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Abstract 
In the presented study a special test-pump with 2D curvature blade geometry in cavitating and non-cavitating 

conditions was investigated using different experimental techniques and a 3D numerical model of cavitating flows. 

Experimental and numerical results concerning pump characteristics and performance breakdown were compared at 

different flow conditions. Appearing types of cavitation and the spatial distribution of vapour structures within the 

runner were also analysed. 

 

1. Introduction 
In the scope of the European Research Program PROCOPE, researchers of the TUD (Laboratory for 

Turbomachinery and Fluid Power at Darmstadt) and of the LEGI (Laboratoire des Ecoulements Géophysiques et 

Industriels de Grenoble) work together in order to improve the understanding of the unsteady behaviour of cavitating 

flows and the related erosive aggressiveness.  

In order to extend previous analyses concerning the cavitating flows around a 2D-hydrofoil [Hofmann et al., 1999] 

and in a cascade of three hydrofoils [Lohrberg et al., 2001], the present study consists of investigations by 
experimental means and numerical simulation concerning a special centrifugal test-pump in cavitating and non-

cavitating conditions. Experiments were carried out at Darmstadt University of Technology using different 

experimental techniques. The measurement of classical pump characteristics and performance breakdown at different 

flow conditions were associated with flows visualisations. Appearing types of cavitation and the spatial distribution 

of vapour structures within the runner were analysed. 

Three-dimensional Navier-Stokes codes taking into account the cavitation process have been developed during the 

last years [Takasugi et al., 1993, Alajbegovic et al., 1999, Kunz et al., 1999, Bunnel and Heister, 2000] based on 

different multi-phase flow approaches [Delannoy and Kueny, 1990, Kubota et al. 1992]. Industrial CFD codes are 

now starting to take into account cavitation models, allowing first applications to pump geometries [Combes and 

Archer, 2000]. In this context, a numerical model for three-dimensional cavitating flows is developed at LEGI, based 

on the 3D code FINE/TURBOTM, developed by NUMECA International. That work is performed in cooperation with 

SNECMA Moteurs and the French space agency CNES, with the final objective to provide accurate simulations of 
unsteady cavitating flows in the inducers of rocket engine turbo-pumps [Coutier-Delgosha et al. 2001a,b]. The 

application to the centrifugal pump represents a first step of validation of the model on steady-state cavitating flow in 

turbomachinery. 

 

2. Geometry 
A special runner geometry has been chosen to easily adapt existing measuring techniques for a single hydrofoil in a 
test section [Hofmann et al., 1999, Hofmann, 2001] to a pump test-rig. Optical access in 2 planes was made possible 

to enable a view perpendicular to the blade surface on both suction and pressure side by Plexiglas windows in the 

housing and a Plexiglas shroud. The runner has 5 single-curved blades with two different radii at inlet and outlet. The 

part of the blade with the larger radius (the second part in flow direction) was also made of Plexiglas to obtain optical 

access to the pressure side of the following blade and the entire channel respectively. 

Figure 1a shows the intersection of the 2 blade radii. Another characteristic is the parallel hub and shroud to get an 

almost 2-dimensional blade-to-blade channel with constant width. 

A radial-symmetric housing (Figure 1b) is used to obtain almost constant conditions on the runner outlet (if we 

neglect gravitational forces which are small compared to the performance of the runner). With these preconditions 

we obtain comparable cavitation conditions in each channel without the influence of a volute casing. 
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Nominal conditions are at a rotational speed of 36 Hz and a flow-rate q = 210 m3/h. Specific speed of the runner is 

ns = n Q1/2 / H3/4 = 20 (europ. value: n in rpm, Q in m3/s and H in m), the outer runner diameter equals 278 mm. 

Cavitation conditions are defined by NPSH value based on the upstream total pressure, water vapour pressure and 

density at ambient temperature. 

 

  
Figure 1a. runner geometry ; 1b. housing 

 

3. Visualisations 
Besides the measurements of the characteristics of the pump at different flow-rates and cavitation conditions, various 

visualisation techniques were used. All images shown in this paper were done at nominal flow rate with various 

values of NPSH, where both cavitation on suction and pressure side of the blades occurs. 

Stroboscopic light was used on one hand for standard imaging and High-Speed-Video with the Light-Sheet-

Illumination (Figure 2) was applied to observe self-oscillating states of the cavitation on the blade pressure side or 

other unsteady effects [Hofmann et al., 2001]. 

 

 
Figure 2. Visualisation set-up 

 

The investigated flow conditions during the experiments show always unsteady behaviour of the leading edge 

cavitation, not only concerning the unsteadiness of the closure region of the attached cavitation but also the shedding 

of vapour structures in the channel. Besides the well known attached cavitation on pressure and suction side, another 
type of cavitation occurs on the inlet of the runner caused by the strong curvature of the streamlines. It is visible 
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either as attached cavitation caused by the depression at the radius (regions B and C in Figure 3), or as shear 

cavitation because the flow was separating at the inlet radius of the shroud at lower values of NPSH (region B in 

figure 4). Dependent on the length of the attached part of the cavitation (region A in all figures) the extent of this 

shear layer cavitation leads into the channel as it is shown in Figure 4 at two different stages of a cavitation cycle. In 

Figure 4a the larger extent of the shear cavitation (region B) on top of the attached part (see region A, the illuminated 

interface of the cavitation sheet on pressure side) is visible. In Figure 4b (with a smaller cavitation sheet) no shear 

cavitation can be seen. The contour of the interface of the attached part of the cavitation (region A) already indicates 

a different state of the typical self oscillating cloud cavitation condition. 

 

 
Figure 3. Unsteady state of blade cavitation on suction side, NPSH = 8m. (stroboscopic light illumination) 

(A scaling bar is added to each image, representing a length of 10 mm) 

 

With the aid of Laser-Light-Sheet-Illumination of the vapour-fluid-interface, an analysis of the unsteadiness of the 
attached part of the cavitation in the runner could be done in the middle of the channel. The images were taken with a 

rate of 2 Hz but triggered by an angular decoder within the motor and a special conditioning which allowed to take 

the image at every phase angle compared to a reference angle with a step size of 1 degree. Hence, the illuminated 

blade had 18 revolutions between every image. 

 

  
Fig. 4: unsteady state of blade cavitation on pressure side at two different time and NPSH = 7 m (Laser light sheet)  

 

Based on 500 images, illuminated with 50 µs, a mean grey value distribution was calculated to identify the mean 

cavity on the leading edge of the blade.  

The standard deviation of the grey values or its variance can serve as a value for the unsteadiness of the cavitation. In 

regions of the image with higher values of the variance, the fluctuations of the grey values, and therefore the 

fluctuations of the reflecting vapour structures, are larger than in regions with a smaller variance. Those regions are 

constantly filled with either water or vapour. The result of such a treatment is shown in Figures 5 and 6.  

Mean distribution (Figure 5a and 6a): The attached part of the cavitation can only be identified by its 2-phase-
interface, because the light sheet is mainly reflected. But the mean region with a cloud shedding is also indicated by 

a higher mean grey value just after the closure region of the cavitation sheet. For the numerical comparison we just 

identify the attached part. As expected, the extent of both regions enlarges with decreasing NPSH-value. As already 

mentioned, the flow has the tendency to separate on the leading edge of the blade, which is supported (Figure 6a) at 

lower pressure conditions. 
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Standard deviation (Figure 5b and 6b): The fluctuation of the shedding becomes larger with decreasing NPSH and its 

extension fills almost half of the height of the channel. This is a result of the higher production of transient vapour 

structures from the leading edge cavitation. The interface of the attached cavitation seems in contrast to be rather 

stable. Probably the flow is clearly separated from the leading edge, the separation zone fills almost steady with 

vapour, and only in the closure region vapour is shed into the channel. 

 

      
Figure 5. Mean vapour distribution and standard deviation Qn , NPSH = 7 m 

 

       
Figure 6. Mean vapour distribution and standard deviation Qn , NPSH = 6 m 

 

4. Physical and numerical model 
The mean features of the physical and numerical models are summarized in the present paper. More details are given 
in [Coutier-Delgosha et al., 2001b]. 

Cavitating flows are described by a single fluid model, based on previous numerical and physical work developed in 

LEGI [Delannoy and Kueny, 1990, Reboud et al. 1998]. This fluid is characterised by a density ρ that varies in the 

computational domain: when the density in a cell equals the liquid one (ρl), the whole cell is occupied by liquid, and 

if it equals the vapour one (ρv), the cell is full of vapour. Between these two extreme values, a liquid/vapour mixture, 

still considered as one single fluid, occupies the cell. The void fraction α = (ρ - ρl) / (ρv - ρl) can thus be defined as 
the local ratio of vapour contained in this homogeneous mixture.  

Velocities are assumed to be locally the same for liquid and for vapour. An empirical state law is used to manage the 

mass fluxes resulting from vaporisation and condensation processes. That barotropic law links the density to the local 

static pressure ρ(P). When the pressure is higher or lower than vapour pressure, the fluid is supposed to be purely 
liquid or purely vapour, according to the Tait equation or to the perfect gas law respectively. The two fluid states are 

joined smoothly in the vapour-pressure neighbourhood. It results in the evolution law presented in Figure 7, 

characterized mainly by its maximum slope 1/Amin
2

 , where Amin
2 = ∂P/∂ρ. Amin can thus be interpreted as the 

minimum speed of sound in the mixture. 

The numerical model of cavitating flows based on that physical description is developed from the commercial code 

FINE/TURBOTM developed by NUMECA International. FINE/TURBOTM is a three-dimensional structured mesh 

code that solves the time dependant Reynolds-Averaged Navier-Stokes equations. Time accurate resolutions of the 

equations use the dual time stepping approach. Pseudo-time derivative terms are added to march the solution towards 

convergence at each physical time step. The range of application is extended to low-compressible or incompressible 

flows by introducing a preconditioning matrix [Hakimi, 1997]. 

The discretization is based on a finite volume approach. Convection terms are treated by a second order central 
scheme associated with artificial dissipation terms. The pseudo-time integration is made by a four-step Runge-Kutta 

procedure. The physical time-derivative terms are discretized with a second order backward difference scheme.  

The code resorts to a multigrid strategy to accelerate the convergence, associated with a local time stepping and an 

implicit residual smoothing. 

The numerical model was adapted to treat the cavitation process [Coutier-Delgosha et al., 2001a]. The key point of 

this adaptation is the modification of the state law of the fluid. Applied barotropic law implies the simultaneous 

treatment of two different cases: the fluid is highly compressible in the liquid/vapour mixture (the Mach number can 

be as high as 4 or 5 ) and is almost incompressible in the pure vapour or pure liquid areas. So the main difficulty 

consisted in managing these two different states of the fluid, without creating any spurious discontinuity in the flow 
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field. Besides, cavitation consists in a very sharp and very rapid process. The density variations in time and space are 

smoothed to avoid numerical instabilities.  
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Figure 7: The barotropic state law ρ(P) for water. 

 

The model was applied to the presented centrifugal pump geometry. 300.000 cells multi-blocks mesh of one single 

blade-to-blade channel was used (Figure 8). Conditions applied for the simulations are the following:  

- Turbulence model: we use for the simulations presented in this paper a Baldwin-Lomax turbulence model.  

- Boundary conditions: Velocity is imposed at the inlet of the suction pipe. Laws of the wall are imposed along 

solid boundaries. The relative motion between the inlet pipe walls and the runner is taken into account. On the 

other hand, the outlet housing shape is not described and the parallel walls are treated as hub and shroud 
extensions up to the outlet, at 1.5 times the runner outer radius, where a uniform static pressure is imposed. 

- Initial transient treatment: First of all, a steady step is carried out, with a pseudo vapour pressure low enough to 

ensure non cavitating conditions in the whole computational domain. Then, the NPSH is slowly lowered by 

increasing smoothly the pseudo vapour pressure at each new time step up to the physical value. Vapour structures 

spontaneously appear and grow during that process, in the regions of low static pressure. The final NPSH value, 

depending on the outlet static pressure imposed, is then kept constant throughout the computation. 

 
Figure 8. View of the mesh on shroud side of the pump. 

(the entire pump geometry is reconstructed by rotation of the single blade-to-blade channel) 

 

5. Non-cavitating characteristics 
Experimental tests and numerical calculations were performed considering a large range of flow-rates, in non-
cavitating conditions. Figure 9a illustrates the computational result at nominal flow rate: the total pressure elevation 

is represented in the middle of the pump channels. Figure 9b presents a comparison between the numerical and 

experimental performance charts. Directly based on the measurements performed, the head of the pump is defined as 

the difference between downstream static pressure and upstream total pressure. 

We observe a reliable agreement between the pump characteristics given by measurement and computation in the 

whole range of flow rates investigated experimentally. The model gives a better prediction when the flow rate is over 
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50% of the nominal value (Qn = 210m3/h), and the numerical simulation becomes unstable at very low partial flow 

rate. As a matter of fact, the numerical simulation slightly overestimates the pump head. This is an expected result, 

since the flow through the side chamber is not taken into account in numerical simulations. This gap flow of the 

pump impeller has to be added to the flow rate actually passing through the blade-to-blade channels and is therefore 

slightly higher in the experiments than in the model. At nominal flow rate, the head is overestimated of about 5% 

(40.5m instead of 38.5m). The uncertainty on the measured value was estimated to max. 80 cm and corresponds to 

2% of the value, which also has to be taken into account. 
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Figure 9a. Total pressure field in the pump  

(nominal flow rate) 
9b.Characteristics H(Q) of the pump 

 

7. Cavitation behaviour 
Numerical simulation of the cavitation characteristics of the pump was performed at different flow rates. The shape 

of the cavitating structures is first compared to the experimental visualisations presented above at nominal flow rate. 

When the NPSH decreases in the calculation, attached cavitation sheets grow both on the suction side and on the 

pressure side, as observed experimentally. Moreover, vapour structures appear at the inlet radius of the shroud. This 

cavitation caused by the local curvature of the streamlines is fully consistent with the observations reported 

previously. The visualisation obtained in Figure 3 is applied to the computational result to enhance the reliable 
agreement. The cavitation number was adjusted to give the same global extent of the cavitation structures than in the 

experiment: the numerical result then corresponds to a NPSH about 10% lower than the experimental one (7 m, 

instead of 8 m). The three cavitation areas are correctly simulated by the code (Figure 10): attached cavity on the 

suction side (A), extent of cavitation on the shroud along the blade (B), and cavitating flow on the inlet radius of the 

shroud (C). In the computation, attached sheet cavity (A) and extent on the shroud (B) belong to the same vapour 

structure, while they look like two separated regions in the experiment.  

 

 
Figure 10. Vapour structures on suction side (experiment NPSH=8m, computation NPSH = 7m).  

Calculation: iso-density contour (ρ ≈ 0.95ρl: void ratio >5%) drawn in yellow, shroud in blue, blade in grey 
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Figure 11 shows the attached cavity on the pressure side of the blade. Its size is compared to the mean distribution 

obtained from grey level averaging (Figure 5). Both experimental and numerical NPSH values are equal to 7m. The 

calculated cavity appears here smaller than the experimental one. Moreover, only the steady attached part of the 

cavity on the pressure side is obtained by the computation. The transient vapour structures in the unsteady cavity 

closure are not simulated. Actually this is still a limitation of the physical and numerical model. In this case mesh 

size and standard turbulence model used do not allow to catch correctly the cloud shedding process downstream from 

the attached cavity. An ongoing work is pursued to improve this aspect. 

 

 

  
Figure 11: a) Numerical density distribution ; b) pressure side cavity, comparison with experiment (NPSH = 7m). 

 

We summarize in Figure 12 the whole comparison, by drawing the head drop curves for three different flow rates: 

namely 0.8Qn, Qn and 1.08Qn. From the numerical point of view, while decreasing the NPSH, the performance drop 

appears first as a smooth decrease of the pump head. The final head-drop is only partially simulated because the 

computation rapidly becomes unstable and stops (this is more particularly the case at 1.08Qn). Our upstream 

boundary condition consists in imposing in a strict manner the mass flow rate passing in the pump. Because the 

coupling between the pump and the hydraulic loop is not taken into account, the effects of the cavitation blockage on 
the flow rate are neglected and the head-drop is less progressive than in the experiments.  

Results obtained from first simulation of the pump cavitation behaviour are promising: the head drop is predicted 

with a good homogeneity with respect to the three flow rates. The NPSH values obtained for the 3% and 10% head 

drop are globally overestimated with respect to experimental values (of about 1m for the 10% head drop, and 1.5 to 3 

m for the 3% head drop, see Figure 13). These results correspond to our first try of predicting the cavitation 

characteristic of a pump, and a study of the effect of the model parameters (e.g. the Amin value in the state law is set 

to 2 m/s in that computation or the turbulence model) might probably improve the quantitative agreement. 
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8. Conclusion 
Numerical and experimental results were presented in this study, concerning a test runner with 2D curvature blade 

geometry. From the experimental point of view, besides the measurements of the cavitation characteristics of the 

pump in various conditions, a special visualisation set-up was developed to investigate the unsteady behaviour of 

leading edge cavitation. Image processing and statistical treatment of the photographs taken at given runner position 

allowed to quantify the attached and cloud cavitation extent.  
A numerical model of 3D cavitating flows, based on the 3D code FINE/TURBOTM, has been developed to predict the 

cavitation behaviour in turbomachinery [Coutier-Delgosha et al. 2001a,b]. This model was applied to the centrifugal 

pump geometry. Non-cavitating and cavitating conditions were investigated. Calculations were found to be in good 

agreement with experimental measurements and visualisations. Experimental and numerical results concerning the 

pump characteristics and performance breakdown were drawn at different flow conditions and the mean spatial 

distributions of vapour structures within the runner were compared. The results obtained show the ability of the 

model to simulate the main features of 3D cavitating flows in rotating machinery. However, the fluctuating two-

phase areas are not simulated and work is in progress to improve the numerical model in that way. 
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