∫ 2a−ξ (ν)

r
f (r,ν)dr. (32)

From (7), it is clear that

θβ (r,ν) = ϕ(ν)+
∫ 2a−u

r
f (r,ν)dr (33)

holds. Hence, we have

ϕ ′(ν)+
∫ 2a−u

uβ (ν)
fν(r,ν)dr = 0, (34)

where uβ (ν) := r(βν(t f (ν))). By using the same argument above, we may conclude that u′β (ν) > 0 on (0,m(u)).
In particular, there is no cusp on the open arc defined by

θ = θβ (uβ (ν),ν), r = uβ (ν), (35)

on ν ∈ (0,m(u)). It is easy to prove that

lim
ν↓0

1

‖vβ (ν)‖vβ (ν) =

(
∂

∂ r

)

β0(t f (0))

(36)

and

lim
ν↑m(u)

1

‖vβ (ν)‖vβ (ν) =
1

m(βm(u)(t f (m(u))))

(
∂

∂θ

)

βm(u)(t f (m(u)))

, (37)

where vβ (ν) denotes the velocity vector of the curve defined by (35). Since βm(u) = αm(u), by (30) and (37), we get

lim
ν↑m(u)

1

‖vβ (ν)‖vβ (ν) = lim
ν↑m(u)

1

‖vα(ν)‖vα(ν). (38)
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Therefore, the point αm(u)(tc(m(u))) = βm(u)(t f (m(u))) is a cusp of the first conjugate locus of q. Since M has a

reflective symmetry with respect to the meridian passing through q, the points αm(0)(tc(m(u))) and βm(0)(tc(m(u)))
lying on the opposite half meridian to q are cusps of the conjugate locus. Therefore, the conjugate locus of q has

exactly four cusps which consists of one pair lying on the parallel r = 2a− r(q), the other lying on the opposite

half meridian to q. ✷

The following dual to Theorem 3.6 is also true, but we do not know examples satisfying the assumption in the

theorem.

Theorem 3.7

Let (M,dr2 + m(r)2dθ 2) denote a 2-sphere of revolution, where m : (0,2a) −→ (0,∞) is a smooth function

satisfying (7). Assume that ϕ : (0,m(a)) −→ R is well-defined, i.e., m′ 6= 0 on (0,a), and ϕ is monotone non-

decreasing on (0,m(a)). If ϕ ′′(ν) ≤ 0 on (0,m(a)) and ϕ ′′(ν) < 0 whenever ϕ ′(ν) = 0, then the first conjugate

locus of any point q which is not a pole of M has exactly four cusps and the cut locus of q is a subarc of the opposite

half meridian to q.

Proof. It is proved in Theorem 3.6 that the first conjugate point of q along αν , βν , ν ∈ (0,m(u)), is given by

θ = θα(uα(ν),ν), r = uα(ν),

and

θ = θβ (uβ (ν),ν), r = uβ (ν),

respectively. By making use of the assumption that ϕ ′(ν) ≥ 0, we may prove that

u′α(ν) > 0 and u′β (ν) < 0 (39)

on (0,m(u)). The first claim is now clear from the argument in the proof of Theorem 3.6.

Since
∂θα

∂ν
(uα(ν),ν) = 0 and

∂θβ

∂ν

(
uβ (ν),ν

)
= 0,

we get
∂

∂ν
θα (uα(ν),ν) = u′α(ν) f (uα(ν),ν),

∂

∂ν
θβ

(
uβ (ν),ν

)
= −u′β (ν) f (uβ (ν),ν). (40)

Hence, by (39), both functions θα (uα(ν),ν) and θβ

(
uβ (ν),ν

)
are strictly monotone increasing. In particular,

θα (uα(ν),ν) > lim
ν↓0

θα (uα(ν),ν) , θβ

(
uβ (ν),ν

)
> lim

ν↓0
θβ

(
uβ (ν),ν

)
(41)

for any ν ∈ (0,m(u)]. Since the first conjugate points of αm(0) and βm(0) lie in θ−1(π) respectively,

lim
ν↓0

θα (uα(ν),ν) = lim
ν↓0

θβ

(
uβ (ν),ν

)
= π.

Here, we should recall that the geodesic polar coordinates (r,θ) is chosen so as to satisfy θ(q) = π . Therefore, by

(41), there is no conjugate point of q in M \θ−1(π). This implies that the cut locus of q is a subarc of the opposite

half meridian θ−1(π). ✷

4. Applications

Next, we apply our results to the problems introduced in section 2.
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Let gλ be the family of analytic metrics on S
2 defined by

gλ = dr2 +m2
λ (r)dθ 2

with

mλ (r) =
√

λ +1 sinr/
√

1+λ cos2 r, λ ≥ 0. (42)

It is clear that mλ satisfies

mλ (r) = mλ (π − r),

so the Riemannian manifold Mλ := (S2,gλ ) is a 2-sphere of revolution that is reflectively symmetric with respect

to the equator r = π/2. This family of metrics contains the metric g associated with the averaged controlled Kepler

equation introduced in §2 (set λ = 4), and defines a path between the following two remarkable metrics.

The case λ = 0. It corresponds to the standard metric g0 = dr2 + sin2 rdθ 2 on S
2 with Gaussian curvature equal to

one which is obtained by restricting the Euclidian metric on R
3 to the sphere.

The case λ = ∞. In the limit case, the metric becomes

g∞ = dr2 + tan2 rdθ 2

and is singular along the equator r = π/2. The Gauss curvature is −2/cos2 r which is strictly negative on each

hemisphere and tends to −∞ when r tends to π/2.

Lemma 4.1 The Gaussian curvature Gλ of Mλ is given by

Gλ (q) =
(λ +1)(1−2λ cos2 r(q))

(1+λ cos2 r(q))2
(43)

at a point q ∈ Mλ . Furthermore, we have
(

∂

∂ r

)

q

Gλ =
2λ (λ +1)sin2r(q)

(1+λ cos2 r(q))3
(2−λ cos2 r(q)). (44)

In particular, if λ > 2, then Gλ is not monotone along a meridian from a pole to the point on the equator.

Proof. By (42), we have

m′
λ (r) =

(λ +1)cosr

(1+λ cos2 r)sinr
mλ (r). (45)

Since

Gλ (q) = −
m′′

λ (r(q))

mλ (r(q))

for q ∈ r−1(0,2π), it follows from (45) that

Gλ (q) =
(λ +1)(1−2λ cos2 r(q))

(1+λ cos2 r(q))2
. (46)

By making use of (46), it is easy to show (44). ✷

Lemma 4.2 Let a,b,c be positive numbers satisfying c > b. Then,
∫

1

x(x+a)
√

(x−b)(c− x)
dx

=
2

a

{
1√
bc

arctan

(√
c

b
t

)
− 1√

(a+ c)(a+b)
arctan

(√
a+ c

a+b
t

)}
(47)

13



holds, where

t =

√
x−b

c− x
.

In particular,
∫ c

b

1

x(x+a)
√

(x−b)(c− x)
dx =

π

a

{
1√
bc

− 1√
(a+ c)(a+b)

}

holds.

Proof. From direct computation, we get

d

dx

{
1√
bc

arctan

(√
c

b
t

)
− 1√

(a+ c)(a+b)
arctan

(√
a+ c

a+b
t

)}

=
a

2
· 1

x(x+a)
√

(x−b)(c− x)
.

Hence, we obtain (47). ✷

Proposition 4.3 For the 2-sphere of revolution Mλ , we get

ϕ(ν) = π − λπν√
λ +1

√
λ +1+λν2

(48)

for each ν ∈ [0,mλ (π/2) ].

Proof. By putting x = mλ (r)2, we have, from (42) and (45),

dr =
(1+λ cos2 r) tanr

2(λ +1)x
dx. (49)

Since

x = mλ (r)2 =
(λ +1)(1− cos2 r)

1+λ cos2 r ,
(50)

we obtain

cos2 r =
λ +1− x

λx+λ +1
. (51)

Since

tan2 r =
1

cos2 r
−1

,

we have

tan2 r =
(λ +1)x

λ +1− x
. (52)

Combining (49), (51), and (52), we obtain

dr =
(λ +1)

3
2

2(λx+λ +1)
√

x(λ +1− x)
dx. (53)

Hence, we get

ϕ(ν) = (λ +1)
3
2 ν

∫ λ+1

ν2

1

x(λx+λ +1)
√

(x−ν2)(λ +1− x)
dx. (54)

It follows from Lemma 4.2 that

ϕ(ν) = π − λπν√
λ +1

√
λ +1+λν2

.

✷
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Theorem 4.4 If λ > 0, then, for each point q of Mλ distinct from a pole, the cut locus of q is a subarc of the

antipodal parallel to q and the first conjugate locus of q has exactly four cusps.

Proof. It is clear that

ϕ ′(ν) =
−λπ

√
λ +1

(λ +1+λν2)
3
2

and

ϕ ′′(ν) =
3πλ 2ν

√
λ +1

(λ +1+λν2)
5
2

.

In particular,

ϕ ′(ν) < 0 < ϕ ′′(ν)

on (0,mλ (π/2)), if λ > 0. The claims of Theorem 4.4 are now clear from Lemma 3.3, Theorem 3.5, and Theorem

3.6. ✷

Remark 1 If λ > 2, then the Gaussian curvature of Mλ is not monotone along a meridian from a pole to the point

on the equator. Therefore, the family Mλ ,λ > 2, is a new example which has the simple cut locus structure.

On Fig. 1 we represent conjugate and cut loci in averaged orbital transfer (λ = 4). Since to loose optimality an

extremal trajectory has to cross the equator, e = 1, we conclude that extremals are optimal in the physical elliptic

domain. The conjugate and cut loci for λ = ∞ are given on Figs. 2 and 3. In this singular case, since the curvature

outside the equator is strictly negative, geodesics starting from a point not on the equator have again to cross it to

have conjugate points, the cut locus still being included in the antipodal parallel. For a point on the equator, the

conjugate and cut loci accumulate near the the point itself, and the cut locus is the equator minus the point. The

first two cusps of the conjugate locus disappear and are replaced by a contact of order two at the initial point [1].

5. The singular case

In this section, we outline the analysis of the case where the metric g = dr2 + m2(r)dθ 2 on the 2-sphere of revo-

lution is singular on the equator and we refer to [8] for more details. The singularity encountered coming from the

Grusin model example was analysed by [1] and is described near the point identified to 0 by the local model :

gs = dx2 +
dy2

x2

and the analysis can be extended to the case of order p :

gs = dx2 + p2 dy2

x2p

called a generalized Grusin singularity.

While Riemannian metric and the Gauss curvature explode when approaching the y-axis, still the extremal curves

are described by a smooth Hamiltonian system

H =
1

2
(p2

x +
x2p

p2
p2

y).

They are associated to SR-geometry in dimension 3.
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FIG. 1. Conjugate and cut loci in averaged orbital transfer (λ = 4) for an initial condition different from the poles.

Indeed, the case p = 1 is deduced from the Heisenberg case with corresponding Hamiltonian

H =
1

2
[(p2

x + p2
y)−2pz(xpy − ypx)+(x2 + y2)p2

z ]

and using cylindrical coordinates, we get :

H =
1

2
(p2

r +(pθ /r− rpz)
2).

As θ is cyclic, pθ is a first integral and for pθ = 0, the reduced Hamiltonian in the (r,z) space is with the desired

singularity :

H =
1

2
(p2

r + r2 p2
z ).

Similarly, the case of order 2 can be deduced by the so-called Martinet flat case, with Hamiltonian

H =
1

2
((px +

y2

2
pz)

2 + p2
y).

As x is cyclic, px is a first integral and for px = 0, the reduced Hamiltonian is of the form

H =
1

2
(p2

y +
y4

4
p2

z ).

In particular in both cases p = 1,2 the extremal flow, the conjugate and cut loci can be deduced from the analysis

of the SR-problem, see [9].
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FIG. 2. Conjugate and cut loci in the singular case (λ = ∞) for an initial condition not on the equator and different from the poles.

case p = 1 The extremal trajectories with initial condition x(0) = y(0) = 0 and parameterized by arc-length are

given, with λ = py(0) ≥ 0, by :

• λ = 0 : x(t) = ±t, y(t) = 0

• λ > 0 : x(t) = ± 1
λ sin(λ t), y(t) = t

2λ − 1
4λ 2 sin(2λ t)

while extremals for λ < 0 are by reflection with respect to the x-axis.

For λ > 0, the first conjugate time is at t1c = τ/λ , τ ≃ 4.5, while due to symmetry, the optimality is lost at time

π/λ , when crossing the y-axis.

case p = 2 The extremal trajectories with initial condition x(0) = y(0) = 0 and parameterized by arc-length, with

λ = py(0) ≥ 0 are :

• λ = 0 x(t) = t, y(t) = 0

• λ > 0 x(t) = − 2k√
λ

cnu, y(t) = 2

3λ 3/2 [(2k2 −1)(E(u)−E(K))+k′2t
√

λ +2k2 sinu cnu dnu], where u = K + t
√

λ ,

k2 = k′2 = 1/2, and the curves deduced from the previous ones using the reflections with respect to the x and y-axis.

For λ > 0, the first conjugate time is at time t1c ≃ 3K√
λ

, while due to symmetries the optimality is lost at time 2K√
λ

,

when crossing the y-axis.

Hence, for both cases, we have the same geometric situation, optimality is lost due to the symmetry with respect

to the y-axis and the conjugate and cut loci are disjoint, because the first conjugate point occurs after the crossing

of the y-axis. It can be generalized to any order using quasi-homogeneity.

Proposition 5.1 Consider a metric of the form gs = dx2 + dy2 p

x2p . Then at the origin the conjugate and cut loci are

disjoint, the cut locus is the y-axis minus 0, while the conjugate locus is the set y = ±cpxp+1 minus 0.

17



−1

−0.5

0

0.5

1 −0.5
0

0.5

−1

−0.5

0

0.5

1

y
x

z

FIG. 3. Conjugate and cut loci in the singular case (λ = ∞) for an initial condition on the equator.

Hence, the model gives locally the cut and conjugate loci of a point of the equator observed on Figure 3, which

corresponds to a singularity of order 1.

Having resolved the singularity at the equator, we can extend the result of the regular case.

Definition 5.2 Consider a metric on a 2-sphere of revolution of the form dr2 + m2(r)dθ 2, with m′ nonzero on

]0,π/2[ and m(π − r) = m(r), smooth except at the equator for which we have a Grusin singularity. The extremal

flow is called tame if the half-period function ϕ(ν) in section 3 is monotone non-increasing for ν ∈]0,m(π/2) =
+∞[.

Since the extremal flow remains smooth the analysis of the regular case can be extended.

Proposition 5.3 In the tame case, we have

1. The cut locus of a point different from the pole and not on the equator is a subset of the antipodal parallel.
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2. The cut locus of a point on the equator is a subset of the equator accumulating at the point.

6. Conclusion

The contribution of this article is two-fold. First of all we give a simple and computable criterion to decide when

the cut and conjugate loci on a surface of revolution are the simplest possible. It is based on two case studies in

optimal control, in the framework of Hamiltonian dynamics. Such specialized results are important because even

on a surface of revolution the computations of such objects are in general untractable. This provides a bridge

between Riemannian geometry and optimal control, with promising extensions to the singular case and Zermelo

navigation problem on Riemannian manifolds [2]. Secondly, we give a neat proof of the structure of the conjugate

and cut loci in coplanar orbital transfer, which were previously computed in [4] using the explicit parameterization

of the extremal flow for each initial point while it is sufficient to consider the half period mapping. In the tangential

case they were obtained using a normal form and numerical simulations. Applications and generalizations of these

results, using Hamiltonian formalism, will provide very significant improvements in the understanding of Redfield

equations describing the interaction of a two-level quantum system controlled by a laser with an environment.

Based on the theoretical concept and results of our analysis in the Riemannian case, this will be analyzed in a

forthcoming article. Roughly speaking, if the interaction is weak, it defines a Zermelo navigation problem on a

two-sphere of revolution for which conjugate and cut loci have a similar simple structure.
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