François Benoît-Marand

Laurent Signac

Thierry Poinot

Jean-Claude Trigeassou

IDENTIFICATION OF NON LINEAR FRACTIONAL SYSTEMS USING CONTINUOUS TIME NEURAL NETWORKS

Keywords: Neural networks, Non integer integrator, Non linear fractional systems, Output error identification

Fractional systems allow us to model the processes governed by a diffusive equation. The simulation of such processes can be realized by using a non integer integrator. The aim of this paper is to estimate, in the time domain, both the non integer derivative order and the physical law of a non linear fractional system. To achieve this goal, we use Continuous Time Neural Networks. Ctnn are dynamical neural structures that differ from the classical recurrent neural networks on the use of integrator blocks rather than delay blocks. This difference allows us to access the physical law of the system rather than only having a black box model. A non-integer Ctnn is composed of a neural network and a non integer integrator. The identification stage -which consists in finding the good parameters for the neural network and for the integrator block-will be performed by using an output error identification. At the end of the procedure, a model reduction stage can be performed in order to revert from the neural network to a more realistic expression of the physical law of the process. To illustrate the method we'll give some simulation results.

INTRODUCTION

Fractional systems are used to model the physical processes governed by a diffusive equation and have already been used in many different fields like thermics [START_REF] Battaglia | Méthodes d'identification de modèles à dérivées d'ordre non entier et de réduction modale[END_REF][START_REF] Cois | Systèmes linéaires non entier et identification par modèle non entier : application en thermique[END_REF], electrochemistry (Lin et al., 2000a) or electromagnetism (Lin et al., 2000b;[START_REF] Retière | Modeling of electric machines by implicit derivative half-order systems[END_REF]. The works in progress at the Laii * are based on the definition of a non integer integrator [START_REF] Lin | Modélisation et identification de systèmes d'ordre non entier[END_REF] that allows us to simulate linear and non linear fractional systems [START_REF] Poinot | Modelling and simulation of fractional systems[END_REF]. In this paper, we will focus on the modeling and the identification of non linear fractional systems by using neural networks.

An original method using neural networks has already been developed in the case of non linear integer systems [START_REF] Benoît-Marand | Non linear identification of continuous time systems using neural networks[END_REF]. This method, referred to as Ctnn, combines a neural network with an integer integrator block. Contrary to the classical recurent neural networks, that use delay blocks and only give a black box model of the process, Ctnn, by separating the non linear static part of the process (the neural network) from the dynamical one (the integrator block), allows us to access the physical law of the process.

In this article, we will show how, by using a non integer integrator in the Ctnn structure, it is possible to extend the previous method to fractional systems. During the identification stage, we will not only have to estimate the parameters of the network which characterize the system's law but to estimate the derivative order of the system too. These parameters will be found by using an output error identification technique with temporal data.

First, we point out the definition of the non integer integrator and its state space representation. Then we show the principles of Ctnn and their extension to fractional systems. Then, the identification stage is exposed. Finally, we illustrate our method by simulation results.

FRACTIONAL SYSTEMS AND NON INTEGER INTEGRATOR

Simulation of fractional systems

Let us consider the following integer differential equation (u (t) and y (t) are the input and the output of the system):

dy (t) dt = f (u (t) , y (t)) (1)
This differential equation, generally non-linear, may be integrated with the help of an operator I(s) = 1 s , which performs time integration of dy(t) dt (in order to give y(t) at its output). Practically, we use a numerical integrator (Euler,Runge-Kutta 4,...) instead of an analog one (1 s). Then, let us consider the fractional differential equation (n is the non integer derivative order):

d n y (t) dt n = f (u (t) , y (t)) (2)
Assume that a fractional integrator I n (s) = 1 s n is available (its input is equal to d n y(t) dt n so that its output is equal to y(t)).

Thus, I n (s) generalizes to fractional systems the previously presented simulation principle. As a conclusion, integration of fractional systems simulation essentially relies on the definition of a fractional integrator, which will be a generalization of the conventional one.

Notice that this technique applies either to linear or to non-linear fractional systems, which is the main interest of the non-integer operator.

Definition of the non integer integrator

The ideal fractional integrator is defined by using the transfer function I n (s) = 1 s n which corresponds to a magnitude's slope equal to -n × 20 dB/decade and to a phase equal to -n × 90 o for any frequency. This theoretical frequency response can be approximated on a limited band [ω b , ω h] (according to the desired accuracy) using cascade phase lead filters [START_REF] Oustaloup | La dérivation non entière : théorie, synthèse et applications[END_REF], associated with an 1/s integrator [START_REF] Poinot | A method for modelling and simulation of fractional systems[END_REF].

Consider the following approximation of the theoretical non integer integrator [START_REF] Lin | Modélisation et identification de systèmes d'ordre non entier[END_REF] which corresponds to the Bode diagram on figure 1:

În (s) = G s N i=1 1 + s ω ′ i 1 + s ωi (3) b ω h ω ω log b ω h ω ω log θ dB ρ °× -90 n °-90 Fig. 1. Bode diagram of În (s)
Its frequency response is a suitable approximation of the theoretical one :

• The intermediate zone (ω b < ω < ω h) corresponds to the non integer behavior of the integrator, characterized by n. • For low and high frequencies, the behavior of the integrator is conventional, with n = 1.

Finally, given N , n, ω b , ω h , the operator introduced by (3) is completely defined by the following relations 1 :

ω ′ 1 = ω b , ω N = ω h , ω u = √ ω b ω h , ω i = α ω ′ i , ω ′ i+1 = η ω i , n = 1 - ln α ln α η (4) v(t) = d n y(t) dt n x N +1 (t) = y(t) 1+ s ω ′ 1 1+ s ω 1 1+ s ω ′ N 1+ s ω N v(t) x N +1 (t) G s x 1 (t) • • • Fig. 2. În (s) block diagram
Using the block diagram shown in figure 2, În (s) can be described by the following state-space representation [START_REF] Poinot | A method for modelling and simulation of fractional systems[END_REF]:

• x = A * x + B * v (5)
1 In (3) G is defined so that the magnitude of În (s) is equal to the magnitude of 1 s n for the frequency ωu.

where

A * = M -1 A, B * = M -1 B, B T = [Gn 0 • • • 0], M =     1 0 • • • 0 -α 0 0 • • • -α 1     , A =     0 0 • • • 0 ω1 -ω1 0 0 • • • ωN -ωN    

CONTINUOUS TIME NEURAL NETWORKS

There are two main approaches to simulate dynamical systems with a neural network. The first one consists in using dynamical units (continuous time neurons). Many models have been proposed [START_REF] Hopfield | Neural networks and physical systems with emergent collective computational abilities[END_REF][START_REF] Pearlmutter | Gradient calculation for dynamic recurrent neural networks: a survey[END_REF][START_REF] Kos | High-order neural network structures for identification of dynamical systems[END_REF] and complex processes have been simulated or controlled by such networks. Nevertheless, the physical law of the process can not be extracted because dynamical and static components of the model are not separated.

The second approach is based on the use of a static net associated with an external dynamical component. Delay blocks (figure 3) may be used [START_REF] Narendra | Identification of nonlinear dynamical systems using neural networks[END_REF] in order to obtain a discrete representation of the system: ŷk+1 = g(u k , ŷk) where g is the function computed by the net.

z -1 Network Neural u k y k y k+1
Fig. 3. Discrete time neural network Such models have been successfully investigated in process control [START_REF] Narendra | Adaptative control of dynamical systems using neural networks[END_REF] but don't give direct access to the physical law of the system 2 . An enhanced design has been proposed [START_REF] Wang | Rungekutta neural network for identification of dynamical systems in high accuracy[END_REF] to obtain a discretization of the process using the Runge-Kutta 4 (Rk4) scheme: the net approaches the physical law of the system with an high accuracy. Nevertheless, by using a discrete representation of the process, the whole neural structure and the identification procedure have to be adapted according to the desired accuracy (Euler, Rk4) or to the desired task.

We proposed a method [START_REF] Benoît-Marand | Non linear identification of continuous time systems using neural networks[END_REF][START_REF] Benoît-Marand | Neural identification of physical processes: Analysis of disruptive factors[END_REF], referred to as Ctnn: we use a static feed-forward neural network followed by a continuous integration method (figure 4). Our model is directly related with 2 Suppose dy(t) dt = f (u(t), y(t)) = au(t) + by(t), then the function computed by the static net is not equal to f but to e aT x(t) + b a (1 -e -aT)u(t), and in the non linear case we do not have such relation to revert to the physical law.

the continuous equation of the system: dy(t) dt = g (u(t), ŷ(t)) where g is the function computed by the net. Obviously, we can separate the static part of the process (the function computed by the net) from the dynamical one [START_REF] Benoît-Marand | Neural identification of physical processes: Analysis of disruptive factors[END_REF]. By definition the net gives us direct access to the physical law of the simulated process. The idea is simple but powerful. Indeed, we need to adapt neither the net structure nor the principles of the identification procedure if we change the integration method. In particular, the integrator may be a fractional integrator.

Presentation

In the following, we will consider a Ctnn dedicated to single input single output fractional systems. We use the single hidden layer static net described figure 5 followed by a non integer integrator (figure 6). Adjustable parameters of the model, called θ, are the 4N c parameters of the net which characterize the physical law and parameter α characterizing the derivative order of the fractional integrator. The aim of the identification stage is to find θ * which minimizes the following criterion 3 :

θ T = [w 1,1 • • • w 3,Nc b 1 • • • b Nc α] y u 1 tanh tanh tanh n 1 n j n N c b 1 b i b N c w 1,i w 2,i w 3,i s
J = K k=1 (y * k -y k) 2 = k=K k=1 e 2 k 4.2 The Levenberg-Marquardt algorithm
We solve the previous optimization problem using the iterative Levenberg-Marquardt algorithm [START_REF] Marquardt | An algorithm for leastsquares estimation of non-linear parameters[END_REF][START_REF] Hagan | Training feedforward networks with the marquardt algorithm[END_REF]:

θ i+1 = θ i + ∆θ with ∆θ = (H θ + λI) -1 J ′ θ J ′
θ is the gradient of J with respect to θ, H θ is the pseudo-hessian matrix of J with respect to θ, and λ is a control parameter of the algorithm. J ′ θ and H θ are computed using the following relations:

J ′ θ = -2 k=K k=1 e k • ∂ y k ∂θ H j,l = 2 K k=1 ∂ y k ∂θ j • ∂ y k ∂θ l
Let's define the value of the sensitivity function of the parameter p for the sample k as σ p (k) = ∂ y k ∂θp . To solve the optimization problem we have to compute this value for all p and all k.

Calculus of the sensitivity functions associated with the parameters of the neural network

This calculus is referred to as dynamic back propagation [START_REF] Narendra | Gradient methods for the optimization of dynamical systems containing neural networks[END_REF] and has already been successfully used in the case of integer Ctnn [START_REF] Benoît-Marand | Non linear identification of continuous time systems using neural networks[END_REF]. It can directly be extended to fractional Ctnn (0 < n < 1). We simply write:

d n σ p (t) dt n = ∂ ∂θ p d n y dt n (θ, u(t), y(θ, t)) = ∂ ∂θ p (s(θ, u(t), y(θ, t)) = ∂s(t) ∂θ p + ∂s(t) ∂ y(t) • ∂ y(t) ∂θ p = ∂s(t) ∂θ p + ∂s(t) ∂ y(t) • σ p (t)
So, the sensitivity functions associated with the neural network parameters can be simulated by 3 K is the size of the data set using the non integer integrator used in the Ctnn model.

The computation of ∂s(t) ∂θp is performed with the well-known back propagation algorithm [START_REF] Cun | Une procédure d'apprentissage pour réseau à seuil assymétrique[END_REF][START_REF] Rumelhart | Learning representations by backpropagating errors[END_REF]

4 : ∂s(k) ∂b i = tanh(n i (k)) ∂s(k) ∂w i,j = r i (k) • tanh ′ (n j (k)) • b j The value of ∂s(t) ∂ y(t)
is easy to compute:

∂s(t) ∂ y(t) = i=N c i=1 w 1,i • tanh ′ (n i (t)) • b i

Calculus of the sensitivity function associated with the parameter of the non integer integrator

To evaluate σ α (t) = ∂ ŷ(t) ∂α we derivate the state space representation (5) with respect to α. Extending the state space vector with x (N +1+i) (t) = ∂xi(t) ∂α , we obtain the following modified state space representation:

• x = C * x + D * v (6)
where:

v T = f (u(t), ŷ(t), θ) ∂f ∂ ŷ(t) σα(t) C * = R -1 C D * = R -1 D ŷ(t) = x (N+1) (t) σα(t) = x (2N+2) (t) D = D 1 0 D 2 D 1 R = M 0 R 1 M C = A 0 C 1 A
M , A are the matrices defined in (5). D 1 , D 2 (vectors of size N + 1) and R 1 , C 1 (square matrices of size N + 1) are defined as follows:

D 1 T = G 0 • • • D 2 T = ∂G ∂α 0 • • • R 1 =     0 -1 -1 0     C 1 =      0 ∂ω 1 ∂α - ∂ω 1 ∂α ∂ω N ∂α - ∂ω N ∂α      ∂ω 1 ∂α = ω b ∂ω i ∂α = αη ∂ω i-1 ∂α + ω i-1 η + α ∂η ∂α ∂η ∂α = ω h ω b 1 N -1 N 1 -N α 2N -1 1-N Finally, let's calculate ∂G ∂α . G is such that magnitudes of În (ω) = G jω 1+ jω ω ′ k 1+ jω ω k
and 1 (jω) n are equal if ω = ω u . As a consequence:

G = ω 1-n u 1 G k
Where G k is the magnitude of the k th cell of În (s). Then :

∂G ∂α = -ln(ω u) ∂n ∂α G + 1 2 G k=N k=1 G 2 k ∂ ∂α 1 G 2 k ∂ ∂α 1 G 2 k = {ω 2 k +α 2 ω 2 u } -2 2ω k ∂ω k ∂α (ω 2 k +α 2 ω 2 u) -(ω 2 k +ω 2 u) 2ω k ∂ω k ∂α +2αω 2 u ∂n ∂α = η + α ∂η ∂α ln(α) -η ln(αη) αη [ln(αη)] 2
Often, ω b and ω h are such that ω u = √ ω b ω h = 1. In this particular case :

∂G ∂α = 1 2 G k=N k=1 G 2 k ∂ ∂α 1 G 2 k ∂ ∂α 1 G 2 k = 2(α 2 -1) ∂ω k ∂α ω k -2α(ω 2 k + 1) (ω 2 k + α 2) 2
We are now able to evaluate the sensitivity function ∂ ŷ ∂α .

SIMULATION RESULTS

We simulated the following system 5 : d n y (t) dt n = au (t) + by 2 (t) with a = 1, b = -1, n = 0.6, ω b = 10 -4 rad/s, ω h = 10 4 rad/s and N = 20. Noise free and noisy data sets are plotted on figures 7 and 8. The network has been initialized using a simple heuristic and n has been initialized to 0.3.

5 All simulations have been perfomed by using MATLAB R and SIMULINK R products. In this article, we introduced the fractional Ctnn model, based on the use of a static neural network followed by a non integer integrator block. Our results show that fractional Ctnn allow to estimate, with an high accuracy, both the non integer derivative order and the physical law of a non linear fractional system.

At present, we are validating our identification method of fractional systems using Ctnn on a real heat transfer system. Moreover, we are trying to extend the equation error method (Eei) to the identification of fractional order n. Indeed, we already experimented, in the case of integer systems, that a combination of Eei and Oei drastically reduces the identification time (which is the main problem encountered with the Oei method).

 Fig. 4. A Continuous Time Neural Network Ctnn

Fig. 5 .Fig. 6 .

 56 Fig. 5. The static neural network used in the Ctnn

Fig. 7 .

 7 Fig. 7. Noise free data set

Fig. 8 .Fig. 10 .

 810 Fig. 8. Noisy data set (white noise, S/B = 10) Ctnn optimization results using either noise free or noisy data are plotted on figure 9 and 10. We performed 60 iterations of the Levenberg-Marquardt algorithm.

In the following equation r i (k) represents the input i of the net for the sample k. For example r 1 (k) = ŷ(k). Notice that tanh ′ (x) = 1 -tanh 2 (x)

In this particular case, the function to be identified is known but in more realistic cases we should try different expressions and see which one is the more adapted to the system.