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Abstract

We show here how to approach with an increasing precision the limit-cycles of Liénard systems, bifurcating
from a stable stationary state, by contour lines of Hamiltonian systems derived from a potential-Hamiltonian
decomposition of the Liénard flow. We evoked in a previous Note the case (non polynomial) of pure potential
systems (n-switches) and pure Hamiltonian systems (2D Lotka-Volterra), and here we show that, with the proposed
approximation, we can deal with the case of mixed systems (van der Pol or FitzHugh-Nagumo) frequently used
for modelling oscillatory systems in biology. We suggest finally that the proposed algorithm, generic for PH-
decomposition, can be used for estimating the isochronal fibration in some specific cases near the pure potential
or Hamiltonian systems. In a following Note, we will give applications in biology of the potential-Hamiltonian
decomposition.

Résumé

Nous montrons ici comment approcher, avec une précision croissante, les cycles limites des systèmes de Liénard
par les courbes de niveau du système Hamiltonien obtenu à partir d’une décomposition potentielle-Hamiltonienne.
Nous avons présenté, dans une Note précédente, des cas non polynomiaux de systèmes purement potentiels
(type n-switch) et purement Hamiltoniens (type Lotka-Volterra 2D), puis nous donnons ici des exemples de
décomposition potentielle-Hamiltonienne pour des systèmes de type van der Pol (mixtes) qui sont d’usage fréquent
en modélisation des systèmes biologiques oscillants. Nous suggérons enfin que l’algorithme proposé, générique pour
la décomposition potentielle-Hamiltonienne, soit utilisé pour estimer la fibration isochrone, dans le cas de systèmes
voisins des systèmes purs (potentiels ou Hamiltoniens). Dans une Note future, nous décrirons des applications
biologiques précises de la décomposition potentielle-Hamiltonienne.

1. Estimation of the limit-cycle of a Liénard system

Liénard systems [1] are 2-dimensional ordinary differential equations (2D ODEs) defined by dx/dt = y,
dy/dt = −g(x) + yf (x) , where g and f are polynomials. Liénard systems have in general as asymptotics
a unique limit-cycle [2]. The existence of such a periodic orbit explains that the use of Liénard systems is
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universal (especially in biological, electrical, mechanical,..., modeling of oscillatory systems).
Algebraic estimation of the limit-cycles for the Liénard systems has already been studied by searching closed

polynomial curves passing through some of their points [3]. They are trajectories of Hamiltonian systems, but
it has not been proposed before to extend the estimation of the dynamical flow to the whole state space by
adding a potential part. The PH-decomposition of Liénard systems we propose here could help also, as noticed
in [3], to clarify the relationship between positive loops of their Jacobian matrix and the number of their
attractors [4, 5]. This problem is an open mathematical question of great interest in biology, partially solved
for discrete systems [6–9]. Many differential systems of dimension 2 can be reduced into Liénard systems,
which increases the interest of the PH-decomposition. For example, the FitzHugh-Nagumo system [10] defined
by the following equations, where p is a cubic polynomial:

dx/dt = y + p(x) , dy/dt = cx − by + a (1)

becomes the following Liénard system by changing y into Y = y + p(x) :

dx/dt = Y , dY /dt = [cx − bp(x) + a] + Y [p(́x) − b] (2)

i.e. a Liénard system called van der Pol system, if p(x) = µx(1 − x2/3) , c=-1, a=b=0. Then to approach
algebraically its limit-cycle, we use the PH-decomposition proposed in Theorem 1 of [1], by remarking that:
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We impose that (i) the potential and Hamiltonian flows are orthogonal in each point of the phase plane,
(ii) a Hamiltonian trajectory passes through points of the limit-cycle M1, M2, M3,. . . ,MK(n,m,p) numerically
estimated, (iii) the gradient of P vanishes in Mi’s points. Then we identify the coefficients of the polynomials
appearing on left and right hand sides of the orthogonality equation. K(n,m,p) is chosen in order to identify
all non-zero coefficients of polynomials P and H, taking into account the fact that orthogonality equations

give already equalities between coefficients of f
[k](l)
i ’s and g

[k](l)
i ’s like:

∀i, j ≥ 2 , aij = −
(i + 1)(i + 2)
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Then we search for the level of the contour line CM of the Hamiltonian surface passing through the set M
of points Mi chosen on the limit-cycle (cf. Fig. 1 Left). As m and p tend to infinity, K(n,m,p) tends to
infinity and if we progressively choose the points Mi more and more dense on the limit-cycle, CM tends to
this limit-cycle.

Figure 1. – (Left) Algebraic approximation of the van der Pol limit-cycle. Local PH-decomposition at the points M1, M2, M3,
M4, ..., MK(n,m,p) of the van der Pol limit-cycle. (Right) PH-decompositions (Up) for the van der Pol system and (Down) for
an “lemniscate” system.

Let’s consider now the van der Pol system defined by dx/dt = y, dy/dt = −x + µ(1− x 2). Its Hamiltonian
part given by the PH-decomposition proposed in [1] is: H(x, y) = (x2 +y2)/2−3µxy/2+3µyx3/8−µxy3/24−
2.023 and contour lines passing through M1(and M3) are obtained by choosing the level 0 for H (of fig.1 up).

The “lemniscate” system has been proposed by R. Thom [11] to model the amphibian embryogenesis:

dx/dt = y , dy/dt = x(1 − x2) − y(µ − x2) (5)
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Hamiltonian parts for µ = 0.8 and µ = 0.9 are respectively :
H0.8(x, y) = −(x2 − y2)/2 + xy/2 + x4/4 + xy3/24 − 3yx3/8 and H0.9(x, y) = H0.8(x, y) + 0.1
and the contour lines are obtained by choosing the level Hµ(x, y) = 0 for µ = 0.8 and 0.9 (fig.1 down).

Examples of potential-Hamiltonian decomposition given above generalize the results given in [12]. More
generally, two factors could favour the resolving of the problem which consists in counting attractors of
Liénard systems, which is a part of the historical XVIth Hilbert problem [13]: (i) Lyapunov functions found in
differential systems (e.g. Dolbeault techniques [14]) and (ii) recent results obtained for discrete systems [6–9]
could give ideas of proofs, especially if the differential systems can be approached by discrete automata (like
Wilson-Cowan systems by Hopfield like networks [15]).

2. PH-decomposition and isochrons

In addition to the algebraic estimation of the limit-cycles, the main interest of the decomposition above is
to divide the parameters that appear in the right hand side part of the Liénard equations into two sets: - the
set of parameters of P, more amplitude controlling - the set of parameters of H, more frequency controlling
in the neighbourhood of a limit-cycle of the Liénard system.
The explanation of the separated roles of the parameters is of important biological relevance to explain ampli-
tude or frequency modulation abilities of both genetic and metabolic regulatory systems. This is particularly
useful when considering the isochronal fibration [16] transverse to the trajectories, whose analysis allows to
predict the entrainment of a biological oscillator by an external periodic signal or its response to an instan-
taneous stimulation [17, 18]. In some cases, the isochronal fibration is just made of the orbit networks of
the potential part in the PH-decomposition. Let’s consider for example the case of an anharmonic oscillator
having the unity circle as limit-cycle:

dx/dt = y + x(1 − x2 − y2) , dy/dt = −x + y(1 − x2 − y2) (6)

whose solutions are: x(t) = −ρ0e
t cos(t − θ0)/

√

1 + ρ2
0(e

2t − 1) , y(t) = ρ0e
t sin(t − θ0)/

√

1 + ρ2
0(e

2t − 1)
Then the potential-Hamiltonian decomposition gives:
H(x, y) = (x2 + y2)/2 and P (x, y) = −(x2 + y2)/2 + (x4 + y4)/4 + x2y2/2

It is easy to check that isochrons are just radial orbits of the potential part (cf. fig. 2 (left) and (middle)).

Figure 2. – (left) Phase portrait of the anharmonic oscillator flow (eq. 6) and its isochronal fibration in black. (middle) Repre-
sentation of the potential P for the anharmonic oscillator (eq. 6). (right) Example of the differential system (eq. 7) exhibiting in
its phase plane a potential behavior on the external border and a Hamiltonian behavior inside the unity circle.

We conjecture this result still holds in the neighbourhood of limit-cycles of a large class of perturbations
of such an anharmonic oscillator. This example also shows that a simple inversion of P and H is unable to
generate a flow giving isochrons as trajectories, but this property holds here in the neighbourhood of the
limit-cycle and it is also the case in the neighbourhood of the frontiers of the basin of attraction (as predicted
in [17]) for the following system defined on [1,2.5]x[0,2π[, purely potential in its border region:

dθ

dt
= sup(0, (1.5 − ρ)) ,

dρ

dt
=







1 − ρ if 1 ≤ ρ ≤ 3/2

−(5/2 − ρ)/2 if 3/2 ≤ ρ ≤ 5/2
(7)

This example shows that the isochronal fibration tends to adopt the Hamiltonian (resp. the potential) flow
shape, when the potential (resp. the Hamiltonian) is dominant, which gives to the PH-decomposition another
practical use (cf. fig. 2 (right)), especially if the systems are near either pure potential or pure Hamiltonian
systems.
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3. Conclusion

In this article, we have shown the possibility to explicitely (i.e. by using a precise algorithm) decompose any
sufficiently regular 2D-differential system into two parts : a potential one having a dissipative gradient-like
behaviour responsible, in general, for the amplitude of a periodic signal generated by the system, and another
one, Hamiltonian, expressing the conservative part of the flow responsible for the frequency of this periodic
signal. This decomposition can be crucial in applications, particularly in biology, in which we have to detect
the parameters responsible respectively for the amplitude and frequency modulation of the signaling. Such
parameters are often very difficult to extract and identify, but are necessary for understanding signaling and
regulatory mechanisms. The proposed algorithm allows it, and moreover permits to estimate, near both pure
potential and Hamiltonian systems, the isochronal fibration associated to the stability basin of a limit-cycle,
which is always crucial for biological periodic systems [16–18].
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