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Abstract

Graph pyramids are often used for representing irregular image pyramids. For the
2D case, combinatorial pyramids have been recently defined in order to explicitly
represent more topological information than graph pyramids. The main contribu-
tion of this work is the definition of pyramids of n-dimensional generalized maps.
This extends the previous works to any dimension, and generalizes them in order to
represent any type of pyramid built by using any removal and/or contraction oper-
ations. We give basic algorithms that allow to build an n-dimensional generalized
pyramid that describes a multi-level segmented image. A pyramid of n-dimensional
generalized maps can be implemented in several ways. We propose three possible
representations and give conversion algorithms.

Key words: irregular pyramid, hierarchical data structure, pyramid of generalized
maps, multi-level segmented image

1 Introduction

Hierarchical structures, as graph pyramids, are often used for representing im-
age partitions at different resolution levels. Such pyramids have been widely
used to encode partitions within segmentation and connected component anal-
ysis frameworks [1,2,3]. We define pyramids of n-dimensional generalized maps
(or n-G-maps) for two main reasons:
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• first, to represent the topological information of images at different resolu-
tion levels;
• second, to have a unique definition valid for any dimension.

So 2D, 3D or 4D images (3D plus time for instance) can be processed using a
single formalism, without loss of topological information.

Topological structures are often used for representing image partitions, i.e. re-
gions and their adjacency relations. Information described by these structures
can be used for computing topological characteristics about the regions (e.g.
in order to retrieve all the neighbors of a given region, during a segmentation
process by region growing).

Images at different resolution levels can be represented by hierarchical struc-
tures. The first level corresponds to the highest resolution (i.e. generally to
the initial image), and other levels are obtained by successive simplifications
(for instance, regions at level i which are homogeneous according to a given
criterion are merged at level i + 1). Irregular pyramids are defined as stacks
of reduced graphs (e.g. adjacency graphs, dual graphs), each one being built
from the previous one by a sampling or a decimation process. Such structures
make it possible to:

• directly access any level;
• at the same time use information contained within different levels;
• modify a region in a particular level without having to rebuild the whole

level;
• reduce the computational cost of several algorithms by applying them on

reduced images;
• get a good framework for algorithms based on a divide and conquer strategy.

For image processing, the most popular hierarchical structure is the adjacency
graph pyramid [1,2]. Each level is an adjacency graph, which describes regions
of the image at a certain granularity level, and their adjacency relations (more
precisely, a node of the graph corresponds to a region, and an edge links two
nodes corresponding to adjacent regions). The problem here is the fact that
all adjacency relations (simple or multi-adjacency, inclusion: cf. Fig. 1-b) are
represented in the same way. Moreover, for nD images, adjacency graphs only
represent n-cells (i.e. image regions) and (n− 1)-cells (i.e. adjacency between
regions): all other cells are not represented, and in the general case, they can
not be computed from n and (n− 1)-cells, leading thus to a loss of important
topological information.

Dual graph pyramids [3,4] extend 2D adjacency graph pyramids. They have
been defined in order to take into account multi-adjacency and inclusion re-
lations (cf. Fig. 1-c). A dual graph is defined as a multi-graph along with its
dual (these two graphs have to be connected). However, dual graphs as well
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Figure 1. Representation of a segmented image. (a) An image. (b) The correspond-
ing region adjacency graph. (c) The corresponding dual graphs (primal graph in
black and its dual in grey). (d) The corresponding 2-combinatorial map. (e) The
corresponding 2-G-map.

as adjacency graphs cannot represent the whole topological information. For
instance, in Fig. 2, we can see that dual graphs cannot represent the order
of faces around a vertex, and such information can be useful for instance to
distinguish between two objects represented in a 2D image.

Brun and Kropatsch have defined combinatorial pyramids, in order to catch
the whole topological information for 2D images segmented at different levels
[5,6,7]. Each level of a pyramid is a combinatorial map: it can be defined
as a planar graph which implicitly encodes the orientation of edges around
vertices. More generally, a combinatorial map can represent the topology of
any partition of any orientable surface, without loss of topological information.
Note that combinatorial pyramids are 2D hierarchical structures, and that
they are built in a particular way: they use only 1-removal and 1-contraction
operations, and these two type of operations cannot be applied at the same
time.

So, existing hierarchical structures (adjacency graph pyramids, dual graph
pyramids, combinatorial pyramids) can either lead to a loss of important topo-
logical information, or they are defined only for 2D images.
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Figure 2. A 2D image of a clover. (a) The image. (b) The corresponding dual graphs.
We cannot know which is the leaf between the two others. Dual graphs do not repre-
sent the topological order of edges around vertices in any case. (c) The corresponding
2-combinatorial map (d) The corresponding 2-G-map.

We define n-G-map pyramids in order to solve these problems. Generalized
maps represent the topology of any partition of any n-dimensional quasi-
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manifold with or without boundaries [8]. So, they can represent any partition
of any nD image without loss of topological information (all cells are repre-
sented, together with all adjacency and incidence relations between cells and
topological order: cf. Fig. 1-e and Fig. 2-d). Moreover, generalized maps are
homogeneously defined for any dimension: this is another advantage of this
structure for which the definition of generic operations and algorithms is eas-
ier. The definition of n-G-map pyramids is based upon a general operation
for removing and contracting cells of any dimension [9]. More precisely, each
level of a pyramid is a “reduction” of the previous one, computed by apply-
ing this operation. From this “principle” we deduce the definition of n-G-map
pyramids, several useful notions and properties [10].

We are interested here in representing multi-level segmented images. So, we
also propose basic algorithms for handling n-G-map pyramids which can be
used for building pyramids corresponding to such images, given a segmentation
criterion. Note that we do not propose a new segmentation method; our goals
(and the results presented in the paper) are:

• the generic definition of n-G-map pyramids (indeed generalized map pyra-
mids can be used in others domains, for example [11] to model complex
architectural environments, or [9] to handle different representations in dis-
crete geometry);
• the conception of basic algorithms which can be used in a segmentation

process for constructing a pyramid corresponding to an nD multi-level seg-
mented image;
• the definition of generic representations of such pyramids, and conversion

algorithms between these representations.

Section 2 is a reminder of the notion of generalized map and the general oper-
ation of cell contraction and removal. Generalized map pyramids are defined
in section 3. In this section, the definition is general and not devoted to image
processing. We discuss in section 4 the construction of a pyramid for nD image,
and we propose general algorithms for this construction. We study in section 5
three different representations of generalized map pyramids. We present in sec-
tion 6 conversion algorithms between these representations. Conclusion and
further issues are discussed in section 7.

2 Recalls: n-G-map, cell removal and contraction

A way to describe an image is to consider each cell of the corresponding
subdivision. For instance in 3D, we represent voxels (3-cells) and also all cells of
voxel boundaries [12,13,14]: surfels (2-cells between two 3-cells), linels (1-cells
between two 2-cells) and pointels (0-cells between two 1-cells). n-dimensional
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generalized maps (or n-G-maps) make it possible to describe this type of
subdivision, and more generally any subdivision of any quasi-manifold [15]. An
n-G-map is a set of abstract elements (called darts), together with applications
defined on these darts.

Definition 1 (n-G-map) Let n ≥ 0. An n-dimensional generalized map
G = (D, α0, . . . , αn) is defined by:

(1) D a finite set of darts;
(2) ∀k, 0 ≤ k ≤ n, αk an involution 1 on D;
(3) ∀k, j, 0 ≤ k < k + 2 ≤ j ≤ n, αkαj is an involution.

Let G be an n-G-map, and S be the corresponding subdivision. Intuitively, a
dart of G corresponds to an (n + 1)-tuple of cells (c0, . . . , cn), where ci is an
i -dimensional cell that belongs to the boundary of ci+1 (cf. [16] and Fig. 3). αi

associates darts corresponding with (c0, . . . , cn) and (c′0, . . . , c
′
n), where cj = c′j

for j 6= i, and ci 6= c′i (αi swaps the two i -cells that are incident to the same
(i− 1) and (i + 1)-cells).

Cells are implicitly described as sets of darts through the notion of orbit (see
[8] for more details).

Definition 2 (orbit and i-cell) Let {Π0, . . . , Πn} be a set of permutations
on D. The orbit of an element d ∈ D related to this set of permutations is
< Π0, . . . , Πn > (d) = {Φ(d), Φ ∈< Π0, . . . , Πn >}, where < Π0, . . . , Πn >

denotes the group of permutations generated by Π0, . . . , Πn.
Let d ∈ D, N = {0, 1, . . . , n} and let i ∈ N . The i-cell incident to d is the
orbit

<>N−{i} (d) =< α0, . . . , αi−1, αi+1, . . . , αn > (d).

In order to define n-G-map pyramids, Damiand and Lienhardt have defined
the operation of “simultaneous removals and contractions of cells of any dimen-
sion” [9] which allows to contract and remove a set of cells of any dimension
in a simultaneous way (see Fig. 4 for examples and [9] for more details). With
this operation we can merge different regions (using removals of 1-cells in 2D
or 2-cells in 3D), or simplify region boundaries (using removals of 0-cells in
2D or 0-cells and 1-cells in 3D).

The formal and general definition of this operation is:

Definition 3 (Simultaneous removal and contraction of any cells) Let
G = (D, α0, . . . , αn) be an n-G-map, R0, . . . , Rn−1 be sets of 0-cells,. . . , (n−1)-
cells to be removed and C1, . . . , Cn be sets of 1-cells,. . . , n-cells to be con-

1 An involution f on a finite set S is a one to one mapping from S onto S such
that f = f−1.
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Figure 3. (a) A 2D image. (b) The corresponding 2-G-map. Darts are represented
by numbered black segments. Two darts related by α0 share a little vertical segment
(ex. darts 14 and 15). Two darts related by α1 share a same point (ex. darts 2 and
3). Two distinct darts related by α2 are parallel and close to each other (ex. darts 3
and 4); otherwise, the dart is its own image by α2 (ex. dart 14). Dart 9 corresponds
to (v1, e1, f1), dart 8 = 9α0 corresponds to (v2, e1, f1), 1 = 8α1 corresponds to
(v2, e2, f1), and 2 = 1α2 corresponds to (v2, e2, f2). The vertex (0-cell) incident
to dart 2 is < α1, α2 > (2) = {1, 2, 3, 4, 5, 6, 7, 8}, the edge (1-cell) incident to
dart 9 is < α0, α2 > (9) = {7, 8, 9, 10}, and the face (2-cell) incident to dart 2 is
< α0, α1 > (2) = {2, 3, 11, 12, 13, 14, 15, 16}.

tracted 2 . Let R = ∪n−1
i=0 Ri and C = ∪n

i=1Ci. Two preconditions have to be
satisfied:

(C1) cells are disjoint (i.e. ∀c, c′ ∈ C ∪ R, c ∩ c′ = ∅),
(C2) “the degree of each cell is locally 3 two”, i.e.:

- ∀i, 0 ≤ i ≤ n− 2, ∀d ∈ Ri, dαi+1αi+2 = dαi+2αi+1;
- ∀i, 2 ≤ i ≤ n, ∀d ∈ Ci, dαi−1αi−2 = dαi−2αi−1.

∀i ∈ N , let SDi = (Ri ∪ Ci)αi − (Ri ∪ Ci) (it is the set of surviving darts
“neighbor” of removed and contracted cells). The resulting n-G-map is G′ =
(D′, α′

0, . . . , α
′
n) defined by 4 :

• D′ = D − (C ∪ R);
• ∀i ∈ N , ∀d ∈ D′ − SDi, dα′

i = dαi;
• ∀i ∈ N , ∀d ∈ SDi, dα′

i = d′ = d(αiαk1
) . . . (αiαkp

)αi, where p is the smallest
integer such that d′ ∈ SDi, and ∀j, 1 ≤ j < p, if dj = d(αiαk1

) . . . (αiαkj−1
)αi ∈

Ri then kj = i + 1 else (dj ∈ Ci) kj = i− 1.

2 Rn = ∅ and C0 = ∅ since it is not possible to remove n-cells nor to contract 0-cells
3 The degree of an i-cell is the number of distinct incident (i + 1)-cells. The local
degree of an i-cell is its degree when we consider the cell locally. For example, the
degree of a vertex incident to a loop is one but its local degree is two since locally
two edges are incident to this vertex.
4 When only removals are used (i.e. C = ∅), the definition is simplified: for d ∈ SDi,
dα′

i = d′ = d(αiαi+1)
pαi, where p is the smallest integer such that d′ ∈ SDi.
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3 Definition of n-G-map pyramids

An n-G-map pyramid is a hierarchical structure, each level of which is an
n-G-map. The first level describes the initial data; the other levels describe
successive reductions of the previous ones by removing and/or contracting
some cells. In this work we focus on applications in image processing, but since
n-G-map pyramids can be used in other domains (architectural environments
[11], discrete geometry [9] . . . ), we give here a general definition of n-G-map
pyramids.

Definition 4 (n-G-map pyramid) Let n, m ≥ 0. An (m+1)-level pyramid
P of n-dimensional generalized maps is the set P = {Gk}0≤k≤m where:

(1) ∀k, 0 ≤ k ≤ m, Gk=(Dk, αk
0, . . . , α

k
n) is an n-G-map;

(2) For each k, 0 ≤ k < m, for each i ∈ N , let Rk
i (resp. Ck

i ) be sets of
i-cells and Rk =

⋃n
i=0 Rk

i (resp. Ck =
⋃n

i=0 Ck
i ) with Rk

n = Ck
0 = ∅. The

two preconditions (C1) and (C2) of the definition 3 have to be satisfied;
(3) ∀k, 0 < k ≤ m, Gk is obtained from Gk−1 by removing the cells of Rk−1

and contracting the cells of Ck−1.

In the case of an n-G-map pyramid associated with a multi-level segmented
image, level 0 is associated with the initial image (or with a first segmenta-
tion). New levels are obtained by merging homogeneous regions (n-cells) then
by simplifying region boundaries. Merging and simplification are achieved by
removing different cells under some conditions (preconditions of the removal
and contraction operation, see definition 3). The choice of removed or con-
tracted cells is realized by an external process (an oracle which depends on
the application). Examples of 2D and 3D pyramids are provided in Fig. 5 and
Fig. 6.

a b c

Figure 4. An example of simultaneous removals of cells. (a) A 2-G-map correspond-
ing to an image. A ◦ marks a dart of a 1-cell to be removed in order to merge certain
2-cells. (b) The resulting 2-G-map. A 2 marks a dart of a 0-cell to be removed in
order to simplify the boundary of regions. (c) The resulting 2-G-map where the
region boundaries are simplified.

Two major properties of n-G-map pyramids are:

Proposition 5

(1) Each dart which belongs to a removed or a contracted cell of level k does
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Figure 5. A 2-G-map pyramid
composed of three levels. A 2

(resp. a ◦ ) marks a dart of a
0-cells (resp. 1-cells) to be re-
moved.

Figure 6. A 3-G-map pyramid composed
of three levels. The second level is ob-
tained by removing the 2 faces between
the 3 volumes in the foreground (marked
by ×). The third level is obtained by re-
moving 6 edges around the volume in the
foreground.

not belong to another removed or contracted cell at any level. More for-
mally: ∀i, j ∈ N , ∀k, l ∈ [0..m− 1] we have:











Rk
i ∩ C l

j = ∅,
Rk

i ∩ Rl
j = ∅, with i 6= j or k 6= l,

Ck
i ∩ C l

j = ∅, with i 6= j or k 6= l.

(2) Let k, 0 ≤ k < m. A one to one mapping ϕk exists between the surviving
darts of Gk (i.e. the darts which are not removed nor contracted), and the
darts of Gk+1 (ϕk : Dk − (Rk ∪Ck) −→ Dk+1). ϕk is called the successor
relation and (ϕk−1)−1 the predecessor relation.

Remark 6 In order to simplify the notations, a dart of Gk and its image in
Gk+1 are denoted by the same name. So, Dk+1 = Dk − (Rk ∪ Ck).

These properties can be easily deduced from the definition of simultaneous
removals and contractions operation [9], and from the definition of n-G-map
pyramids. Moreover these properties are useful for the definition of different
representations of n-G-map pyramids.

4 Construction of a pyramid for nD images

For image processing, pyramids are used in particular in order to keep in
memory different segmentations of a same image. In order to build an n-G-
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map pyramid associated with a multi-level segmented image (called in the
following segmentation pyramid), level 0 is associated with the initial image
or segmentation. New levels are built through two steps: first, the cells of the
“previous segmentation” corresponding to homogeneous regions (n-cells) are
“merged”; second, the resulting n-G-map is simplified. And each segmentation
level is obtained by the same process.

In practice, it is not possible to describe the initial image by an n-G-map since
it would take too much memory space 5 . We can represent the initial n-G-map
implicitly by using a simple matrix. Another idea consists in starting directly
with a first segmentation, the corresponding n-G-map being level 0 of the
pyramid.

Algorithm 1 achieves the construction of such a pyramid. To build a new level
it uses the add level function which takes three input parameters. The first
one is the pyramid in which we add the level. The second one is the dimension
of the cells to remove in order to build the new level. And the third one is an
oracle that allows to know if a cell has to be removed or not.

Algorithm 1: build segmentation pyramid: builds the pyramid corre-
sponding to different segmentation levels of an nD-image.

Input: I: the initial nD-image,

Output: P : the n-G-map pyramid corresponding to different segmentation
levels of I.

build level 0 ;
while not terminate do

add level(P , n− 1, region feature) ;
for i← n− 2 down to 0 do

add level(P , i, local degree two i-cell) ;

In the first step, the merging of regions (n-cells) is achieved by the removal
of (n− 1)-cells between regions to merge. It is realized according to an homo-
geneity criterion.

In the second step, the simplification of the region’s boundaries, without lead
topological modifications 6 , is realized by merging the different cells which
composed a same boundary. For example, in 3D, the different faces that com-
posed a boundary are merged into a unique face. The merge of two i-cells (for
1 ≤ i ≤ n−1) is realized by removing the incident (i−1)-cell (which local de-
gree is two). This simplification step concerns all the cells of the boundary and

5 For example, in 3D, describing a grey level image by a G-map is about 750 times
bigger than encoding the image itself. Indeed, 2 bytes are necessary to directly
encode a voxel, while 1500 bytes are approximatively necessary in the G-map (32
bytes for a dart, and 48 darts for each voxel).
6 For example, the Euler Characteristic for 2D-surfaces

9



not only the cells of higher dimension. It is necessary to compute the different
removals successively, starting by the highest degree cells. Indeed, the removal
of an i-cell decreases the degree of the incident (i− 1)-cells which could need
to be removed. Other simplifications can be made in order to obtain a minimal
representation (see [17]).

It is also possible to modify the choice of removed cells in order to control the
topology, for instance in order to avoid disconnections. Note that disconnec-
tions occur only when we remove a degree one i-cell (i.e. incident twice to the
same (i + 1)-cell). For example, a 2D disconnection comes from the removal
of a degree one edge incident twice to the same face, and a 3D disconnection
comes from the removal of a degree one face (resp. edge) incident twice to
the same volume (resp. face). In order to avoid disconnections, it is enough to
modify the oracles such that they return false when the i-cell degree is one.

Algorithm 2 constructs a pyramid level by applying three steps: marking of
cells depending on the given oracle, duplication of the last level and removing
the marked cells.

Algorithm 2: add level: builds a new pyramid level.

Input: P : an n-G-map pyramid (which levels are G0, . . . Gm),
i: the dimension of the cells to remove,
oracle: the function that knows if an i-cell need to be removed or not,

Output: P in which a level is added at the top of the pyramid.

mark i cells to remove(Gm, i, oracle, m) ;
duplicate last level(P ) ;
cells removal(Gm+1) ;

To build a segmentation pyramid, we use two different oracles. The first one
indicates if an (n− 1)-cell must be removed, that is to say if it separates two
regions that have to be merged. Different criteria can be used according to the
needs of the application. We do not provide more details about such criteria,
since our goal is not the definition of a new segmentation algorithm.

The second oracle is used during the simplification step. Algorithm 3 indicates
whether the local degree of a given cell is two or not, by checking for each dart
the mathematical expression of a local degree two cell (see section 2).

The marking of removed cells is realized by algorithm 4. This algorithm checks
each i-cell of the map by using the given oracle, and marks the cell to remove
or not. In order to check each cell only once, a temporary mark is used. When
an i-cell is met for the first time, all the darts of this cell are marked. Then,
testing if an i-cell incident to a dart was already checked is simply achieved
by checking this mark. So each dart is checked only once and this algorithm

10



Algorithm 3: local degree two i-cell: indicates whether the local degree
of the i-cell is two or not.
Input: G: an n-G-map,

i: the dimension of the concerned cells,
d: a dart,
l: the pyramid level of G,

Output: true iff the local degree of the i-cell containing d is two.

foreach dart d1 of <>N−{i} (d) do
if d1.αi+1.αi+2 6= d1.αi+2.αi+1 then

return false ;

return true ;

has a cost 7 O(p) where p is the number of darts of G.

Algorithm 4: mark i cells to remove: marks i-cells that are going to be
removed.
Input: G: an n-G-map,

i: the dimension of the cells to remove,
oracle: the function indicating if an i-cell needs to be removed or not,
l: level of G in this map,

Output: G with some i-cells marked.

foreach dart d of G do
if not is in an i-cell yet examined(d) then

if oracle(G, d, i, l) then
foreach dart d′ of the i-cell incident to d do

mark by Ri(d
′, i);

mark examined the i-cell incident to d ;

The duplication of the last level is realized by algorithm 5. This algorithm
duplicates each dart of the last level map, links the duplicated dart to the
initial dart by the two relations successor and predecessor, and then links the
duplicated dart with its neighbor for each involution, if it has been already
created. This is achieved by using the same technique as for algorithm 4, with
a temporary mark. So this algorithm has a cost O(pn), where p is the number
of darts of the last pyramid level and n the dimension of the G-map.

The removals of the marked cells is realized by algorithm 6. The principle of
this algorithm is first to link the darts that are not going to disappear for each
involution, and second to delete the marked cells. The first step concerns more
particularly the neighbor darts of removed cells. In order to know which is the

7 Note that the complexities of these algorithms depend on the used representation
(see section 5). They are expressed here only for the explicit representation.
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Algorithm 5: duplicate last level: copies the last pyramid level.

Input: P : an n-G-map pyramid (which levels are G0, . . . Gm),

Output: P in which we have duplicated its last level.

foreach dart d of Gm do
d′ ← create copy(d, Gm+1) ;
link pred succ(d,d′) ;
for i← 0 to n do

if yet create copy(d.αm
i ) then

link by αi(d
′,copy of(d.αm

i ))

new neighbor of such a dart for an involution, it follows the “path” of marked
darts from the dart to its new neighbor by applying the same rules as for the
removal operation. We know that these “paths” have no intersection (see [10]
and [18]), so darts can be processed in any order without consequences for the
final result.
Algorithm 6 examines each dart and when it follows the “path”, it considers
at most k darts, k being the number of marked darts in G. So this algorithm
has a cost O(pk), where p is the number of darts of G.

Algorithm 6: cells removal: removes the marked cells.
Input: G: an n-G-map,

Output: G in which marked cells have been removed.

foreach dart d of G do
if is marked by R(d) then

i← dim of rem cell(d) ;
if not is marked by R(d.αi) then

d1 ← d.αi ;
neighbor ← d ;
while is marked by R(neighbor) do

neighbor ← neighbor.αi+1.αi ;

if neighbor 6= d then
unlink by αi(d1) ;
unlink by αi(neighbor) ;
link by αi(d,neighbor) ;

foreach dart d of G do
if is marked by R(d) then then delete dart(d) ;

Since algorithms 4, 5 and 6 have respectively a cost O(p), O(pn) and O(pk),
algorithm 2 has a cost O(p(n + k)), where p is the number of darts of the last
level, n is the dimension of the space and k the number of darts which have
disappeared during the construction of the level.
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Note that algorithms presented here are basic ones and several optimizations
can be made. We present here algorithms 7 and 8 which realize the optimized
construction of a new pyramid level. The idea consists in only duplicating the
darts that are not going to be removed. This is achieved by merging the steps
of duplication and cell removals (algorithms 5 and 6). In this unique step, a
dart is duplicated only if it is not going to disappear. Then it is linked to
its neighbor for each involution, if it has been already duplicated, by using
exactly the same rules as for the cells removal algorithm.

Algorithm 7: optimized add level: Optimized construction of a new level.

Input: P : an n-G-map pyramid (which levels are G0, . . . Gm),
i: the dimension of the cells to remove,
oracle: the function that knows if an i-cell need to be removed or not,

Output: P in which a level is added at the top.

mark i cells to remove(Gm, i, oracle, m) ;
create new level(P ) ;

Algorithm 8 links each dart of the last pyramid level with its neighbor for
each involution. This neighbor can be determined by following the “path” of
disappeared darts by applying the same rules as for the removal operation.
Two distinct “paths” have no intersection (see [18] for the proof). So, the
number of darts processed by following all the “paths” for all the involutions
for a given dart is at most k. Note that, in algorithm 8, each “path” linking
two darts (d and d.αi) is followed twice. The first time is when the first dart
among d and d.αi is met. At this time, the link is not realized since the copy
of the second dart is not yet created. When the second dart is met, the “path”
is followed a second time and the link is realized. It is possible to follow each
“path” only once by keeping in the second dart which is the copy of the first
dart.

So algorithms 7 and 8 have a cost O(p(n+k)), p being the number of darts of
the last pyramid level, n the dimension of the space and k the number of darts
which have disappeared during the construction. Note that the complexity of
algorithm 8 corresponds to the addition of the complexities of algorithms 5
and 6. This is due to the fact that this algorithm merges the duplication and
cells removal steps realized by these two algorithms. So this optimization does
not change the complexity order, but provides a faster algorithm since the
constant of the complexity is divided by two (we explore the set of darts only
once), and we do not duplicate removed darts.

13



Algorithm 8: create new level: Optimized creation of a new level.

Input: P : an n-G-map pyramid (which levels are G0, . . . Gm),
i: the dimension of the cells to remove,

Output: P in which a level is added at the top.

foreach dart d of Gm do
if not is marked by R(d) then

d′ ← create copy(d,Gm+1) ;
link pred succ(d, d′) ;
for i← 0 to n do

neighbor ← d.αi ;
while is marked by Ri(neighbor) do

neighbor ← neighbor.αi+1.αi ;

if yet create copy(neighbor) then
link by αi(d

′, copy of(neighbor)) ;

5 Different representations of n-G-map pyramids

An n-G-map pyramid can be described more or less explicitly according to the
expected space/time complexity. We present in this section three possible rep-
resentations that are equivalent: explicit, hierarchical and implicit (see Fig. 7).
The first one follows immediately the definition, the two others are proposed
in order to reduce the cost in memory space. These two last representations
generalize similar existing structures proposed in [19,11]. Note that depending
on particular needs, it could be possible to propose other representations.

5.1 Description of the representations

Explicit n-G-map pyramid : All levels and one to one mappings between the
levels are explicitly represented (see Fig. 7-a). The representation contains
thus m+1 n-G-maps, and each dart is linked with its predecessor (except the
darts of level 0) and with its successor (except the darts of the last level and
the darts which belong to a removed or contracted cell). Moreover, for each
level, two marks are associated with each dart which belongs to a removed
or contracted cell: the type of the operation (contraction or removal) and the
dimension of the cell.

Hierarchical n-G-map pyramid : This representation contains a single set of
darts, i.e. the darts of level 0 map (cf. remark 6). All involutions are explicitly
represented for all levels. More precisely, for each dart a table gives the images
of this dart by all involutions (see Fig. 7-b). Two marks are associated with
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Figure 7. Three representations of a same pyramid. For each representation, the
corresponding array shows images by involutions α for the two darts 1 and 2. In
explicit, each dart is duplicated. In hierarchical, darts are not duplicated, but invo-
lutions exist at each level. Implicit describes only the darts and the involutions of
the first level. (a) Explicit. A 2 (resp. a ◦) marks a dart of a 0-cell (resp. a 1-cell) to
be removed. (b) Hierarchical. Removed cells are marked in the same way as in the
explicit representation. Each dart is drawn in the last pyramid level where it exists.
When two darts linked by αi are drawn in the same level, their link αi is drawn in
the usual way. Otherwise, the links α1

0 and α0
0 between two darts of two different

levels are represented by lines with ♦ and the link α0
1 by line with �. (c) Implicit.

A 2 (resp. a ◦) marks a dart of a 0-cell of level 0 (resp. a 1-cell of level 1) to be
removed.

each dart which belongs to a removed or contracted cell in the same way than
for the explicit representation. A possible optimization is the following one: for
each dart we only represent distinct images for all involutions and the levels
where images change. A structure based upon a similar principle has been
proposed in order to model complex architectural environments [11].

Implicit n-G-map pyramid : This representation contains the map of level 0
with additional information which make possible to compute the other levels.
For that three marks are associated with each disappeared dart: the type
of the operation (removal or contraction), the dimension of the removed or
contracted incident cell, and the level at which the cell disappears. A similar
representation is proposed by Brun and Kropatsch [19] for 2D combinatorial
pyramids.
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5.2 Comparison

These three representations are equivalent [20] (in particular, the constraints of
the pyramid definition can be easily retrieved for each representation). We can
prove it by showing that, for each representation, a dart has the same image for
a given involution. Moreover we give in the following section three algorithms
allowing to go from a representation to another (explicit → hierarchical →
implicit → explicit).

These three representations have different space complexities. Let p be the
number of darts of level 0, n be the dimension of the space and m be the
number of pyramid levels. Since we have at most pm darts in the explicit rep-
resentation, and since a dart contains the information concerning its neighbors
for all n involutions, the space complexity of this representation is O(mnp).
In the hierarchical representation, we have p darts and for each dart we have
at most mn neighbors. Then, the space complexity of this representation is
O(mnp). But note that if we consider the proposed optimization (for each
dart we only represent the distinct images for each involution), most of the
time, the average number of different neighbors for each involution and each
dart will be smaller than m and depends of the considered pyramid. In the
implicit representation, we have p darts and for each of them n involutions.
So this representation has a cost O(np).
This implies that the memory space of the explicit representation is bigger
than the hierarchical one, which is itself bigger than the implicit one. This is
due to the fact that the explicit representation is characterized by an impor-
tant redundancy of information, since all darts and all involutions are present
at each level. The information contained in the hierarchical representation is
less redundant since the darts are not duplicated. Last, there is no redundant
information in the implicit representation since only one level is explicitly
represented.

Most operations (construction, features computation . . . ) are realized by ex-
ploring some orbits at a level of the pyramid (for example, the color of a region
is retrieved by exploring the face orbits which have been merged into this re-
gion in order to use the pixel colors). An orbit is explored, dart by dart, with
a breath first search algorithm which uses all the involutions of the orbit. Re-
trieve the neighbor of a dart for an involution is in constant time in the explicit
and hierarchical representations since the information is explicitly described.
But it is not the case in the implicit representation where it is necessary to
compute it by following the “path” of disappeared darts. So the complexity of
this computing depends on the number of darts of the “path”. In consequence,
most operations have a complexity proportional to the number of darts of the
examined orbits for the explicit and hierarchical representations, while this
complexity is multiplied by the average length of the “paths” for the implicit
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representation.

We can summarize the main characteristics of the three representations by
giving here their main advantage and drawback and their main complexities
in Tab. 1:

• explicit : it has, at each level, an n-G-map which can be considered inde-
pendently. It allows to use swapping techniques in order to only keep in
memory the necessary information for the current process. But it takes a
lot of memory space;
• hierarchical : it takes less memory space than the explicit representation

while allowing to directly access any level by using involutions of this level.
But the operations are not necessarily local since darts are shared by dif-
ferent levels;
• implicit : it minimizes the required memory space, and some modifications

are easier. For instance, removing or contracting a given cell is simple, since
we do not have to propagate modifications. But a level cannot be directly
accessed, it is necessary to compute it when it is required.

h
h

h
h

h
h

h
h

h
h

h
h

h
h

h
hh

Complexity
Representation

Explicit Hierarchical Implicit

Memory space O(mnp) O(mnp) O(np)
Exploration of orbits O(k) O(k) O(kl)

Table 1
Recapitulation of the complexities for each representation. p is the number of darts
of level 0, n is the dimension of the space, m is the number of pyramid levels, k is
the number of darts of the orbits and l is the average length of “paths” (l depends
on the pyramid).

6 Conversion algorithms

We propose here three algorithms allowing to construct any representation
given another one among the three ones presented before. These algorithms
are local ones: the output representation (darts, links, and marks) is built by
processing each input dart in two steps: first, one or several copies of the dart
are created and second, all necessary information is added. These algorithms
use different functions tackled in subsection 6.4.

6.1 Explicit to hierarchical representation

Algorithm 9 builds the hierarchical representation given the explicit one. The
idea consists in “merging” each dart with all its successors. The principle of
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algorithm 9 is the following: for each dart, create a copy of level 0, then copy
the involutions at each level and finally report the different marks on the copy.
The creation of the representation is achieved dart by dart and in three steps:

(1) The creation of the corresponding dart in the hierarchical representation;
(2) The linking of this corresponding dart to its neighbor for each involution

(αi with i ∈ N) and each level if it already exists;
(3) If the dart disappears at a level, we mark the dart with the same two

marks as those contained in the initial dart in order to indicate how it
disappears: removal (R) or contraction (C), and the dimension of the cell
(i ∈ N).

Algorithm 9: Construction of the hierarchical representation given the ex-
plicit one.

Input: Explicit representation (whose different levels are G0, . . . , Gm)

Output: Hierarchical representation (whose unique set of darts is D′)

foreach dart d ∈ G0 do
d′ ← create copy(d, D′) ;
levd ← last level for dart(d) ;
for lev ← 0 to levd do

for i← 0 to n do
if yet create copy(dαlev

i ) then
link by αi(d

′,the copy of(dαlev
i ), lev) ;

dlevd ← top most dart(d) ;
if is marked by R(dlevd) then

mark by Ri(d
′,dim of rem cell(dlevd)) ;

else if is marked by C(dlevd) then
mark by Ci(d

′,dim of con cell(dlevd)) ;

This algorithm links each dart of the first pyramid level with its neighbor for
each involution at each level. In order to compute the last successor of a dart
(the top most dart), we explore at most all the levels. So this algorithm has
a cost O(pmn), p being the number of darts of the first pyramid level, n the
dimension of the G-map and m the number of pyramid levels.

6.2 Hierarchical to implicit representation

Algorithm 10 builds the implicit representation given the hierarchical one. The
principle of this algorithm is, for each dart:

(1) to create a copy;
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(2) to copy the level 0 involutions, i.e. to link the copy of the dart to its
neighbor for each involution (αi with i ∈ N) if it already exists;

(3) then to put on the copy the information contained in the initial dart: the
mark if the dart belongs to a removed or a contracted cell, the dimension
of the cell, and the level at which the cell disappears (this last mark is
not a copy, it is computed).

Algorithm 10: Construction of the implicit representation given the hierar-
chical one.
Input: Hierarchical representation (whose unique set of darts is D′)

Output: Implicit representation (whose unique level is G)

foreach dart d ∈ D′ do
d′ ← create copy(d, G) ;
for i← 0 to n do

if yet create copy(dα0
i ) then

link by αi(d
′, the copy of(dα0

i )) ;

levd ← last level for dart(d) ;
if is marked by R(d) then

mark by Ri(d
′,dim of rem cell(dlevd),levd) ;

else if is marked by C(d) then
mark by Ci(d

′,dim of con cell(dlevd),levd) ;

This algorithm links each dart of the implicit representation with its neighbor
for each involution. The cost to compute the last level at which a dart exists
is O(m). So this algorithm has a cost O(pmn).

6.3 Implicit to explicit representation

Algorithm 11 allows to build the explicit representation given the implicit
one. The idea is to distribute the information through the different levels. The
principle of algorithm 11 is, for each dart:

(1) to construct all darts of the different levels;
(2) to link them by the successor and predecessor relations;
(3) to link the copies with their neighbors for each involution;
(4) and then to put the information contained in the initial dart on the dart

in the last level in which it exists.

This algorithm links each dart with its neighbor for each involution at each
level. In order to compute the neighbor of a dart for a given involution, we
follow the “path” of disappeared darts between a dart and its neighbor by ap-
plying the same rules as in the definition of removal and contraction operation
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Algorithm 11: Construction of the explicit representation given the implicit
one.
Input: Implicit representation (whose unique level is G)

Output: Explicit representation (whose different levels are G0, . . . , Gm)

foreach dart d ∈ G do
levd ← last level for dart(d) ;
for lev ← 0 to levd do

d′lev ← create copy(d, Glev);
if lev 6= 0 then

link pred succ(d′lev−1, d′lev) ;

for i← 0 to n do
dlev

i ← d.αlev
i ;

if yet create copy(dlev
i ) then

link by αi(d
′lev,the copy of(dlev

i )) ;

if is marked by R(d) then
mark by Ri(d

′levd, dim of rem cell(d)) ;

else if is marked by C(d) then
mark by Ci(d

′levd, dim of cont cell(d)) ;

(cf. notion of connecting walk defined iteratively [18]). This path is composed
by at most k darts, k being the number of disappeared darts in the pyramid.
So this algorithm has a cost O(pkmn). This is the worst case complexity. In
fact, this algorithm has a cost O(pxmn) (with 1 ≤ x ≤ k ≤ p), with x being
the average length of the “paths”. But the average length depends on the
construction of the pyramid and so it depends on the application.

So this third algorithm is a little more costly (O(pkmn)) than the two first
ones (O(pmn)). Indeed, since the involutions are explicitly represented in the
explicit and hierarchical representations, the neighbor of a given dart for a
given involution is directly obtained, while the levels are not explicitly repre-
sented in the implicit representation and so the neighbor of a dart for a given
involution must be computed.

6.4 The different functions used in the algorithms

There are some functions used by the conversion algorithms which are common
to the three representations:

• create copy creates a copy of a dart. It has a cost O(1);
• yet create copy indicates if the copy of a dart has been yet created. It has

a cost O(1);
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• the copy of gets the copy of a dart. It has a cost O(1);
• link by αi links two darts by an involution. It has a cost O(1);
• is marked by R (resp. is marked by C) indicates if a dart is removed (resp.

or contracted). It has a cost O(1);
• mark by Ri (resp. mark by Ci) marks a disappearing dart by two (in the

hierarchical and explicit representations) or three marks (in the implicit
representation). It has a cost O(1);

Other functions are more specific to a particular representation:

• top most dart indicates the upper copy of a dart in the explicit represen-
tation. This function uses successor links until it reaches a dart with no
successor. It has a cost O(m);
• last level for dart returns the last level of the pyramid at which a dart exists.

It has a cost O(1) in the implicit representation, since the information is
contained in the dart. It has a cost O(m) in the explicit and hierarchical
representations, since the information is not contained in the dart: it is
necessary to use the successor-predecessor relations until a dart without
successor is reached in the explicit representation, and it is necessary to
examine each level in order to find the level at which the dart has no neighbor
for an involution in the hierarchical representation;
• link pred succ links two darts of two consecutive levels by the successor and

predecessor relations in the explicit representation. It has a cost O(1);
• d.αlev

i gives the neighbor of dart d by αi at level lev. It has a cost O(1)
in the explicit and hierarchical representations. The neighbors of darts are
not explicitly represented at each level in the implicit representation. This
function follows the “path” of darts, disappeared between level 0 and lev,
that separate dart d and its neighbor by using the removal and contraction
rules (this is similar to the notion of connecting walk [10]). For a given dart,
the complexity of this function depends on the length of the “path”. This
length is bounded by k, the number of disappeared darts in the pyramid.
So it has a cost O(k).

7 Conclusion and Perspectives

Pyramids of n-dimensional generalized maps are here defined as stacks of re-
duced n-G-maps where each n-G-map is built from the previous level by con-
tracting or removing cells. n-G-maps unambiguously represent the topology
of subdivided n-dimensional objects (for instance nD images). So, n-G-map
pyramids can be used in order to process 2D, 3D and 4D images with the
same formalism.

n-G-map pyramids have several advantages compared with adjacency graph
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pyramids. Mainly, n-G-maps pyramids describe the topological information
about n-dimensional multi-level subdivided objects. This is very important
since the reduction between levels (achieved by the applications of removal and
contraction operations) leads to particular cases (for instance multi-adjacency)
which are usually not well handled by graphs. Moreover n-G-map pyramids
can be very useful for applications in which it is necessary to check or to
control the (evolution of the) topology of an object, for example for tracking
objects in video sequences.

The main drawback of n-G-map pyramids is the fact that they can be very
expensive in memory space since the space complexity of an nD image is
intrinsically high. Different ways can be explored in order to solve this problem:

• optimized representations can be used for specific levels, depending on the
applications (for instance for image processing, lower levels correspond to
high resolutions; it is clear that representing the initial image by an n-G-
map is not efficient);
• swapping techniques can be conceived in order to only keep in memory the

information necessary for the current process;
• optimized structures can be deduced for the specific needs of an application:

indeed, since topological information is represented by n-G-map pyramids,
we can control the loss of topological information acceptable for a given
application.

We have shown how to use n-G-map pyramids in order to describe an nD
multi-level segmented image. We have described all generic algorithms that
allow to build such a pyramid given a segmentation criterion. We have also
proposed an optimization which, even if it does not improve the complexity,
provides a faster algorithm since the constant of the complexity is divided by
two and we do not duplicate removed darts.

n-G-map pyramids can be represented in different ways. We have proposed
here three generic representations: explicit, hierarchical and implicit as well as
different conversion algorithms. We have presented advantages and drawbacks
of these representations. This is particularly important in order to choose an
efficient representation according to the needs of an application (complexity
in memory space and/or in time).

Now we are conceiving operations for handling this structure. A common
problem is the propagation of modifications from a level to other ones. For
instance, if we add a new cell within a given level, it is necessary to propagate
this modification to the bottom of the pyramid. But if we remove or contract
a cell, we have to propagate this modification to the top.

We intend to study the use of n-G-map pyramids for 3D and 4D image pro-
cessing, leading to the study of more specific operations. Our goal is to develop
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a computer software based on n-G-map pyramids which groups many func-
tionalities: multi-level image segmentation, modification of a given region at a
particular level by an expert, extraction of topological and geometrical char-
acteristics. . .
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