
Split and Merge Algorithms Defined on

Topological Maps for 3D Image Segmentation

Guillaume Damiand a,∗, Patrick Resch b

aIRCOM-SIC, bât SP2MI, BP 30179, 86962 Futuroscope Chasseneuil Cedex,

France

bLIRMM, 161 rue Ada, 34392 Montpellier Cedex 5, France

Abstract

Split-and-merge algorithms define a class of image segmentation methods. Topolog-
ical maps are a mathematical model that represents image subdivisions in 2D and
3D. This paper discusses a split-and-merge method for 3D image data based on the
topological map model. This model allows representations of states of segmenta-
tions and of merge and split operations. Indeed, it can be used as data structure for
dynamic changes of segmentation. The paper details such an algorithmic approach
and analyzes its time complexity. A general introduction into combinatorial and
topological maps is given to support the understanding of the proposed algorithms.

Key words: topological maps, split-and-merge, image segmentation, image
processing

1 Introduction

The region segmentation was studied in many different works in 2 dimensions.
It consists in making a partition of an image into connected sets of pixels
which verify an homogeneity criterion, and which are called regions. A classical
approach to region segmentation is the split-and-merge method and all its
variants. The top-down approach [22,25] consists in taking big regions and
cutting them into smaller and smaller regions. The bottom-up approach [7,16]
is the opposite one. It begins with many small regions that are progressively

∗ Corresponding author.
Email addresses: damiand@sic.univ-poitiers.fr (Guillaume Damiand),

resch@lirmm.fr (Patrick Resch).

Article published in Graphical Models-65(1-3)-pp. 149-167 - May 2003

merged into bigger and bigger regions. At last the mixed approach [18,26]
consists in combining the two previous ones.

These approaches require a “good” model of images representation. Many
works in 2 dimensions [4,8,9,15] have shown that topological maps constitute
an efficient framework for these segmentation algorithms. Moreover, thanks to
that model we can also define several post-processing algorithms that access
or modify the result of this segmentation.

Recently, topological maps have been extended in dimension 3 [3,6]. Indeed,
more and more domains need to deal with 3D images, such as medical im-
agery, geology, or industry. Topological maps are a very efficient model of
3D images representation, both to represent images partition and to make
it evolve through merging and splitting operations. This lets us consider the
definition of efficient 3D segmentation algorithms which is a difficult problem.
Indeed, there are complexity constraints, in memory space as well as in ex-
ecution time, that are much more important than in 2D, due to the bigger
amount of data in a 3D image.

In this paper, we present the two operations of merge and split on the 3D
topological maps. With these operations, split-and-merge region segmentation
algorithms can be written. Topological maps induce a generic definition of
these operations since they work on any configurations. Moreover, they allow
the definition of local operations since we visit the map element by element,
only looking at the direct neighborhood of the current element. These two
properties make these algorithms simpler to understand and more efficient in
complexity.

We first present in section 2 the combinatorial maps and the topological maps
that are combinatorial maps verifying specific properties. Then we present
our two algorithms: merge in section 3 and split in section 4. In section 5,
we present a computer software for cerebral tumor diagnosis which is based
on topological maps. At last, we conclude and present some perspectives in
section 6.

2 Topological Maps Presentation

Topological maps are an extension of combinatorial maps in order to represent
discrete images. We first recall some notions around combinatorial maps that
are helpful to the understanding of this paper. This is just a short presentation;
a more detailed description can be found in [2,6,13].

2

2.1 Combinatorial Maps

Combinatorial maps are a mathematical model of representation of space sub-
divisions in any dimension. They were first introduced by [12] as a planar graph
representation model, and extended by [23] in dimension n to represent ori-
entable or not-orientable quasi-manifold. They are a boundary representation
model (B-Rep) because they represent objects by their borders. Combinato-
rial maps encode space subdivisions and all the incidency relations. They are
made of abstract elements, called darts, on which are defined applications,
called βi. We are giving here the 3D combinatorial map definition that we can
find for example in [24].

Definition 1 (3D combinatorial maps) A 3-dimensional combinatorial map,
(or 3-map) is an 4-tuple M = (D, β1, β2, β3) where:

(1) D is a finite set of darts;
(2) β1 is a permutation 1 on D;
(3) β2 and β3 are involutions 2 on D;
(4) β1 ◦ β3 is an involution.

In this definition, there is an application βi for each dimension of space (except
for dimension 0) that puts in relation two i-dimensional cells. When two darts
are linked with βi, we say that they are βi-sewn, and we call i-sewing (resp.
i-unsewing) the operation that puts in relation two darts for βi (resp. that
removes an existing βi-relation).

We can see in Figure 1 an example of a 2D combinatorial map (we chose to
present here a 2D example in order to simplify the map representation; there
are 3D combinatorial maps examples in the following of this paper). This map
can be explicitly defined by giving the set of darts and the two applications
β1 and β2.

Dart 1 2 3 4 5 6 7 8 9 10 11

β1 2 3 4 1 6 7 8 5 10 11 9

β2 1 2 3 6 5 4 9 8 7 10 11

We can verify on this explicit definition that β1 is a permutation and β2 is
an involution. We can also remark that some darts are invariant for β2 (for
example darts numbered 1, 2 and 3). This case occurs when for a dart, it
does not exist another dart incident to the same edge but not to the same

1 A permutation on a set S is a one to one mapping from S onto S.
2 An involution f on a set S is a one to one mapping from S onto S such that
f = f−1.

3

9

8

4
3

10

11

1 2

5
6

7

4

5

8

10

11

9

3
2

1

6

7

a. A 2D object. b. Corresponding map. c. Simplified representation.

Fig. 1. A 2D object and the corresponding combinatorial map represented by two
different ways. A 2-map is a 3-tuple M = (D,β1, β2) where β1 is a permutation and
β2 an involution. b. Darts are represented by numbered segments, the β1 relation
by light grey arrows and the β2 relation by black arrows. β1 puts in relation a dart
and the next dart of the same face, and β2 puts in relation two darts incident to the
same edge but not to the same face. c. A simplified representation of the same map.
Darts are represented by black arrows and βi applications are not drawn explicitly
but can be easily deduced by the darts positions: two darts in relation by β1 are
drawn consecutively and two darts in relation by β2 are drawn parallel and close to
each other.

face. These darts are said 2-free (and we speak about i-free dart for a dart d

such that βi(d) = d. When it is necessary to represent loops, this definition is
modified and a i-free dart is then a dart d such that βi(d) = NULL).

In combinatorial maps, space cells are implicitly represented by orbits. In-
tuitively, an orbit can be seen as the set of darts that can be reached by
a traversal starting from d and using only the given permutations (or any
permutation that can be obtained from the given permutations by composi-
tion and inverse). For example, in 2 dimensions, the edge incident to a dart
d is < β2 > (d) and the face incident to d is < β1 > (d). If we look at
the combinatorial map presented in Figure 1, the edge incident to the dart
numbered 1 is < β2 > (1) = {1}, the edge incident to the dart numbered
4 is < β2 > (4) = {4, 6} and the face incident to the dart numbered 6 is
< β1 > (6) = {6, 7, 5, 8}.

Combinatorial maps encode only objects topology, and not their geometry.
But it is very easy to add some geometry elements to some (even all) cells of
the combinatorial map. We speak about embedding for the geometry associ-
ated with a combinatorial map. The simplest embedding of a combinatorial
map, and also the most used, consists in linking each vertex of the map with
the coordinates of an Euclidean space point. But there are many different
way to embed a map, and the choice of one of these methods depends on
the application. The distinction between topology and embedding allows the
differentiation of operations. Indeed, some operations only deal with the topo-
logical model, others only with the geometrical one, and some with both of
them.

4

2.2 Topological Maps

Topological maps are an extension of combinatorial maps in order to represent
3D images. Indeed, in the combinatorial maps framework, different maps may
represent the same object. This could be a problem for some image process-
ings, for example to perform image analysis by using isomorphism algorithms.
Topological maps solve this problem by adding some properties that ensure
the uniqueness of the representation.

A topological map represents a 3D labelled image. This is a 3D image where
each voxel has a label (which can be for example the voxels colors). A region
is a set of 4-adjacent voxels having same labels. A boundary face is a maxi-
mal connected surface between two neighboring regions. We consider here the
image as a space subdivision [1,19,20] and call voxels the 3-cells, surfels the 2-
cells, linels the 1-cells and pointels the 0-cells. Two adjacent regions can share
several boundary faces. We give here the general definition of a 3D topological
map:

Definition 2 (3D topological map) Let I be a 3D image. The topological
map corresponding to I is the combinatorial map M = (D, β1, β2, β3) so that:

(1) M represents the space subdivision given by I;
(2) M is embedded so that the geometry of M represents the intervoxel con-

tours of I;
(3) M is added with an inclusion tree on the regions of I;
(4) each face of M corresponds to a boundary face of I;
(5) each face of M is homeomorphic to a topological disk;
(6) M is minimal. A map that verifies the previous properties with a smaller

number of darts does not exist.

Now we are going to explain more precisely all the different parts of this
definition. Topological map is an extension of combinatorial map to represent
an image (Definition 2, part 1). It is added with an inclusion tree (part 3)
which represents the volumes inclusions. Each node corresponds to a region
of the image, and its sons correspond to included regions. The root of the tree
is R0, the infinite region which surrounds the image. Each dart d of the map
knows its belonging region (noted region(d)) and each region Ri of the tree
knows one dart of the map that belongs to the region (noted dart(Ri)). We
develop below part 2 of the definition concerning the embedding of the map,
after having presented the other parts of the definition.

The most important parts of Definition 2 relate to the three additional prop-
erties that a topological map has to verify. First, each face of a topological
map corresponds to a boundary face of the image (Definition 2, part 4). Each
boundary face is represented in the topological map by a face (called some-

5

a. A 3D object. b. Problem of face
disconnection.

c. Solution: keep each
face homeomorphic to

a topological disk.

Fig. 2. The problem of face disconnection and our solution: keep each face homeo-
morphic to a topological disk.

times topological face in order to avoid confusion with the embedding). This
point of the definition fixes the number of faces of a topological map for a
given image.

Second, each face of a topological map has to be homeomorphic to a topological
disk (Definition 2, part 5). This property solves the face disconnection problem
that occurs for boundary faces that are not homeomorphic to a topological
disk, like the upper face of the paving (in light grey) presented in Figure 2.a.
This face has two distinct borders and the corresponding map (shown in Fig-
ure 2.b) is made of two different connected components. We have lost the
topological information that allows to place the two connected components
relating to each other. To solve this problem, a solution consists in keeping
each face homeomorphic to a topological disk. We obtain the map shown in
Figure 2.c which is composed by a unique connected component. For that,
we need to add edges which cut faces that are not topological disks. These
additional edges do not represent the border of a boundary face and because
of that are called fictive edges (in opposition, we call real edge an edge that is
not a fictive edge). We can see a fictive edge in thick black on the map shown
in Figure 2.c. This solution was already used to solve the same problem in
other models, for example in dual graph [21]. A fictive edge is a one degree
edge (that is adjacent twice to the same face). We need to distinguish the two
kinds of edges because they do not have the same role (real edges represent
borders of boundary faces and fictive edges keep faces connected). This dis-
tinction leads to different processings during algorithms on topological maps,
as we will see in the following parts.

The last property that a topological map has to verify is: a topological map
has to be minimal (Definition 2, part 6). As the number of faces is fixed, for a
given image, by part 4 of the definition, we can only modify here the number
of edges (that is linked by the Euler formula to the number of vertices). A
map is minimal if it does not contain any degree two vertex. Indeed, when we

6

a. A 3D subdivion. b. The same subdivion
where degree two

vertices were removed.

c. The minimal
subdivision: we need to
shift the fictive edge.

Fig. 3. The two operations used to obtain a minimal representation: edges merging
to remove degree two vertices and shift fictive edges to release degree two vertices.

have this kind of vertex, we can merge the two edges incident to this vertex
without losing any information as we can see in Figure 3. Figure 3.a shows
a subdivision that represents the object already used in Figure 2. All degree
two vertices (drawn in black) can be removed by the edge merging operation.
We can verify in Figure 3.b that we actually represent the same object (to
simplify the drawing we have only represented edges and vertices of the map
and not all the darts). But the obtained subdivision is not minimal, because
of the fictive edge (the black edge in the figure): the black vertex in Figure 3.b
is then not a degree 2 vertex. But the fictive edge only keeps the upper face
connected, and its position is not significant. If we shift this edge, the black
vertex becomes a degree two vertex and can be removed. We thus obtain the
subdivision shown in Figure 3.c that is the minimal subdivision (for the fixed
faces given in Figure 3.a). These two operations are the basic ones used to
define a simplification algorithm which takes a map in input and simplifies it
in order to obtain the minimal representation (see [13] for the detail of this
algorithm).

With all these properties, we can prove that topological map is minimal and
stable for translation, rotation and scaling (two equivalent images up to these
operations are represented by two isomorphic topological maps). Moreover,
with fictive edges, we can represent all the different kinds of surfaces and
correctly capture their topology.

We can see in Figure 4.a an example of a 3D image composed with three
regions (R1, R2 and R3) plus the infinite region R0, in Figure 4.b its boundary
faces, and in Figure 4.c the corresponding topological map. We can verify that
all boundary faces are actually represented in the topological map. As each
boundary face of this image is homeomorphic to a topological disk, there is no
fictive edge in the topological map. All edges are real edges and represent a
border of a boundary face. Note that in Figure 4.c, we do not represent all the
darts of the topological map. Indeed, each boundary face is represented in the

7

R0

R2
R3R1

a. A 3D image b. Its boundary faces. c. Topological map.

Fig. 4. A 3D image, its boundary faces and the corresponding topological map.

R1

R0

R2

a. An image. b. Boundary face
between R1 and R2.

c. Corresponding
topological map.

Fig. 5. An image example where a boundary face is not homeomorphic to a disk.

map by two half-faces that are identical and β3-sewn each other. These two
half-faces represent the same boundary face which is seen according to the two
regions around this boundary (as we can see in Figure 4.c for the boundary
face between R1 and R2). In order to simplify the drawing, we do not represent
the second half-face for the three boundary faces with R0. But even if these
half-faces are not drawn, they are of course present in the topological map.

We can see in Figure 5 an example where a boundary face (between R1 and R2)
is not homeomorphic to a disk. Figure 5.c shows the topological map restricted
to that boundary face: two fictive edges (in grey) have been added to make
the topological face homeomorphic to a disk. As we have already seen above,
these fictive edges have no fixed position. For that reason, the topological map
obtained is unique, except for the position of the fictive edges. We hope to solve
this drawback by adding some properties to fix more precisely this position,
but we need some additional works. This drawback is not so important in
this work as we do not use here the position of the fictive edges during our
algorithms and shift these edges when it is necessary.

We can see in Figure 6 another example of a topological map when a boundary
face is closed, here for a torus. This torus is represented with a single closed
boundary face and this face is represented in the topological map shown in
Figure 6.c by two fictive edges. Indeed, real edges represent only borders of a
boundary face, and here this face has no border. We obtain a classical minimal

8

a. A torus. b. Corresponding topological map.

Fig. 6. Topological map of a closed boundary face, here a torus.

Fig. 7. Topological map embedding with 2D maps.

representation of the torus composed by one face, two edges and one vertex.
For all boundary faces with no border, we obtain a representation that is
equivalent to a canonical polygonal schema [14,17] with one face, one vertex
and 2G edges, with G the genus of the object.

Now that topological map have been described, we present how to embed
them. This embedding represents the intervoxel contours of the corresponding
image. There are several ways to realize this embedding, for example by linking
to each topological face the set of corresponding surfels or by giving explicitly
all the voxels of each region. In this case, the embedding of the boundary faces
has to be computed from the array of voxels by a surface tracking algorithm.
We use in this work another solution that consists in linking to each topological
face an embedding surface as we can see in Figure 7. This figure shows the
embedding of the topological map of Figure 4. Each dart of the topological
map is linked with the border of an embedding surface. One way to represent
the embedding surfaces is to use 2-dimensional combinatorial maps. We obtain
thus a hierarchical model. These 2-maps are embedded in the 3D Euclidean
space, simply by linking to each vertex of the map the coordinates of the
corresponding pointel. Moreover, we represent each maximal set of coplanar

9

surfels by a unique face in order to limit the memory space. Given a dart d, we
call embed(d) the dart of the embedding surface linked with d. Reciprocally
given a dart d′ of an embedding surface, we call dart(d′) the dart of the
topological map linked with d′ (these relations are shown in light gray on the
figure). For each dart d of the map we have dart(embed(d)) = d. Only darts
belonging to the border of an embedding surface (drawn in thick black in
Figure 7) are linked with a dart of the topological map. For other darts of the
embedding surfaces we fix dart(d) = NULL.

3 The merge operation

The merge operation consists, starting from two adjacent regions R1 and R2,
in gathering them into a single region union of the two first. Algorithm 1 makes
this operation on a topological map. Generally, an algorithm that modifies a
topological map has three different steps: first it modifies the combinatorial
map and/or the embedding, second it updates the inclusion tree if it is nec-
essary, and at last it ensures that the modified map is actually a topological
map, that is to say it verifies the properties given in Definition 2. The merge
algorithm follows this principle.

3.1 The merge algorithm

The merge algorithm is composed of three parts. The first part (Algorithm 1.1)
consists in marking all darts of the orbit < β1, β2 > (dart(R1)) and < β1, β2 >

(dart(R2)) without passing through a fictive edge belonging to a boundary
face between R1 and R2. Given a dart d, the orbit < β1, β2 > is the set of
darts belonging to the faces connected to d. But here we just want to mark
all the darts belonging to the faces of R1 and R2 which are the future exterior
faces 3 of R1∪R2. This is simply done by avoiding to pass through fictive edges
of boundary faces between R1 and R2 as we can see on the example presented
in Figure 8. In the first example (Figure 8.a), we do not mark all the faces of
R3 because we cannot pass by the fictive edge (in thick black) that belongs to
the boundary face between R1 and R2. But these faces are not exterior faces
of R1 ∪ R2 as R3 is included in R1 ∪ R2. In the second example (Figure 8.b),
we mark all faces because, even if we still cannot pass by the fictive edge that
belongs to the boundary face between R1 and R2, we can here pass by the
other fictive edge (e) that belongs to the boundary face between R2 and R0.

3 An exterior face of Ri is a boundary face with Rj such that Rj is not included in
Ri.

10

Algorithm 1: Merge 3D

Input: Two adjacent regions R1 and R2.

Result: The two regions are merged into R1.

1 Mark all darts of < β1, β2 > (dart(R1)) and < β1, β2 > (dart(R2)) without
passing through a fictive edge of a boundary face between R1 and R2;

2 foreach dart d of R2 do
if region(β3(d)) = R1 then

if d belongs to a real edge then
3 β2-sew(β2(d),β2(β3(d)));

Destroy β3(d) and d;

else
4 if β−1

1 (d) and β1(d) have different marks then
d2 ← the dart among β−1

1 (d) and β1(d) which is not marked;
foreach dart i of < β1, β2, β3 > (d2) without passing through a
fictive edge of a boundary face between R1 and R2 do

if region(i) 6= R1 and region(i) 6= R2 then
Set region(i) daughter of R1 in the inclusion tree;

Destroy the fictive edge incident to d;

5 Set daughters of R2 as daughters of R1 and remove R2 in the inclusion tree;
6 Simplification of R1;

R0

R1

R2

R3

R0

R1 R3

R2

e

a. Marking only faces between R1 and
R0 and those between R2 and R0.

b. Here all faces are marked since
we may go through the fictive

edge e.

Fig. 8. Marking the exterior faces of R1 ∪R2.

Indeed, R3 is not included in R1 ∪ R2 (a boundary face between R3 and R0

exists), so faces with R3 are also exterior faces of R1 ∪R2.

This step is necessary to test when the removal of a boundary face leads to
the disconnection of the map by creating new inclusions. It is achieved by a
traversal which uses the involutions β1 and β2 and tests if the current dart
belongs or not to a fictive edge of a boundary face between R1 and R2. We

11

R1

R2

β32(d)
β2(d)

β3(d)

d

a. A map. b. d belongs to the boundary face.

β32(d)
β2(d)

c. After the β2-sewing. d. Final result.

Fig. 9. Basic example of Merge 3D.

will see how we use these marks in the following explanations.

The second part of the algorithm (Algorithm 1.2-4) realizes the merging. This
is done in a local way because since each dart of R1 that belongs to a boundary
face with R2 is processed independently and since the modification of the map
is local. There are two different cases depending if the current dart belongs to a
real edge or not. When the current dart belongs to a real edge (Algorithm 1.3,
and shown in Figure 9), we just β2-sew β2(d) and β2(β3(d)) then we destroy
the two darts β3(d) and d. We can see in Figure 9.b the map before this
modification, and the result in Figure 9.c. At the end of the loop, when we
have processed all the darts of R1, we obtain the map shown in Figure 9.d.
The boundary face between R1 and R2 is completely deleted and the sewings
of darts that were incident to this face are updated (in black in Figure 9.d).

When the current dart belongs to a fictive edge (Algorithm 1.4), we have to
test if this leads to the disconnection of the map in order to eventually update
the inclusion tree. For that, we just test if the two darts β−1

1 (d) and β1(d) have
the same mark. If that is the case, then they both belong to the exterior border
of R1∪R2 and there is no new inclusion (case shown in Figure 8.b). Otherwise,
we know that the merging will create new inclusions and we need to update the
inclusion tree. To do that, we traverse all darts that belong to the connected
component of the dart which is not marked (the orbit < β1, β2, β3 > (d2) but
without passing through a fictive edge belonging to a boundary face between
R1 and R2 in order to stay on the included regions) and just put all the regions
thus visited as daughters of R1 (except of course regions R1 and R2). At last
we can destroy the fictive edge. We do not need to update some sewing as

12

there is no surviving dart incident to the removed edge.

Finally, we need to put all regions that are daughters of R2 as daughters of
R1 and remove R2 from the inclusion tree (Algorithm 1.5) and simplify R1

(Algorithm 1.6). This last operation is necessary to ensure that the obtained
map is a topological map, that is to say it verifies all the properties of the
topological map definition. Indeed, the removal of boundary faces between R1

and R2 could have made the map not minimal. This simplification is made
by the algorithm briefly presented in section 2. It guarantees the minimality
of the topological map. During the simplification step, we can control the
evolution of topological characteristics, in order to prove that we do not lose
some topological information. This step can be performed during the merging,
but this leads to a more complex algorithm where we need to study many
different cases.

3.2 Time complexity analysis of merge operation

First, we are going to study the basic operations used by the merge algorithm.
We can get the region of a dart in O(1), so test if a dart belongs to a region
can also be done in O(1). The mark operations (set or test) can also be done
in O(1), as the test if a dart belongs to a real or a fictive edge. This can be
easily achieved, for example by putting a particular mark on darts that belong
to a fictive edge.

The complexity of step 1 of the merge algorithm is in O(|R1|+|R2|) (we denote
by |R| the number of darts that belong to a region R). This step is indeed
achieved by a breadth first search algorithm of the darts of these two regions,
by testing for each dart if it belongs to a fictive edge before continuing the
algorithm.

The complexity of step 2 is in O(|R1| + number of darts of included regions in
R1 ∪R2). Indeed, during this step, we pass through all the darts of R1. When
the current dart belongs to a fictive edge and β0(d) and β1(d) have different
marks, we need to traverse all darts of the included regions in R1 ∪ R2 in
order to update the inclusion tree. This is also made by a breadth first search
algorithm.

The inclusion tree updating (step 5) is in O(number of included regions in
R2) that is obviously smaller than the number of darts of included regions in
R1 ∪R2, and the simplification of the new region R1 is in O(|R1|+ |R2|).

So, the merge algorithm complexity is

O(|R1|+ |R2|+ number of darts of included regions in R1 ∪R2)

13

It is thus linear in the number of darts of the two merged regions and the
included regions in R1 ∪ R2. The classical merge algorithm defined on voxels
matrix is also linear but in number of voxels of the two regions. This lets us
view an important gain of time for our algorithm since we change the unit of
the complexity order. Our algorithm will be very efficient to merge big regions
that are represented by few darts. On the other hand, it will not be efficient
to merge two regions that are each composed by a unique voxel.

4 The split operation

This operation consists in splitting a region by a separation face. This face
is given to the algorithm by an ordered list of vertices which represent the
intersections of an orthotropic plane and the edges of the map. The first vertex
of this list must belong to a topological edge of the map, or in other words it
must belong to the border of an embedding face, and two successive vertices
must belong to the same embedding surface. Moreover, this list must be closed:
the last vertex is equal to the first one. These constraints have been fixed in
order to simplify the algorithm and to limit the number of different cases to
process. They can be checked before calling the split algorithm, and the list
of vertices can be built given a topological map and an orthotropic plane. A
simple solution to do complex split is to combine several basic split and merge
operations. The principle of the algorithm is to insert a new boundary face in
the map which represents the region to split. This is achieved in a local way
by processing each dart of the region.

4.1 The split algorithm

The split algorithm (Algorithm 2) is composed of three parts. The first part
(Algorithm 2.1) cuts all the faces of the map and of the embedding. For that,
we begin by initializing a dart of the embedding prevE as the dart that con-
tains the first vertex of the separation face and that belongs to a face that
contains the second vertex of this face. We also initializing prevT with the
dart of the combinatorial map such that embed(prevT) = prevE. We can
see in Figure 10 the topological map that corresponds to the image shown in
Figure 4, in grey the separation face given by the four vertices V1 . . . V4 and
in thick black the two darts prevE and prevT . To find the dart prevE, we
just have to traverse all the embedding surfaces of R and test for each edge
if it contains vertex V1. When it is the case, we have to check if the incident
face contains vertex V2, by another simple traversal of the orbit < β1 >. This
step is necessary in order to ensure that prevE is in the correct embedding
face. Indeed, as we can see in Figure 10, there is another dart that contains

14

Algorithm 2: Split 3D

Input: A list of vertex {V1, . . . , Vk} representing the separation face
A region R.

Result: R is split along the separation face.

1 prevE ← the embedding dart that contains V1 and that belongs to a face
containing V2;
prevT ← dart(d);
L a list of edges ← ∅;
for i← 2 to k do

2 d ← the embedding dart that contains Vi and that belongs to the same
face as prevE;
Insert Vi in the edge incident to d;

3 if prevT 6∈< β1, β2, β3 > (dart(d)) then
interior ← a dart among prevT and dart(d) which belongs to the
interior boundary of R;
foreach dart i ∈< β1, β2, β3 > (interior) do

Set region(i) daughter of father(R) in the inclusion tree;

Insert an edge between prevE and d;
if dart(d) 6= NULL then

4 Insert a vertex on the edge incident to dart(d);
Insert an edge between prevT and dart(d);
Put this edge in L;
prevT ← β2(dart(d));
prevE ← embed(prevT);
Insert Vi in the edge incident to prevE;

else
5 prevE ← β2(d);

6 Build the new boundary face along the edges of L;
7 Simplify the map;

vertex V1 but the embedding face does not contain V2. Once the dart prevE is
found, we initialize as prevT its corresponding dart in the topological map, ie
dart(prevE). We need to keep these two darts because during the loop of the
split algorithm, we are going to split simultaneously the embedding surfaces
and the topological faces. At last, we just initialize L, a list of edges, that we
are going to use to store all the edges added to the combinatorial map.

After these initializations, we begin the loop on all the vertices of the sepa-
ration face (Algorithm 2.2). First, we find the dart d of the embedding face
incident to prevE that contains Vi. Such a dart always exists because of the
constraints fixed on the list of vertices. First a vertex is inserted in the edge
incident to d with its coordinates given by Vi, then an edge is inserted be-
tween the two darts prevE and d (they belong to the same face). We can

15

V2
V3

V4

V1

prevE

prevT

R

Fig. 10. Initialization of the split algorithm.

prevE
d

a. End of V2 processing. b. End of the loop.

Fig. 11. First step of Split 3D, partial representation of the embedding.

see in Figure 11.a the map obtained after this step (we do not represent all
the embedding surfaces in order to simplify the figure). This is the end of
the embedding modification. Then we test if d belongs to the border of an
embedding face (dart(d) 6= NULL). When it is the case (Algorithm 2.4), we
have to insert an edge in the topological map. For that, we first insert a vertex
in the edge incident to dart(d) (the topological dart linked with the current
embedding dart d) then an edge between this new vertex and the previous
topological vertex (given by prevT) and we keep the inserted edge in the list
L. We update prevT with β2(prevT): the next face we are going to process is
indeed the one which is β2-linked with the current dart. We also update prevE

with embed(prevT) in order to point to the embedding face linked with the
current topological dart. We also need to insert vertex Vi in the edge incident
to prevE because we are going to use this vertex during the processing of
the next vertex. When the current embedding dart is not on a border of an

16

a. Map after vertices
and edges insertion.

b. Insertion of a part
of the boundary face.

c. Final map with the
boundary face.

Fig. 12. Insertion of the boundary face after vertices and edges were inserted.

embedding face (Algorithm 2.5) we need to set prevE on the next face of the
embedding face in order to insert correctly the next edge on the embedding. At
the end of the processing of vertex Vi, we have updated the two darts prevE

and prevT and so we can pass to the next vertex of the separation face. Be-
fore inserting an edge in the topological map, we test if the two end vertices
of the edge belong to the same connected component or not (Algorithm 2.3).
When it is not the case, we need to update the inclusion tree because included
regions in R become not-included. For that, we just set each region of the
connected component previously included in R as daughter of father(R).

At the end of the loop, we have cut all the faces incident to the separation
face (the embedding faces as well as the topological faces). We can see in
Figure 11.b the obtained map (partial representation, inserted edges are drawn
in black on this figure, with an arrow for topological darts and without it
for embedding darts). Then we can insert the new boundary face along the
new edges previously inserted (Algorithm 2.6). This is achieved by a simple
traversal of the edges of L. During this traversal, we create two darts β3-sewn,
insert them between the two darts of the current edge (by two β2-sewings) and
β1-sew them with the two darts created for the previous edge (see example in
Figure 12).

The last step of the split algorithm consists in simplifying the map. Indeed,
we have perhaps inserted too many edges and the resulting map is thus not
minimal. The simplification algorithm ensures the minimality of the map. As
for the merge algorithm, we can modify the split algorithm in order to avoid
this simplification step. For that, we have to insert only necessary edges. This
leads to a more complex algorithm where we need to test several different
cases.

17

4.2 Time complexity analysis of split operation

All the relations between embedding darts and topological darts (dart(d) and
embed(d)) can be retrieved in O(1). The initialization step of the split algo-
rithm has a complexity in O(|embedding of R|). Indeed, to initialize the dart
prevE we need in the worst case to traverse all the darts of all the embedding
surfaces of R, but each dart is visited only once.

The loop processes the k vertices of the list. For each one, we first find the
embedding dart that contains Vi and that belongs to the same face. This is
done in O(number of embedding darts of the current face). When we traverse
some darts for a given vertex Vi, we never traverse them again for another Vj

because we insert an edge for the shortest way between two vertices. Vertex
insertion is realized in O(number of darts incident to the edge). But as we
work with particular map that represent discrete image, we know that we
have, in the worst case, 8 darts incident to an edge, so the vertex insertion
can be realized in constant time. Edge insertion is realized in O(1) because
there are always only two volumes incident to a face, so we do not need a
loop. The operations performed when dart(d) 6= NULL are similar and are
also in O(1) for the same reasons. The test “if prevT and dart(d) belong to
the same connected component” can be performed in O(1) by using the same
technique than for the merge algorithm. The traversal of all the darts of the
connected components included in R in order to update the inclusion tree is
in O(number of darts of included regions in R).

So, the loop takes O(|embedding of R|+number of darts of included regions
in R) due to the first operation in this loop (research of the embedding dart
d), as we do not traverse more than once each dart of the embedding, and due
to the inclusion tree updating.

The boundary face creation takes O(k) because we traverse all the inserted
edges, and there is one edge for each vertex. At last, the map simplification
can be achieved in O(|R|) (number of darts of the splitted region).

So the split algorithm is in

O(|embedding of R|+ number of darts of included regions in R)

Indeed, there are obviously more darts in the embedding than in the topologi-
cal part of the map. This algorithm takes more time than the merge algorithm.
Indeed, the latter is driven by the topology while the first is driven by the ge-
ometry. Generally, a topological map algorithm is more efficient when it is
driven by the topology because we first traverse topological darts, then only
few geometrical elements linked with particular darts.

18

Fig. 13. Application for MRI: 3D mode representing the topological map.

5 Notes about implementation

We have developed a computer software for the CHU of Poitiers [11], which
is based on topological maps. First this software allows to load a set of 2D
images, result of brain MRI, that represent a 3D image. Then, we can seg-
ment this image and control the result, and possibly change the segmentation
parameters in order to observe the result on the final segmentation. To per-
form the segmentation, we have worked in collaboration with a research team
on signal processing and used their algorithms [10]. Finally we compute the
topological map representing the 3D image obtained after the segmentation.
We can see in Figure 13 an example of a topological map obtained from MRI
images. Currently, this software only allows to visualize the entire map, a par-
ticular region selected in the 2D mode or the connected regions of a selected
one. We are going to implement the merge and split operations in this software
in order to develop split-and-merge segmentation algorithms but also to allow
some human corrections of the segmentation.

6 Conclusion

In this paper, we have presented the basic operations to define an efficient 3D
split-and-merge segmentation algorithm: merge and split. These operations
are defined on the 3D topological map, a mathematical model of 3D images
representation. We have also recalled the main principles and properties of
this model in order to make easier the understanding of our algorithms.

19

These two operations were already presented in [5], but our approach differs
from this solution since our operations are locals. Indeed, [5] use a model
equivalent to the topological map but with a different embedding. Their so-
lution consists in keeping the voxels matrix with an explicit representation of
all the cells of the intervoxel space. Due to this embedding, they must modify
this matrix during the split and merge algorithms, by using the classical algo-
rithms. For this reason, their algorithms have obviously a greater complexity
than ours. Moreover, the split operation is performed by rebuilding the map
on the new voxels matrix. Our solution is more efficient because we modify
directly the map and so avoid a destruction and reconstruction of the map,
and more elegant because we use the topological map structure and make it
evolve through different processings.

Now, we are going to implement these operations in our computer software,
to finally obtain some 3D split-and-merge segmentation algorithms. We are
currently working on how to use these algorithms to perform segmentation
refinement by adding pre or post-processings. We are also working to the
definition of some other operations that could be combinations of the basic
operations presented in this work, or some specific ones as the chamfering
or boolean operations. We already have defined an interesting operation, the
corefining, which can be used to segment big images in parallel.

Acknowledgements

We wish to thank Valerie Gral and Magali Delobbe for useful comments and
careful reading of this paper. We also are grateful to anonymous referees and to
Pascal Lienhardt for their useful suggestions and comments which essentially
improved the paper.

References

[1] E. Ahronovitz, J.P. Aubert, and C. Fiorio. The star-topology: a topology for
image analysis. In Discrete Geometry for Computer Imagery, pages 107–116,
september 1995.

[2] Y. Bertrand, G. Damiand, and C. Fiorio. Topological encoding of 3d segmented
images. In Discrete Geometry for Computer Imagery, number 1953 in Lecture
Notes in Computer Science, pages 311–324, Uppsala, Sweden, december 2000.

[3] Y. Bertrand, G. Damiand, and C. Fiorio. Topological map: Minimal encoding
of 3d segmented images. In Workshop on Graph based representations, pages
64–73, Ischia, Italy, may 2001. IAPR-TC15.

20

[4] J.-P. Braquelaire and L. Brun. Image segmentation with topological maps
and inter-pixel representation. Journal of Visual Communication and Image

Representation, 9(1):62–79, march 1998.

[5] J.-P. Braquelaire, P. Desbarats, and J.-P. Domenger. 3d split and merge with
3-maps. In Workshop on Graph based representations, pages 32–43, Ischia, Italy,
may 2001. IAPR-TC15.

[6] J.-P. Braquelaire, P. Desbarats, J.-P. Domenger, and C.A. Wüthrich. A
topological structuring for aggregates of 3d discrete objects. In Workshop on

Graph based representations, pages 193–202, Austria, may 1999. IAPR-TC15.

[7] R. Brice and C.L. Fennema. Scene analysis using regions. Artificial intelligence,
1:205–226, 1970.

[8] L. Brun. Segmentation d’images couleur à base Topologique. Thèse de doctorat,
Université Bordeaux I, décembre 1996.

[9] L. Brun and J.-P. Domenger. A new split and merge algorithm with topological
maps and inter-pixel boundaries. In The fifth International Conference in

Central Europe on Computer Graphics and Visualization, february 1997.

[10] A.S. Capelle, O. Colot, and C. Fernandez. Segmentation of multi-modality MR
images by means of Evidence Theory for 3D reconstruction of brain tumors.
In IEEE International Conference on Image Processing, ICIP2002, Rochester,
New York, september 2002.

[11] C. Cayrous. Développements autour d’un noyau de cartes généralisées :
Modélisation 3d d’environnement urbain et logiciel d’aide au diagnostic
par IRM de tumeurs cérébrales. Diplôme d’etudes supérieur spécialisées
“DESSTAUP”, Université de Poitiers, 2001.

[12] R. Cori. Un code pour les graphes planaires et ses applications. In Astérisque,
volume 27. Soc. Math. de France, Paris, France, 1975.

[13] G. Damiand. Définition et étude d’un modèle topologique minimal de

représentation d’images 2d et 3d. Thèse de doctorat, Université Montpellier
II, décembre 2001.

[14] T.K. Dey and S. Guha. Computing homology groups of simplicial complexes
in R

3. Journal of the ACM, 45(2):266–287, 1998.

[15] J.P. Domenger. Conception et implémentation du noyeau graphique d’un

environnement 2D1/2 d’édition d’images discrètes. Thèse de doctorat,
Université Bordeaux I, avril 1992.

[16] C. Fiorio and J. Gustedt. Two linear time union-find strategies for image
processing. Theoretical Computer Science, 154:165–181, 1996.

[17] A.T. Fomenko and T.L. Kunii. Topological Modeling for Visualization. Springer,
1997.

21

[18] S.L. Horowitz and T. Pavlidis. Picture segmentation by a directed split-and-
merge procedure. In Proc. of the Second International Joint Conf. on Pattern

Recognition, pages 424–433, 1974.

[19] E. Khalimsky, R. Kopperman, and P.R. Meyer. Computer graphics and
connected topologies on finite ordered sets. Topology and its Applications, 36:1–
17, 1990.

[20] V.A. Kovalevsky. Finite topology as applied to image analysis. Computer

Vision, Graphics, and Image Processing, 46:141–161, 1989.

[21] W.G. Kropatsch. Building irregular pyramids by dual-graph contraction.
Vision, Image and Signal Processing, 142(6):366–374, december 1995.

[22] C.H. Lee. Recursive region splitting at hierarchical scope views. Computer

Vision, Graphics, and Image Processing, 33:237–258, 1986.

[23] P. Lienhardt. Subdivision of n-dimensional spaces and n-dimensional
generalized maps. In 5th Annual ACM Symposium on Computational Geometry,
pages 228–236, Saarbrücken, Germany, 1989.

[24] P. Lienhardt. Topological models for boundary representation: a comparison
with n-dimensional generalized maps. Computer Aided Design, 23(1):59–82,
1991.

[25] R. Ohlander, K. Price, and D.R. Reddy. Picture segmentation using a recursive
region splitting method. Computer Graphics and Image Processing, 8:313–333,
1978.

[26] M. Pietikainen, A. Rosenfeld, and I. Walter. Split and link algorithms for image
segmentation. Pattern Recognition, 15(4):287–298, 1982.

22

