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Dynamical evolution of the error statistics with the SEEK filter to assimilate 
altimetric data in eddy-resolving ocean models 

By J. BALLABRERA-POY1, P. BRASSEUR2 and J. VERRON2* 

1 Universities Space Research Association, USA 
2 LEG!, France 

SUMMARY 
The Singular Evolutive Extended Kalman (SEEK) filter introduced by Pham et al. is applied to a primitive

equation model in order to reconstruct the mesoscale circulation typical of the mid-latitude ocean from altimetric 
data. The SEEK filter is a variant of the Kalman-filter algorithm based on two concepts: the order reduction of the 
initial-error covariance matrix, and the dynamical evolution of the reduced-order basis. This makes the method 
potentially suitable for problems with a high number of degrees of freedom. 

Previous work has shown the ability of a steady version of the filter to improve the vertical structure of the 
ocean thermocline in the case of the quasi-linear dynamics associated with the equatorial tropical Pacific Ocean, 
and the need to combine the dynamical evolution of the basis with an adaptive scheme in a mid-latitude ocean 
model of the Gulf Stream region. 

This work examines the potential advantages of the dynamical evolution of the basis functions with simple 
assimilation experiments. It demonstrates the ability of the method to propagate in time the statistical properties 
of the system when the filter is initialized properly. However, the lack of robustness of the filter is investigated 
theoretically and experimentally, showing the need to consider variants of the method when the filter is not 
properly initialized. 

KEYWORDS: Altimetry Data assimilation Kalman filter Primitive-equation models 

1. INTRODUCTION 

During the last decade, the observation of the ocean from space has led to an 
unprecedented amount of oceanographic data. Satellites are the only observing system 
so far able to give a global and quasi-synoptic picture of the state of the ocean. Amongst 
the many types of data measured by satellites, altimetry plays a particular role because 
of the spatial coverage and accuracy of sea surface height (SSH) observations. For 
example, validation of TOPEXtiPoseidon (TIP) radar altimeter measurements in the 
tropical Pacific Ocean demonstrates an accuracy of 2 em root-mean square (r.m.s.) for 
the instantaneous signal, and 3-4 em r.m.s. for the low-frequency signal (Picaut et al. 
1995). In addition to TIP, the European Remote Sensing satellites currently provide 
complementary SSH measurements. In the near future, several projects (Geosat Follow
On, Envisat/RA-2 and Jasonl )  guarantee the continuity of the altimetric observation of 
the ocean over the next decade. However, as the ocean is opaque to electromagnetic 
radiation, remote sensing gives information about the state of the ocean surface only. 
Data assimilation can therefore be used as a tool for vertical extrapolation, as well as 
temporal or horizontal extrapolation between satellite ground tracks if necessary. 

More generally, data assimilation designates a concept that includes any statistical 
or deterministic method combining observations and numerical models. Formally, these 
methods need a representation of the system in terms of a state vector x. The number of 
components, n, is the number of state variables defining the system at a given time. The 
evolution of the state vector can be written as 
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where M represents the propagation operator, computing the evolution of the system 
from time tk-1 to time tk. The combination between observations, y0, and model
solutions, x, is possible only if a relation can be established between them. In other
words, data assimilation is possible only if there is an application, H, for which, 

y0 = H(x). (2) 

Review papers on data assimilation methods and their applications to meteorology 
and oceanography are, for example, Ghil and Malanotte-Rizzoli (1991), Bennett (1992), 
Miller and Cane (1996), Talagrand (1997) and De Mey (1997). In brief, simple assim
ilation methods, like nudging, direct insertion, or vertical statistical correlation, have 
demonstrated their utility to modify the time evolution of simple models (Verron 1990; 
Hurlburt et al. 1990; Haines et al. 1993; Smedstad and Fox 1994). They have also been 
applied to the more complex ocean general-circulation models (OGCM) with relative 
success (e.g. Oschlies and Willebrand 1996). However, more sophisticated approaches 
have been investigated also, because they offer more guarantee in terms of optimality 
and provide quantitative error estimates. 

The Kalman-filter (KF) algorithm (Kalman and Bucy 1960) is based on a sequence 
of forecast/correction cycles in which an estimate of the state of the system, symbolized 
by xf, is corrected every time a set of observations y0 is available. The updated field, xa, 
traditionally called the analysis field, is then taken as the initial condition for a forecast 
step in which the numerical model is used to carry the information forward in time. 

As the mathematical derivation, advantages and drawbacks of the KF algorithm 
have been widely reported (e.g. Gelb 197 4; Ghil and Malanotte-Rizzoli 1991; Bouttier 
1996), we only mention here that the application of the KF on meteorology and 
oceanography is limited by its numerical cost, associated with the size of the n x n 
error covariance matrices, and the number of model integrations (proportional to n) 
needed to compute the time evolution of these covariance matrices. As a consequence, 
the practical application of the full KF has been limited to systems with a small number 
of components (Miller and Cane 1989; Fu et al. 1993). The current state of the art 
of computers does not allow the application of the full KF to OGCM simulations with 
n = (!) (106). On the other hand, the KF provides the optimal blend between observations
and model solutions only in the case of linear systems. Several simplifications have been 
developed accordingly for high-dimensional, nonlinear OGCM simulations. 

The Singular Evolutive Extended Kalman (SEEK) filter introduced by Pham et al. 
( 1998) is one of these simplifications. In brief, the SEEK filter reduces the cost of the KF 
by assuming that the n x n error covariance matrix, P, is singular, i.e. the eigenvector
decomposition 

P=ST AS, A =diag(.A,, . . .  , .An), (3) 

is such that n - r eigenvalues Ai are equal to zero. That is, only r eigenvectors 
are needed on the assimilation algorithm instead of the full covariance matrix. This 
hypothesis is equivalent to the condition of order reduction, in which the state vector 
may be expressed as 

(4) 

where S T is now the n x r matrix of the eigenvectors associated with non-zero eigenval
ues. Matrix S T is also known as the pseudo-inverse of the projection that maps x onto JL.
The need for order reduction in the KF algorithm may be justified, not only to overcome 
the problem of the numerical cost, but also for cognitive reasons. These problems are 
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related to the difficulty of identifying, from a large-scale observing system, the true 
structure of the error for all the scales resolved by the numerical model. A more detailed 
discussion about this topic can be found in Cane et al. (1996).

A straightforward construction of S T may be obtained with a truncated set of
multivariate empirical orthogonal functions (EOFs) derived from a reference run of the 
model. In that case, 11- are the principal components of the state vector. Several authors 
have used multivariate EOFs to reduce the degrees of freedom of the assimilation 
problem. For example, Blayo et al. (1998) reduce the cost of a variational adjoint 
method by defining the control space as the principal components of the initial condition 
instead of the initial condition itself. In the context of a sequential scheme, Cane et al. 
(1996) project the KF equations onto an EOF basis in order to construct an analog of 
the Kalman filter for the principal components. In their application, the time evolution 
of the principal components of a small perturbation of the state vector, ax, is computed 
as follows: 

(5) 

where 8xk = 8x(tk), ilk= il(tk), and M = M� is the linear tangent model associated
with the transition matrix Eq. (1 ). Because of the orthogonality of the eigenvectors, 
SST = I, a linear transition model for the principal components was derived:

ilk=SMSTilk-I=Ailk-1• with A=SMST, (6) 

where A is an r x r matrix. In the SEEK filter, Pham et al. (1998) take a different
approach to Eq. (5), by allowing the dynamical model to modify the directions defined 
by the columns of ST, i.e.

8xk � MSJ_1ilk-l = sJ ilk-!, with sJ = MSJ_1, (7)

i.e. the linear evolution of the current state of the system is expressed by the evolution 
of each one of the members of the subspace basis. This means that, if Eq. (4) is true, 
the time evolution of the n x n covariance matrix may be computed by integrating the r 
elements of the subspace basis defined by the columns of ST. 

The SEEK filter has been applied with success to a reduced gravity, primitive
equation model of the tropical Pacific Ocean to explore the impact of altimetric obser
vations on the structure of the thermocline (Verron et al. 1999). The filter has also been 
used with a nonlinear, primitive-equation model of the Gulf Stream region (Brasseur 
et al. 1999). In that case, the SEEK filter was found to be able to recover the vertical 
structure of the ocean from simulated altimetric observations in the case of twin ex
periments. Because of the numerical cost associated with the computation of the time 
evolution of the basis functions, a common point of these two works was the comparison 
between the dynamic filter and a steady filter, in which the basis is kept constant in time. 
In the case of the quasi-linear equatorial dynamics, both versions of the filter provide 
similar results (Verron et al. 1999). This is not the case in the mid-latitude region studied 
by Brasseur et al. (1999), where the steady filter displays a progressive degradation of 
the results. On the other hand, the sensitivity of the assimilation with respect to the 
choice of the basis at the initial time was found critical in the mid-latitude experiment. 
Therefore, a combination of the dynamic filter and an adaptive scheme was implemented 
to ensure the robustness of the method. 

The work presented here is a follow-up of the assimilation experiments of Brasseur 
et al. ( 1999). However, the objective here is not to provide a recipe for the construction of 
a reduced-order algorithm, but to investigate the advantages of computing the dynamic 
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evolution of the reduced-order basis, and to study the conditions for which such a 
filter may or may not work. The outline of the paper is as follows. The equations 
of the filter, and the computation of the time evolution of the basis are presented in 
section 2. The sensitivity of the filter to the initial conditions is examined in section 3. 
The ideal twin-experiment configuration is presented in section 4. Despite its simplicity 
the configuration allows the development of mid-latitude mesoscale turbulence. The 
dimension of the system is significantly high (n = 202 700). The numerical experiments 
are presented in section 5, and a final discussion is given in section 6. 

2. THE EQUATIONS OF THE SEEK FILTER 

A complete derivation of the SEEK filter equations can be found in Pham et al. 
(1998) or Verron et al. (1999). Here, we summarize the equations, using the notations 
recommended by Ide et al. ( 1997), of the filter in the case of a linear perfect system:

Ak+l = {Ai:1 + (HkSJ)TRi:1HkSJ}-1,
Kk = SJ Ak+l (HkSJ) T Ri:1,
xk = x! + Kkfy% - Hkx!}, 
P� = sJ Ak+1sk,

f M a xk+l = xk, 
sJ+1 = MSJ, 
Pk+l = SJ+IAk+1 Sk+l·

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

In these equations pf, and pa represent the covariance matrices associated with the errors
included on the forecast xf and the analysis xa states, respectively, i.e.

(15) 

where a represents either the forecast, f, or the analysis, a, and E is the expectation 
operator; superscript t indicates the true state of the system. 

Equations (8)-(11) correspond to the correction of the first-guess xf at time tb i.e.
the analysis step. In particular, Eqs. (8) and (9) express the gain matrix of the classical 
KF filter in terms of the reduced-order subspace, i.e. its validity is related to the validity 
of Eq. (3). Equations (12)-(14) correspond to the temporal evolution of the state of the 
system and its expected error. The time evolution of the error, discussed in more detail 
in the following section, is expressed by the time evolution of the basis functions ST. 

3. TIME EVOLUTION OF THE ERROR SUBSPACE 

Verron et al. (1999) discuss several methods of generalizing Eq. (13) to a nonlinear 
model. The method used here is based on the spread of a set of r states (where r is the
rank of the covariance matrix) having the same covariance as the analysis error. This 
is done as follows. After the analysis step Eq. (10), the estimation of the analysis error 
is given by Eq. (11 ), where Ak+ 1 is an r x r, symmetric and definite positive matrix.
In this case, there is a unique triangular matrix f, verifying Ak+ 1 = ff T (Cholesky
Theorem). Such a triangular matrix r is used to define an n X r matrix, sJ r. Let s;' 
m = 1, . . .  , r, denote the m-th vector column of r112sJr. Then, because of Eq. (11),
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the ensemble covariance of the r n-dimensional vectors sJ: coincides with the analysis
error covariance P�. 

If vectors s'J: are used as a set of arbitrary perturbations around the analysis state xk,
a set of r + 1 model integrations is computed: 

x�+l = M (xk) , (16) 

xk+l = M (xk + s'J:), m = 1, . . .  , r. (17) 

Now we assume that the spread of these vectors around its mean value is represen
tative of the forecast error Pk+ 1 as it is commonly assumed in Monte Carlo methods
(Epstein 1996; Evensen 1994 ). Then, states Eqs. (16) and (17) are used to construct an 
n x (r + 1) scatter matrix s�:;_ 1 accounting for the dispersion around the mean state.

An orthogonal basis is obtained by applying the singular value decomposition 
(SVD) on such a scatter matrix, i.e. s�:;_ 1 = UDV T, where U is an n x (r + 1) matrix

verifying U T U = I, D is a square diagonal matrix, and V is a square matrix verifying 
V TV = I. As the ensemble mean of the columns of the scatter matrix is equal to zero, 
at least one column can be expressed as a linear combination of the other columns, and 
matrix D has at least one diagonal element equal to zero. Because of the orthogonality 
properties of the SV D, we have 

f 1 IT I 1 2 T Pk+l = --Sk+ISk+1 = --UD U . 
r + 1 r + 1 

By comparing Eqs. (3) and (18) it may be written 

and 

(18) 

(19) 

where only the vectors of U associated with non-zero elements of D are retained. For 
an OGCM, the additional cost of the SVD of the scatter matrix is only a small fraction 
of the cost of r + 1 model integrations. However, the advantages of Eqs. (18) and (19) 
are the orthogonality of the basis, and the automatic detection of any reduction of the 
rank of the system. More important is the fact that Eq. (19) provides an estimate of 
Ak+ 1 related to the scatter of the ensemble at time tk+ 1, and not from the estimation
of the analysis error at time tk (Eqs. (8), (9) and (11)). This is important because of the
inherent deficiencies of Eqs. (8) and (9) if Eq. ( 4) is not exact. These deficiencies appear 
because Eqs. (8) and (9) neglect the possible correlations between the reduced space and 
its complementary subspace. 

4. FILTER INITIALIZATION 

Brasseur et al. (1999) initialize the SEEK filter with two different sets of EOFs. 
The first set of EOFs accounts for the variance of the model during the time period 
corresponding to the synthetic observations to be assimilated. The second set of EOFs 
corresponds to the variability during a period different to the observed one. The as
similation experiments showed the need to improve the filter in order to increase the 
robustness of the filter in the second case. In this section, the reasons of such a lack of 
robustness is studied in terms of the dynamical evolution of the truncation error, i.e. the 
components of the error not accounted for by the basis ST. 

When the projection operator is not complete, or the description of the errors is not 
exact, Eq. (4) must be substituted by 

(20) 
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Figure 1. Typical patterns of instantaneous circulation. (a) Surface dynamical pressure (m2s-2). Dashed lines 
correspond to negative values. The thick solid line corresponds to zero values. Contour interval is I m2s-2. (b) 

Surface horizontal velocity (m s-1 ). Maximum velocity (longest arrow) is 1.6 m s-1. 

where er is a vector belonging to the nulls pace of S T, called the truncation error, i.e.

ser 
= 0. (21) 

The validity of Eqs. (8)-(14), as well as for any reduced-order simplification of the 
KF, is affected by the presence of such a truncation error. The filter is affected at both 
the analysis and the forecast steps. The impact on the analysis step has been discussed 
by Cane et al. (1996). In summary, Eq. (9) only extracts observational information 
about the retained modes, and Eq. (8) should contain additional terms accounting for the 
covariance of the truncated errors as well as for the correlations between the errors in the 
reduced space and the truncation error. Because of the extreme difficulty in determining 
such covariance matrices, it is a common strategy to redefine the observational error 
covariance R, or the reduced-order forecast covariance A (Fukumori and Malanotte
Rizzoli 1995; Cane et al. 1996; Pham et al. 1998). Following Pham et al. (1998) a 
compensation technique is used here. That is, the forecast covariance matrix Pi is
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Figure 2. Eigenvalue spectrum corresponding to the variability of the multivariate state vector for a 15-day
period. For each mode k, the curve gives the explained variance accounted for by modes 1 to k. 

substituted by p -! Pk, where 0 < p < 1. Therefore, Eq. (8) is substituted by

Ak+I = {pAk1 + (HkSJ) T R;1HksJl-I. (22) 

The impact of the truncation error on the forecast step of the filter is studied here in 
the simple case of a perfect, linear model. Let eo be the true error at the initial time, to,
i.e. 

ST r eo = o Ito +eo. (23) 

The time evolution of such an error is given by 

e1 = MSJ Ito+ Me0 = SJ JLo + Me0. (24) 

The true projection of e1 on SJ is

ST r 2 e1 = 1 Ill + e1. ( 5) 

If sT is orthogonal, i.e. slsJ = I, a relation between the true projection at time tj and
the values at the initial time can be found: 

JL 1 = JLo + S1Me0, 
e! = (I - SJSt)Me0. 

(26) 

(27) 

Equation (26) states that the error projection on the reduced-order subspace, /.to, is
correct only if the term S1Me� can be neglected. This can be verified if one of these
three conditions is satisfied: 

(i) eo = 0, i.e. the initial error is perfectly described by the reduced-order subspace.
(ii) S1 Me0 = 0 is equivalent to the condition that the truncation error is dynamically

uncoupled with the reduced-order subspace. Therefore, the validity of the reduced-order 
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approximation depends on the spectrum components of the truncation error and on the 
duration of the prediction step. 

(iii) Me0 = 0 means that M is a singular matrix, and there is a family of states which
are projected to zero by M. If q is the dimension of the nullspace of M, the rank of M is
n - q, where n is the number of components of the state vector. For a nonlinear model, 
this condition can be written as M(x + er) � M(x) . That is, not all the fluctuations
will develop, and an attractor exists inhibiting those fluctuations. The dimension of the 
reduced-order subspace should be given by the dimension of the attractor, and SJ must
contain all the components of the growing errors during the forecast time period. 

In a real application, none of these constraints is expected to be verified, and the filter 
defined by Eqs. (8)-(14) will fail. These conditions, however, should be considered as 
a guide to build strategies to improve the filter. For example, the identification of the 
growing error modes over a given time interval may help to improve the error subspace. 
These conditions also give a better understanding about the reasons of the success of 
the scheme proposed by Brasseur et al. ( 1999). In their scheme, misfits between the 
analysis state, x�, and observations at that time, yk, are inverted, using a combination of
statistical inversion and dynamical integration of the model, to provide a new direction 
susceptible to improve the filter basis. In essence, this adaptive scheme is not intended to 
identify growing error modes, nor determine the dynamically relevant modes of the flow, 
but to reduce, at each assimilation cycle, the truncation error, and then satisfy the first 
condition pointed earlier. Thus, and because of it, the numerical experiments described 
in the following section will focus on the study of the advantages of the dynamic filter 
when it is properly initialized. 

5. NUMERICAL EXPERIMENTS 

(a) Model and physical configuration 

The ocean model used in the numerical experiments is derived from the semi
spectral primitive-equation model (SPEM) of Haidvogel et al. (1991). The physical 
configuration consists of a rectangular box in the ,8-plane approximation. The domain 
has an extension of 2560 km zonally and 1920 km meridionally. The domain is 
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centred to fit the geographical position of the Gulf Stream (fo = 9.3 x w-s m s-1,
f3o = 2 x w-11 m -1 s -1 ). The model has a flat bottom at a depth of 5000 m, and five
levels located at 0, 400, 1100, 2500 and 5000 m depth. Vertical stratification at initial 
time is given by a Brunt-Vaisala frequency of N2(z) = 5.9 X w-s exp(z/800) s-2. The
horizontal resolution of the grid is equal to 20 km in both directions, allowing the model 
to solve mesoscale eddies. The state vector of this configuration is defined as 

x = {Ps(x, y), u(x, y, z), v(x, y, z), p(x, y, z)}, (28) 

where Ps is the surface dynamic pressure, i.e. surface pressure divided by a reference 
density, (u, v) is the horizontal current velocity, and p is the density. All the variables 
are normalized by the standard deviation of each one during a reference integration of 
the model. The number of components of the state vector is n = 202 700. 

Lateral boundary conditions are free slip and impermeability. For simplicity, no heat 
or mass flux is considered across the boundaries. The system is forced by a zonal
wind stress rx (y) = -10-4 cos(2rry I Ly) m2s-2, where Ly is the meridional extension
of the domain. Bottom friction is parametrized by a linear friction law -CDubottom. 
with the drag coefficient CD = 2.65 x w-4 m s-1. Lateral dissipation is provided by a
biharmonic operator with a coefficient of 8 x 1010 m4s-1.

The model is integrated from rest over 25 years in order to reach a regime of 
statistically stable mesoscale turbulence. Figure 1 shows a typical circulation pattern 
after the spin-up. The wind forcing and the gradient of the Corio lis force are responsible 
for the spatial structure of the circulation: a double cell with cyclone circulation on the 
north and anticyclone circulation on the south. Western boundary currents associated 
with each cell merge and feed an eastward jet that penetrates into the domain. The size 
of the eddies originated by the instabilities of the central jet is governed by the first 
baroclinic radius of deformation (roughly 50 km, consistently with the value at the Gulf 
Stream region). 

(b) Experiment strategy 
Three sets of assimilation experiments are presented here. The first one is intended 

to demonstrate the potentialities of the dynamic filter when properly initialized. Two 
additional sets of experiments are presented to investigate the robustness of the filter 
when not correctly initialized. For simplicity, a twin-experiment strategy is used to allow 
a full control of the true initial error statistics. 

The experimental set-up is constructed from a reference trajectory of the model 
starting at year 25. The first state of the reference trajectory is now considered to be the 
origin of the time, i.e. to= 0. A set of 'observed' full SSH fields is assimilated every 
five days, starting at time 0. The impact of the assimilation on every field q of the state 
vector is measured in terms of the residual error (RE): 

r.m.s.(qa - qt)
RE(q) = r t ' 

r.m.s.(q - q )
(29) 

where q represents the surface dynamic pressure or a given level of the zonal velocity, 
the meridional velocity, or the density. Superscripts a, t, and r respectively indicate 
assimilation, true, and the value obtained with the assimilation routine turned off. Then, 
values of Eq. (29) smaller than 1 indicate a positive impact of the assimilation, and a 
negative impact otherwise. 

In all the experiments, the observational error R is given by a diagonal matrix 
corresponding to a random error with standard deviation equal to 5 em. Initialization 
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state x�80, (b) first mode of the basis S(80, (c) second mode, and (d) third mode. See text for further explanation. 

Contouring convention as in Fig. I. Contour interval is 1 m2s-2 in (a), and 0.001 in (b)-(d). 
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of the SEEK filter requires an initial first guess of the state of the system, of an initial 
set of basis functions S;j, and of the initial reduced-rank error covariance Ao.

(c) Perfect filter initialization 

In a first set of experiments, the impact of the dynamic evolution of the reduced
order basis S T on the assimilation algorithm is studied in the case of a proper initializa
tion. Accurate description of the initial error by a small number of modes is achieved by 
an eigenvector analysis of the model variance around the state to be reconstructed. Here, 
a set of 15 multivariate EOFs is obtained from the covariance of the daily variability 
of the model during days 0 to 15. As usual, eigenvectors are ordered by decreasing 
eigenvalue. Since the decorrelation time-scale for eddy dynamics is substantially larger 
than 15 days, the variability of the system during such a time period is explained by a 
very small number of empirical modes, and the first five EOFs explain 99.3% of the 
variability over the 15-day period (see Fig. 2). Surface pressure of the mean value, 
and the first three dominant modes is presented in Fig. 3. These fields indicate that 
the variability during this period is associated with the meandering of the jet. 

For this experiment, eigenvectors of the 16-day variability define s;j, the associated
eigenvalues define Ao, and the time-average state, x, is x� . In that case, a negligible
truncation error is obtained by initializing the filter with the ten first modes only. Thus, 
r = 10 for these experiments. Equations (8)-( 1 0) are used to correct x� , and the analysis
field x0 is used as initial conditions for a five-day model run.

The evolution of the filter performance is studied for both the steady and the dynamic 
versions of the SEEK filter. In the case of the steady filter, matrix S T is kept constant in
time, while Ak is updated by the sequential application of Eq. (8). Orthogonal matrices 
SJ, and diagonal matrices Ak of the dynamic filter are obtained with Eqs. (16)-( 19).

Figure 4 illustrates the impact of the six-month assimilation of SSH fields. The 
curves display the temporal evolution of the residual error (RE) of the surface pressure 
and velocity components at 2500 m depth. Because of the perfect identification of the 
initial error, the state of the system is already identified at the first assimilation step. The 
three-dimensional EOFs instantaneously extrapolate the information from the surface 
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Figure 6. Truncation error (m2s-2) associated with the true error at day 180: (a) steady filter, and (b) dynamic 
filter. Contouring convention as in Fig. 1. Contour interval is l m2s-2 in (a), and 0.1 m2s-2 in (b). 

layer to all the variables and to all the grid points. Therefore, the diminution of the RE 
is simultaneously obtained for all the variables and for all the depth levels. 

The time evolution of the RE indicates the ability of the assimilation algorithm to 
propagate forward in time the, initially true, error covariance. However, as the EOF basis 
only spans the statistical relations between the fields during a very short segment of the 
trajectory of the system through the phase space, the ability of the steady filter decreases 
as the system evolves away from the initial state. On the contrary, as the basis functions 
are allowed to evolve as the system moves away from the initial state, the performance 
of the dynamic filter is maintained over the whole assimilation period. 

Figure 5 displays the forecast state, x{80, at day 180 and the three first modes
provided by Eq. (18). Comparing Figs. 3 and 5, it can be seen that at the initial time, 
maxima of the EOFs were located mainly over the path of the jet. Now, maxima of the 
modes are located around other flow structures as, for example, a large eddy located 
north of the jet, or regions of low variability as the north-western boundary region. As 
the modes of S T still come from a singular value decomposition of a cqvariance matrix,
higher modes (small eigenvalues) contain smaller structures. However, the size of the 
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Figure 7. Maximum and minimum amplification factor of the perturbations used to compute the time evolution 
of the basis SJ in the case of perfect filter initialization (see text). 

structures of the new set of EOFs is larger than the spatial structures of the original set 
of EOFs. This reflects the transfer of information from small to large scales during the 
dynamical evolution of ST. The representativity of the new set of modes is measured
by the ability of the new modes to describe the forecast error (ef = xt - xf). As the true
state is known in the case of twin experiments, a principal component analysis of ef at
day 180 is done, and the truncation error at that day may be computed. Figure 6 displays 
the surface pressure of the truncation error for both the steady and the dynamic filter. 
As expected, the truncation error is higher in the case of the steady filter (a rough 50% 
of the value of the field), and smaller in the case of the dynamic filter (2% of the value 
of the field). On the other hand, the error of the dynamic-filter solution does not contain 
large-scale patterns as in the case of the steady-filter solution error. 

Finally, Fig. 7 shows the time evolution of the amplification of the perturbations, 
measured as the ratio IIM(x +ox) - M(x)ll/118xll . As the components of the state vector 
have been normalized with respect to the standard deviation of each field, the Euclidian 
metric can be used to compute the norm of the perturbations. Figure 7 only shows 
the maximum and the minimum of the amplitude amplification for each assimilation 
cycle. These curves indicate that, after a while, the dynamic filter seems to discard 
some decaying modes, keeping only modes that are amplified. This fact indicates some 
analogies between the dynamic filter and the breeding method of Toth and Kalnay 
(1997) used to identify perturbations of rapid amplification. 

As a conclusion, these experiments have illustrated the advantage of a dynamic filter 
to propagate the error covariance matrix in the context of mid-latitude nonlinear ocean 
circulations. However, the simplicity of the experimental framework used for this study 
places some limits on the generality of the results in the case of realistic models, for 
which some of the hypotheses described previously may not be fully verified. 
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Figure 8. Initial r.m.s. error of the surface pressure (m2s-2): (a) true (perfect filter initialization), and (b) false 
(imperfect filter initialization). Contouring convention as in Fig. l. Contour interval is 0.5 m2s-2 in (a), and 

0.05 m2s-2 in (b). 

(d) Imperfect filter initialization 

In order to study the degradation of the performance of the filter when the initial 
error statistics are not perfectly determined, a new set of experiments is presented 
here. The initialization of the assimilation filter is basically the same as in the previous 
section: same first estimate, xo, and same set of modes SJ. However, the initial spectrum
of the error Ao is now false. This has been done by inverting the order of eigenvalues, 
i.e. A.�= Ar-k+l· where A. and A.' indicate the original eigenvalue spectrum and the 
new spectrum, respectively. Figure 8 compares the initial surface pressure r.m.s. error 
of the perfect initialization (Fig. 8(a)), and the initial r.m.s. error when the order of 
eigenvectors is inverted (Fig. 8(b)). Now the initial error covariance is determined by 
the tenth multivariate EOF, and it does not reflect either the amplitude or the spatial 
distribution of the initial error. 

Figure 9 shows the temporal evolution of the residual error for both the steady and 
dynamic filter for the new initialization. The main difference from Fig. 4 is found on 
the first steps of the assimilation cycle: with the new initialization, more assimilation 
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Figure 10. Same as Fig. 7 but imperfect filter initialization. 

cycles are necessary to reach the minimum of the residual error, especially in the deep 
ocean. Comparison of Figs. 4 and 9 also reveals a greater sensitivity of the steady filter 
to the false initialization of the filter. On the contrary, the dynamic filter displays, after 
a few assimilation cycles, a behaviour similar to the case of perfect initialization. That 
fact indicates that the performance of the filter is related to the determination of the error 
modes, but not with the precise spectral distribution of the error on such modes. This 
simplifies the problem of the filter initialization, because the dynamical filter only needs 
a first guess of the state of the system xo, and a set of modes SJ". 

Figure 10 shows the evolution of the maximum and minimum amplification for the 
new experiment. As before, the tendency of the filter to progressively discard decaying 
error modes is noticeable. 

(e) False error modes 

In the last set of experiments, the filter is initialized with a set of modes SJ" chosen
to be not representative of the initial error. This has been done by choosing the columns 
of SJ" as the eigenvectors of the daily variability between days 720 and 735. The spectral
distribution of the new set of eigenvalues (not shown) is completely similar to the 
spectrum shown in Fig. 2. This is related to the nature of the forcing (steady) and the 
fact that the covariance matrix is also computed over a 15-day period. Results of the 
assimilation experiment are shown in Fig. 11. Neither the steady filter nor the dynamical 
filter are able to drive the system to the reference trajectory of the system. The reduction 
of the residual error is negligible because of the complete incompatibility between the 
initial error and the initial error modes. Note that under these conditions the dynamic 
filter does not provide any advantage with respect to the steady filter. 
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Figure II. Time evolution of the residual error during two months of assimilation of sea surface height. Dynamic
(solid line) and steady-filter (dotted line) versions of the filter are compared. 

6. SUMMARY 

The singular evolutive extended Kalman (SEEK) filter is a reduced-order variant of 
the Kalman filter based on a set of multivariate functions to represent the error statistics. 
It has been applied to assimilate altimetric observations into a variety of ocean models 
(Verron et al. 1999; Brasseur et al. 1999). The reduction of the number of degrees of 
freedom by the help of multivariate EOFs has a double advantage in the context of 
data assimilation in meteorology and oceanography. First, it allows the use of advanced 
assimilation algorithms combined with complex model simulations. Second, it allows 
an instantaneous extrapolation of the information from observation locations to all the 
variables at all the model grid points. The main originality of this method is in the 
consistency between the dynamic evolution of such a set of multivariate functions and 
the current evolution of the system. 

· 

The initialization of the filter requires the specifiqtion of a first g�ess for the 
system state, xo, a set of basis functions, i.e. the qplumn vectors of matrix SJ, and
the description of the initial error covariance in terms of the subspace defined by 
SJ, Ao. Because of the possible existence of error pqmpom�nts not accounted for
by the subspace, the performance of the reduced-�rder filter is directly related to the 
statistical significance of the actual, unknown initial error in that subspace. The work 
presented here has investigated the implications of this constraint, both theoretically 
and experimentally, helping in understanding the conditions for a proper initialization 
of the filter. There are three conditions: (i) the complete description of the initial error; 
(ii) the identification of all the growing error modes; or (iii) the fact that the retained 
modes are dynamically uncoupled from the discarded modes. Despite the difficulty in 
verifying these conditions in practice, they provide a guideline for further improvements 
of the filter. 

The numerical experiments presented in section 5 compare the performances of the 
steady as against the dynamic filters to investigate if the dynamic evolution of the basis 
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plays any significant role. In these experiments, the steady filter keeps constant the 
structure of basis functions. On the contrary, the dynamical filter computes the time 
evolution of these functions from the estimated analysis error at the previous time. 

The main result of these experiments is the demonstration of the ability of the 
dynamic filter to propagate a statistically relevant basis of multivariate functions forward 
in time, at least if these functions were statistically significant at the initial time. The 
amplification rate of the perturbations defining the time evolution of the basis seems to 
indicate that the dynamic filter naturally discards the decaying error modes, and only 
maintains the growing error modes. However, the process of mode selection is slow, and 
the performance of the filter might be increased if a prior selection of the growing modes 
was done before the assimilation cycles. 

In addition, these experiments indicate that the dynamic filter is more sensitive to the 
initial choice of the basis functions SJ, than to the description of the error covariance
itself, Ao. That is, the problem of the filter initialization may be reduced only to the 
determination of XQ and SJ. 

Finally, a simple experiment has shown that the dynamic evolution of the subspace 
plays no role if the initial value of SJ does not provide the relevant information about the
true initial error, noting in that case that the steady filter fails too. That is, the dynamic 
filter by itself does not correct for irrelevant initialization of a reduced-order Kalman 
filter. 

Further investigations will focus on both the improvement of the filter initialization 
and on the study of alternate techniques to make the filter robust with respect to the error 
statistics. Some options can be derived from the conditions of the proper initialization 
of the filter as described in section 4. For example, singular vectors of the transition 
operator, i.e. the family of optimal growing perturbations, may be used to capture 
some of the growing modes of the. error. Another possibility is the combination of the 
SEEK filter with another assimilation method based on the adjoint model to identify the 
dynamically relevant modes of error. 
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