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In this paper we establish the existence of a square integrable occupation density for two classes of stochastic processes. First we consider a Gaussian process with an absolutely continuous random drift, and secondly we handle the case of a (Skorohod) integral with respect to the fractional Brownian motion with Hurst parameter H > 1 2 . The proof of these results uses a general criterion for the existence of a square integrable local time, which is based on the techniques of Malliavin calculus.

Introduction

Local times for semimartingales have been widely studied. See for example the monograph [START_REF] Revuz | Continuous martingales and Brownian motion[END_REF] and the references therein. On the other hand, local times of Gaussian processes have also been the object of a rich probabilistic literature; see for example the recent paper [START_REF] Marcus | Markov Processes, Gaussian processes and local times[END_REF] by Marcus and Rosen. A general criterion for the existence of a local time for a wide class of anticipating processes, which are not semimartingales or Gaussian processes, was established by Imkeller and Nualart in [START_REF] Imkeller | Integration by parts on Wiener Space and the Existence of Occupation Densities[END_REF]. The proof of this result combines the techniques of Malliavin calculus with the criterion given by Geman and Horowitz in [START_REF] Geman | Occupation densities[END_REF]. This criterion was applied in [START_REF] Imkeller | Integration by parts on Wiener Space and the Existence of Occupation Densities[END_REF] to the Brownian motion with an anticipating drift, and to indefinite Skorohod integral processes.

The aim of this paper is to establish the existence of the occupations densities for two classes of stochastic processes related to the fractional Brownian motion, using the approach introduced in [START_REF] Imkeller | Integration by parts on Wiener Space and the Existence of Occupation Densities[END_REF]. First we consider a Gaussian process B = {B t , t ∈ [0, 1]} with an absolutely continuous random drift

X t = B t + t 0 u s ds,
where u is a stochastic process measurable with respect to the σ-field generated by B. We assume that the variance of the increment of the Gaussian process B on an interval [s, t] behaves as |t -s| 2ρ , for some ρ ∈ (0, 1). This includes, for instance, the bifractional Brownian motion with parameters H, K ∈ (0, 1). Under reasonable regularity hypotheses imposed to the process u we prove the existence of a square integrable occupation density with respect to the Lebesque measure for the process X.

Our second example is represented by the indefinite divergence (Skorohod) integral X = {X t , t ∈ [(0, 1]} with respect to the fractional Brownian motion with Hurst parameter H ∈ ( 1 2 , 1), that is

X t = t 0 u s δB H s .
We provide integrability conditions on the integrand u and its iterated derivatives in the sense of Malliavin calculus in order to deduce the existence of a square integrable occupation densities for X. We organized our paper as follows. Section 2 contains some preliminaries on the Malliavin calculus with respect to Gaussian processes. In Section 3 we prove the existence of the occupation densities for perturbed Gaussian processes and in Section 4 we treat the case of indefinite divergence integral processes with respect to the fractional Brownian motion.

Preliminaries

Let {B t , t ∈ [0, 1]} be a centered Gaussian process with covariance function

R(t, s) := E(B t B s ),
defined in a complete probability space (Ω, F, P ). By H we denote the canonical Hilbert space associated to B defined as the closure of the linear space generated by the indicator functions {1 [0,t] , t ∈ [0, 1]} with respect to the inner product

1 [0,t] , 1 [0,s] H = R(t, s), s, t ∈ [0, 1].
The mapping 1 [0,t] → X t can be extended to an isometry between H and the first Gaussian chaos generated by B. We denote by B(ϕ) the image of an element ϕ ∈ H by this isometry.

We will first introduce some elements of the Malliavin calculus associated with B. We refer to [START_REF] Nualart | The Malliavin calculus and related topics[END_REF] for a detailed account of these notions. For a smooth random variable F = f (B(ϕ 1 ), . . . , B(ϕ n )), with ϕ i ∈ H and f ∈ C ∞ b (R n ) (f and all its partial derivatives are bounded) the derivative of F with respect to B is defined by

DF = n j=1 ∂f ∂x j (B(ϕ 1 ), . . . , B(ϕ n ))ϕ j .
For any integer k ≥ 1 and any real number p ≥ 1 we denote by D k,p the Sobolev space defined as the the closure of the space of smooth random variables with respect to the norm

F p k,p = E(|F | p ) + k j=1 D j F p L p (Ω;H ⊗j ) .
Similarly, for a given Hilbert space V we can define Sobolev spaces of V -valued random variables D k,p (V ).

Consider the adjoint δ of D in L 2 . Its domain is the class of elements u ∈

L 2 (Ω; H) such that E( DF, u H ) ≤ C F 2 ,
for any F ∈ D 1,2 , and δ (u) is the element of L 2 (Ω) given by

E(δ(u)F ) = E( DF, u H )
for any F ∈ D 1,2 . We will make use of the notation δ(u) = 1 0 u s δB s . It is well-known that D 1,2 (H) is included in the domain of δ. Note that E(δ(u)) = 0 and the variance of δ(u) is given by

E(δ(u) 2 ) = E( u 2 H ) + E( Du, (Du) * H⊗H ), (2.1) 
if u ∈ D 1,2 (H), where (Du) * is the adjoint of Du in the Hilbert space H ⊗ H. We have Meyer's inequality

E(|δ(u) p |) ≤ C p E( u p H ) + E( Du p H⊗H ) , (2.2) 
for any p > 1. We will make use of the property

F δ(u) = δ(F u) + DF, u H . (2.3) if F ∈ D 1,2
and u ∈ Dom(δ) such that F u ∈ Dom(δ). We also need the commutativity relationship between D and δ

Dδ(u) = u + 1 0 Du s δB s , (2.4) 
if u ∈ D 1,2 (H) and the process {D s u, s ∈ [0, 1]} belongs to the domain of δ.

Throughout this paper we will assume that the centered Gaussian process

B = {B t , t ∈ [0, 1]} satisfies C 1 (t -s) 2ρ ≤ E(|B t -B s | 2 ) ≤ C 2 (t -s) 2ρ , (2.5) 
for some ρ ∈ (0, 1) with C 1 , C 2 two positive constants not depending on t, s. It will follow from the Kolmogorov criterium that B admits a Hölder continuous version of order δ for any δ < ρ.

Throughout this paper we will denote by C a generic constant that may be different from line to line.

Example 1

The bifractional Brownian motion (see, for instance [START_REF] Houdré | An example of infinite dimensional quasi-helix[END_REF]), denoted by B H,K , is defined as a centered Gaussian process starting from zero with covariance

R(t, s) = 1 2 K t 2H + s 2H K -|t -s| 2HK (2.6)
where H ∈ (0, 1) and K ∈ (0, 1]. When K = 1, then we have a standard fractional Brownian motion denoted by B H . It has been proven in [START_REF] Houdré | An example of infinite dimensional quasi-helix[END_REF] that for all s ≤ t,

2 -K |t -s| 2HK ≤ E B H,K t -B H,K s 2 ≤ 2 1-K |t -s| 2HK (2.7)
so relation (2.5) holds with ρ = HK. A stochastic analysis for this process can be found in [START_REF] Kruk | Wiener integrals, Malliavin calculus and covariance structure measure[END_REF] and a study of its occupation densities has been done in [START_REF] Es-Sebaiy | Multidimensional bifractional Brownian motion: Itô and Tanaka's formulas[END_REF], [START_REF] Xiao | Sample paths properties of the bifractional Brownian motion[END_REF].

For a measurable function x : [0, 1] → R we define the occupation measure

µ(x)(C) = 1 0 1 C (x s )ds,
where C is a Borel subset of R and we will say that x has on occupation density with respect to the Lebesque measure λ if the measure µ is absolutely continuous with respect to λ. The occupation density of the function x will be the derivative dµt dλ . For a continuous process {X t , t ∈ [0, 1]} we will say that X has an occupation density on [0, 1] if for almost all ω ∈ Ω, X(ω) has an occupation density on [0, 1].

We will use the following criterium for the existence of occupation densities (see [START_REF] Imkeller | Integration by parts on Wiener Space and the Existence of Occupation Densities[END_REF]). Set T = {(s, t) ∈ [0, 1] 2 : s < t}.

Theorem 1 Let {X t , t ∈ [0, 1]} be a continuous stochastic process such that X t ∈ D 2,2 for every t ∈ [0, 1]. Suppose that there exists a sequence of random variables {F n , n ≥ 1} with n {F n = 0} = Ω a.s. and F n ∈ D 1,1 for every n ≥ 1, two sequences α n > 0, δ n > 0, a measurable bounded function γ : [0, 1] → R, and a constant θ > 0, such that:

a) For every n ≥ 1, |t -s| ≤ δ n , and on {F n = 0} we have γD(X t -X s ), 1 [s,t] H > α n |t -s| θ , a.s.. (2.8) b) For every n ≥ 1 T E( γDF n , 1 [s,t] H )|t -s| -θ dtds < ∞. (2.9) c) For every n ≥ 1 T E F n γ ⊗2 DD(X t -X s ), 1 ⊗2 [s,t] H ⊗2 |t -s| -2θ dsdt < ∞. (2.10)
Then the process {X t , t ∈ [0, 1]} admits a square integrable occupation density on [0, 1].

Remark 1

The original result has been stated in [START_REF] Imkeller | Integration by parts on Wiener Space and the Existence of Occupation Densities[END_REF] with θ = 1 in the case of the standard Brownian motion. On the other hand, by applying Proposition 2.3 and Theorem 2.1 in [START_REF] Imkeller | Integration by parts on Wiener Space and the Existence of Occupation Densities[END_REF] it follows easily that this criterium can be stated for any θ > 0.

3 Occupation density for Gaussian processes with random drift

We study in this part the existence of the occupation density for Gaussian processes perturbed by a absolute continuous random drift. The main result of this section is the following.

Theorem 2 Let {B t , t ∈ [0, 1]} be a Gaussian process satisfying (2.5). Consider the process {X t , t ∈ [0, 1]} given by

X t = B t + t 0 u s ds,
and suppose that the process u satisfies the following conditions:

1. u ∈ D 2,2 (L 2 ([0, 1])).
2.

E 1 0 D 2 u t p H⊗H dt q/p < ∞, for some q > 1, p > 1 1-ρ .
Then, the process X has a square integrable occupation density on the interval [0, 1].

Proof: We are going to apply Theorem 1. Notice first that X t ∈ D 2,2 for all t ∈ [0, 1].

For any 0 ≤ s < t ≤ 1, using (2.4) and (2.5) we have

D(X t -X s ), 1 [s,t] H = 1 [s,t] , 1 [s,t] H + t s Du r dr, 1 [s,t] H ≥ C 1 (t -s) 2ρ - t s Du r dr, 1 [s,t] H ≥ C 1 (t -s) 2ρ -C 2 (t -s) ρ t s
Du r H dr.

By Hölder's inequality, if 1 p + 1 q = 1, we obtain

t s Du r H dr ≤ (t -s) 1 q 1 0 Du r p H dr 1 p
.

Fix a natural number n ≥ 2, and choose a function ϕ n (x), which is infinitely differentiable with compact support, such that

ϕ n (x) = 1 if |x| ≤ n -1, and ϕ n (x) = 0, if |x| ≥ n. Set F n = ϕ n 1 0 Du t p H dt 1 p
. The random variable F n belogs to D 1,q .

In fact, it suffices to write F n = ϕ n (G), where

G = sup h∈L q ([0,1];H) h ≤1 1 0
Du r , h r H dr, which implies

DF n H = ϕ ′ n (G)DG H ≤ ϕ ′ n ∞ sup h∈L q ([0,1];H) h ≤1 1 0 D 2 u r , h r H ⊗2 dr H ≤ ϕ ′ n ∞ 1 0 D 2 u r p H ⊗2 dr 1 p ∈ L q (Ω).
Then, on the set {F n = 0},

1 0 Du t p H dt 1 p
≤ n, and we get

D(X t -X s ), 1 [s,t] H ≥ C 1 (t -s) 2ρ -n C 2 (t -s) ρ+ 1 q = (t -s) 2ρ C 1 -n C 2 (t -s) 1 q -ρ ,
and property a) of Theorem 1 holds with a suitable choice of α n and δ n because 1 qρ > 0, and with θ = 2ρ and γ = 1. Finally, conditions b) and c) can also be checked:

T E DF n , 1 [s,t] H |t -s| 2ρ dsdt ≤ C 2 T E ( DF n H ) |t -s| ρ dsdt < ∞,
and

T E F n D 2 (X t -X s ), 1 ⊗2 [s,t] H ⊗2 |t -s| 4ρ dsdt ≤ F n ∞ C 2 T E D 2 (X t -X s ) H ⊗2 |t -s| 2ρ dsdt < ∞, because E D 2 (X t -X s ) H ⊗2 = E t s D 2 u r dr H ⊗2 ≤ t s E D 2 u r H ⊗2 dr ≤ (t -s) 1 q E 1 0 D 2 u r p H ⊗2 dr 1 p
,

and 1 q -2ρ = 1 -1 p -2ρ > -1, because p > 1 2(1-ρ) .
Remark 2 These conditions are intrinsic and they do not depend on the structure of the Hilbert space H. In the case of the Brownian motion, this result is slightly weaker than Theorem 3.1 in [START_REF] Imkeller | Integration by parts on Wiener Space and the Existence of Occupation Densities[END_REF], because we require a little more integrability.

4 Occupation density for Skorohod integrals with respect to the fractional Brownian motion

We study here the existence of occupation densities for indefinite divergence integrals with respect to the fractional Brownian motion. Consider a process of the form

X t = t 0 u s δB H s , t ∈ [0, 1]
, where B is fractional Brownian motion with Hurst parameter H ∈ 1 2 , 1 , and u is an element of D 1,2 (L 2 ([0, 1])) ⊂ Dom (δ). We know that the covariance of the fractional Brownian motion can be written as

E(B H t B H s ) = t 0 s 0 φ(α, β)dαdβ, (4.1) 
where φ(α, β) = H(2H -1)|α -β| 2H-2 . For any 0 ≤ s < t ≤ 1, and α ∈ [0, 1] we set

f s,t (α) := t s φ(α, β)dαdβ. (4.2) 
We also know (see e.g. [START_REF] Nualart | The Malliavin calculus and related topics[END_REF]) that the canonical Hilbert space associated to B satisfies:

L 2 ([0, 1]) ⊂ L 1 H ([0, 1]) ⊂ H. (4.
3)

The following is the main result of this section.

Theorem 3 Consider the stochastic process X t = t 0 u s δB H s where the integrand u satisfy the following conditions for some q > 2H 1-H and p > 1 such that 1 p +2 < H(p+1):

I1) u ∈ D 3,2 (L 2 ([0, 1])).
I2)

1 0 1 0 [E(|D t u s | p ) + E( |D t Du s | p H ) + E( |D t DDu s | p H⊗H )]dsdt < ∞. I3) 1 0 E |u t | -p p-1 (q+1) dt < ∞.
Then the process {X t , t ∈ [0, 1]} admits a square integrable occupation density on [0, 1].

Proof: We will use the criteria given in [START_REF] Imkeller | Integration by parts on Wiener Space and the Existence of Occupation Densities[END_REF] and recalled in Theorem 1. Condition I1) implies that X t ∈ D 2,2 for all t ∈ [0, 1]. On the other hand, from Theorem 7.8 in [START_REF] Kruk | Wiener integrals, Malliavin calculus and covariance structure measure[END_REF] (or also by a slightly modification of Theorem 5 in [START_REF] Alòs | Stochastic integration with respect to the fractional Brownian motion[END_REF]) we obtain the continuity of the paths of the process X. Note that from Lemma 2.2 in [START_REF] Imkeller | Integration by parts on Wiener Space and the Existence of Occupation Densities[END_REF] corroborated with hypothesis I3). we obtain the existence of a function γ : [0, 1] → {-1, 1} such that γ t u t = |u t | for almost all t and ω.

We are going to show conditions a), b) and c) of Theorem 1.

Proof of condition a): Fix 0 ≤ s < t ≤ 1. From (2.4) we obtain

D(X t -X s ) = u1 [s,t] + t s Du r δB H r ,
and we can write

γ(X t -X s ), 1 [s,t] H = |u|1 [s,t] , 1 [s,t] H + γ t s Du r δB H r , 1 [s,t] H . (4.4)
We first study the term

|u|1 [s,t] , 1 [s,t] H = t s t s |u α |φ(α, β)dαdβ = t s |u α |f s,t (α)dα.
For any q > 1 we have

E(|B H t -B H s | 2 ) = t s f s,t (α)dα = t s (|u α |f s,t (α)) q q+1 (|u α |f s,t (α))
q q+1 f s,t (α)dα, and using Hölder's inequality with orders q+1 q and q + 1, we obtain

E(|B H t -B H s | 2 ) ≤ t s |u α |f s,t (α)dα q q+1 t s |u α | -q f s,t (α)dα 1 q+1
. Hence, using that

f s,t (α) ≤ f 0,1 (α) = H(2H -1) 1 0 |α -β| 2H-2 dβ = H α 2H-1 + (1 -α) 2H-1 ≤ H, we get t s |u α |f s,t (α)dα ≥ C|t -s| 2H(q+1) q Z -1 q q , (4.5) 
where Z q = 1 0 |u α | -q dα. On the other hand, for the second summand in the right-hand side of (4.4) we can write, using Hölder's inequality.

γ t s Du r δB H r , 1 [s,t] H ≤ 1 0 t s D α u r δB H r f s,t (α)dα ≤ 1 0 f s,t (α) p p-1 dα p-1 p × 1 0 t s D α u r δB r p dα 1 p . (4.6) 
We can write

1 0 f s,t (α) p p-1 dα p-1 p = c H t s | • -β| 2H-2 dβ L p p-1 ([0,1]) ≤ c H 1 [s,t] * | • | 2H-2 1 [-1,1] L p p-1 (R) , (4.7) 
where c H = H(2H -1). Young's inequality with exponents a and b in (

1, ∞) such that 1 a + 1 b = 2 -1 p yields 1 [s,t] * | • | 2H-2 1 [-1,1] L p p-1 (R) ≤ 1 [s,t] L a (R) | • | 2H-2 1 [-1,1] L b (R) . (4.8) 
Choosing b < 1 2-2H and letting η = 1 a < 2H -1 p we obtain from (4.6), (4.7), and (4.8)

γ t s Du r δB H r , 1 [s,t] H ≤ C|t -s| η 1 0 t s D α u r δB r p dα 1 p
. Now we will apply Garsia-Rodemich-Ramsey's lemma (see [START_REF] Garsia | A real variable lemma and the continuity of paths of some Gaussian processes[END_REF]) with Φ(x) = x p , p(x) =

x m+2 p and to the continuous function u s = s 0 D α u r δB r (use again Theorem 5 in [START_REF] Alòs | Stochastic integration with respect to the fractional Brownian motion[END_REF]), and we get

t s Du r δB r , γ1 [s,t] H ≤ C|t -s| η+ m p Y 1 p m,p , (4.9) 
where

Y m,p = 1 0 1 0 1 0 y x D α u r δB r p |x -y| m+2 dxdydα. 10 
Substituting (4.5) and (4.9) into (4.4) yields

γD(X t -X s ), 1 [s,t] H ≥ |t -s| 2H(q+1) q Z -1 q q -C|t -s| η+ m p Y 1 p m,p = |t -s| 2H(q+1) q Z -1 q q -C|t -s| δ Y 1 p m,p ,
where δ = η + m p -2H -2H q . With a right choice of η the exponent δ is positive, provided that m -1 p -2H q > 0, because η < 2H -1 p . Taking into account that

2H q < 1 -H, it suffices that m > 1 p + 1 -H. (4.10) 
We construct now the sequence {F n , n ≥ 1}. Fix a natural number n ≥ 2, and choose a function ϕ n (x), which is infinitely differentiable with compact support, such that ϕ n (x) = 1 if |x| ≤ n -1, and ϕ n (x) = 0, if |x| ≥ n. Set F n = ϕ n (G ), where G = Z q + Y m,p . Then clearly the sequences α n and δ n required in Theorem 1 can be constructed on the set {F n = 0}, with θ = 2H + 2H q . It only remains to show that the random variables F n are in the space D 1,1 . For this we have to show that the random variables DZ q H and DY m,p H are integrable on the set {G ≤ n}. First notice that, as in the proof of Proposition 4.1 of [START_REF] Imkeller | Integration by parts on Wiener Space and the Existence of Occupation Densities[END_REF], we can show that E DZ q H < ∞. This follows from the integrability conditions I3) and

1 0 E Du t p H dt < ∞, (4.11) 
which holds because of I2), the continuous embedding of of L 1 H ([0, 1]) into H (see [START_REF] Mémin | Inequalities for the moments of Wiener integrals with respect to a fractional Brownian motion[END_REF]), and the fact that pH ≥ 1. On the other hand, we can write DY m,p = p we have

Y ≤ C 1 0 1 0 1 0 1 [y,x] D α u p H |x -y| -m-2 dxdydα + 1 0 1 0 1 0 x y DD α u s δB H s p H |x -y| -m-2 dxdydα := C(Y 1 + Y 2 ).
From the continuous embedding of

L 1 H ([0, 1]) into H, we obtain Y 1 ≤ C 1 0 1 0 1 0 1 [y,x] D α u p L 1/H ([0,1]) |x -y| -m-2 dxdydα ≤ C|x -y| pH-1 1 0 1 0 1 0 x y |D α u r | p |x -y| -m-2 drdxdydα.
Hence, E(Y 1 ) < ∞, by Fubini's theorem, Proposition 3.1 in [START_REF] Imkeller | Integration by parts on Wiener Space and the Existence of Occupation Densities[END_REF] and condition I2), provided m < pH -1. (4.12)

On the other hand, using the estimate (2.2), and again the continuous embedding of

L 1 H ([0, 1]) into H yields E x y DD α u s δB H s p H ≤ C E D α Du • 1 [y,x] (•) p H ⊗2 + D α DDu • 1 [y,x] (•) p H ⊗3 ≤ C E |D α Du • | 1 [y,x] (•) p L 1/H ([0,1];H) + |D α DDu • | 1 [y,x] (•) p L 1/H ([0,1];H ⊗2 ) ≤ C|x -y| pH-1 x y E |D α Du r | p H dr + x y E |D α DDu r | p H ⊗2 dr .
As before we obtain E(Y 2 ) < ∞ by Fubini's theorem and condition I2), provided (4.12) holds. Notice that condition 1 p + 2 < H(p + 1) implies that we can choose an m such that (4.10) and (4.12) hold. Hence

γ ⊗2 DD(X t -X s ), 1 ⊗2 [s,t] H ⊗2 = γ ⊗2 1 [s,t] (β)D α u β , 1 ⊗2 [s,t] H ⊗2 + γ ⊗2 1 [s,t] (α)D β u α , 1 ⊗2 [s,t] H ⊗2 + γ ⊗2 t s D α D β u r δB H r , 1 ⊗2
[s,t] H ⊗2 := J 1 (s, t) + J 2 (s, t) + J 3 (s, t).

For i = 1, 2, 3, we set By Fubini's theorem A 1 < ∞, because 2H -2θ > -2, which is equivalent to q > H, and and this is finite because of the inclusion of L 2 ([0, 1]) in H (4.3). In the same way we can show that A 2 < ∞. Finally, 

A i = E F n T |t -s| -2θ |J i (s, t)| dsdt .

Let us compute first

A 3 = E F n T T |t -s| -2θ

.H

  y,α | p-1 sign(ξ x,y,α )Dξ x,y,α |x -y| -m-2 dxdydα, where ξ x,y,α = x y D α u r δB r . ThusDY m,p H ≤ p y,α | p-1 Dξ x,y,α H |x -y| -m-2 dxdydα ≤ p(Y m,p )Now, to show that 1 (G≤n) DY m,p H belongs to L 1 (Ω), it suffices to show that the random variable |x -y| -m-2 dxdydα has a finite expectation. Since, for any 0≤ y < x ≤ 1 Dξ x,y,α = 1 [y,x] D α u + x y DD α u s δB H s ,

E( 1

 1 Proof of condition b): DefineA n = {G ≤ n}. Then, condition b) in Theorem 1 follows from T E( γDF n , 1 [s,t] H )|t -s| -θ dtds ≤ C T An γDG, 1 [s,t] H )|t -s| -θ dtds ≤ CE (1 An DG H ) T |t -s| H-θ dsdt < ∞, since E (1 An DG H ) < ∞ and θ -H = H + 2H q < 1. Proof of condition c): We have D α D β (X t -X s ) = 1 [s,t] (β)D α u β + 1 [s,t] (α)D β u α + t s D α D β u r δB H r .

A 1 ≤E

 1 C T T |t -s| 2H-2θ E |D α u β |1 [s,t] (β) H ⊗2 dsdt (|D α u β ||D x u y |) φ(α, x)φ(β, y)dαdx.

  y)dβdy ≤ E |Du| 2 H ⊗2

  and we conclude as before by using for example the bound (2.2) for the norm of the Skorohod integral and the condition I2).

	≤ C	T T	|t -s| 2H-2θ E	γ ⊗2 t s DDu r δB H t s D α D β u r δB H r , 1 ⊗2 [s,t] H ⊗2 r dsdt,	H ⊗2	dsdt
	Remark 3 If p = 1+	√ 2	17	, then 1

p + 2 < H(p + 1) for all H > 1 2 .