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Abstract

In this short note, the identity in law, which was obtained by
P. Salminen [6], between on one hand, the Ornstein-Uhlenbeck pro-
cess with parameter γ, killed when it reaches 0, and on the other
hand, the 3-dimensional radial Ornstein-Uhlenbeck process killed
exponentially at rate γ and conditioned to hit 0, is derived from a
simple absolute continuity relationship.
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• All probability distributions considered in this note are defined on
C(R+, R), where (Xt, t ≥ 0) denotes the coordinate process, and
Ft = σ{Xs, s ≤ t}, its natural filtration.

• For γ > 0, and a > 0, we denote by P
γ
a the law of the Ornstein-

Uhlenbeck process with parameter γ, starting from a, i.e : under
P

γ
a, one has :

Xt = a + Bt − γ

∫ t

0

Xs ds (1)

for a Brownian motion (Bt, t ≥ 0), starting from 0.
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Note that (Xt exp (γt), t ≥ 0) is a P
γ
a martingale which is indeed

equal to :

a +

∫ t

0

exp (γs) dBs, t ≥ 0, (2)

thus leading us to Doob’s well-known representation of the
Ornstein-Uhlenbeck process (see [2]) :

Xt = e−γt
(

a + β
(e2γt − 1

2γ

)

)

, t ≥ 0, (3)

for another Brownian motion (β(u), u ≥ 0), starting from 0.

• In this note, the 3-dimensional Orstein-Uhlenbeck process ( ~Xt) with
parameter γ and starting from ~a, i.e : a solution of (1) where (Bt)
is replaced by a 3-dimensional Brownian motion ( ~Bt), and its radial
part Rt = | ~Xt| play an important role; (Rt) solves the SDE :

Rt = a + B̃t +

∫ t

0

ds

Rs

− γ

∫ t

0

Rs ds (4)

where a = |~a| and (B̃t, t ≥ 0) is a 1-dimensional Brownian motion,
starting from 0.

• The main result of this note is the following :

Proposition 1. Define the probability Q
γ
a via :

Qγ
a|Ft

=
Xt∧To

a
eγt. Pγ

a|Ft
(5)

Then, Q
γ
a is the law of the 3-dimensional radial Ornstein-Uhlenbeck

process starting from a.

Proof. Due to Girsanov’s theorem, and (2), (Bt) considered under
Q

γ
a solves :

Bt = B̃t +

∫ t∧T0

0

exp (γs)

Xs eγs
ds (6)

Now, noting that T0 = ∞, Q
γ
a a.s, we obtain that Xt under Q

γ
a

satisfies (4), as a consequence of (2) and (6).

• We now make a few comments :
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1. Note that, for γ = 0, (5) is nothing else but Doob’s h-transform
relationship between Brownian motion killed when it reaches
0 and the 3-dimensional Bessel process.

2. We now write (5) in the equivalent form :

1{t<T0} . Pγ
a|Ft

=
a

Xt

e−γt. Qγ
a|Ft

(7)

which is nothing else but the identity in law obtained by P.
Salminen ([6], Theorem 1,(i)) between, on the left hand-side,
the Ornstein-Uhlenbeck process with parameter γ, killed when
it reaches 0, and on the right hand-side the 3-dimensional ra-
dial Ornstein-Uhlenbeck process killed exponentially at rate γ,
and conditioned to hit 0, that is the density ( 1

Xt
) correspond-

ing to such a conditioning may be seen a posteriori from the
formula :

Qγ
a(Ft

1

Xt

) = Qγ
a(

1

Xt

) Pγ
a(Ft|t < T0), ∀ Ft ∈ Ft , (8)

which is a consequence of(7)

It also follows from (7) that
(

1

Xt
exp (−γt), t ≥ 0

)

is a strictly
local martingale with respect to Q

γ
a, thus extending very sim-

ply the well-known result for the case γ = 0, when (Xt) is a
3-dimensional Bessel process.

3. Note that (7) leads us to the computation of the semi-group
of the killed Ornstein-Uhlenbeck, via :

Eγ
a[

(eγt

a

)

f(Xt) 1{t∧T0}] = Qγ
a[f(Xt)

1

Xt

] , (9)

allowing us to recover the result in [7], p122, formula (53).

4. What about γ < 0 ? Formula (5) is still valid thanks to the
same arguments; it is closely related to Theorem 1,(ii) of [6].

5. Related informations about (radial) Ornstein-Uhlenbeck pro-
cesses, and their hitting times, may be found in [1], [3], [4],
[5].

Acknowledgments : I am very grateful to P. Salminen for a number
of discussions during the preparation of this note.
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