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Lattice reduction in two dimensions:
analyses under realistic probabilistic models

Brigitte Vallée and Antonio Vera

CNRS UMR 6072, GREYC, Univetside Caen, F-14032 Caen, France

The Gaussian algorithm for lattice reduction in dimension 2 is precisely analysed under a class of realistic probabilistic
models, which are of interest when applying the Gauss algorithm “inside” the LLL algorithm. The proofs deal with
the underlying dynamical systems and transfer operators. All the main parameters are studied: execution parameters
which describe the behaviour of the algorithm itself as well as output parameters, which describe the geometry of
reduced bases.

Keywords: Lattice Reduction, Gauss’ algorithm, LLL algorithm, Euclid’s algorithm, probabilistic analysis of algo-
rithms, Dynamical Systems, Dynamical analysis of Algorithms.

1 Introduction

The lattice reduction problem consists in finding a short basis of a lattice of Euclidean space given an
initially skew basis. This reduction problem plays a primadlerin many areas of computer science

and computational mathematics: for instance, modern cryptanélysis [18], computer &lgébra [24], integer
linear programming [14], and number theary [7].

In the two-dimensional case, there exists an algorithm due to Lagrange and Gauss which computes in
linear time a minimal basis of a lattice. This algorithm is in a sense optimal, from both points of view of
the time-complexity and the quality of the output. It can be viewed as a generalization of the Euclidean
Algorithm to the two dimensional-case. Foe> 3, the LLL algorithm [13] due to Lenstra, Lenstra and
Lovasz, computes a reduced basis ohatimensional lattice in polynomial time. However, the notion of
reduction is weaker than in the case- 2, and the exact complexity of the algorithm (even in the worst-
case, and for small dimensions) is not precisely known. The LLL algorithm uses as a main procedure the
Gauss Algorithm.

This is why it is so important to have a precise understanding of the Gauss Algorithm. First, because this
is a central algorithm, but also because it plays a primalg inside the LLL algorithm. The geometry

of then-dimensional case is involved, and it is easier to well understand the (hyperbolic) geometry of the
complex plane which appears in a natural way when studying the Gauss Algorithm.
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The previous results. Gauss’ algorithm has been analyzed in the worst case by Lagarias, [11], then
Vallée [20], who also describes the worst-case input. Then, 8dtldjolet and Va#e [8] completed the

first work [9] and provided a detailed average-case analysis of the algorithm, in a natural probabilistic
model which can be called a uniform model. They study the mean number of iterations, and prove that
it is asymptotic to a constant, and thus essentially independent of the length of the input. Moreover, they
show that the number of iterations follows an asymptotic geometric law, and determine the ratio of this
law. On the other side, Laville and Va# [12] study the geometry of the outputs, and describe the law of
some output parameters, when the input model is the previous uniform model.

The previous analyses only deal with uniform-distributed inputs and it is not possible to apply these results
“inside” the LLL algorithm, because the distribution of “local bases” which occur along the execution of
the LLL algorithmis far from uniform. Akhavi, Marckert and Rouallt [2] showed that, even in the uniform
model where all the vectors of the input bases are independently and uniformly drawn in the unit ball, the
skewness of “local bases” may vary a lot. It is then important to analyse the Gauss algorithm in a model
where the skewness of the input bases may vary. Furthermore, it is natural from the works of Akhavi [1]
to deal with a probabilistic model where, with a high probability, the modulus of the determinéamtwdet

of a basiqu,v) is much smaller than the product of the lengiilis |v|. More precisely, a natural model is

the so—called model of valuationwhere

|det(u, V)|

LMY el vz

<y|=06y"*Y), with (r>-1).

Remark that, whem tends to -1, this model tends to the “one dimensional model”, whexadv are
colinear. In this case, the Gauss Algorithm “tends” to the Euclidean Algorithm, and it is important to
precisely describe this transition. This model “with valuation” was already presented|in |21, 22] in a
slightly different context, but not deeply studied.

Our results. In this paper, we perform an exhaustive study of the main parameters of Gauss algorithm,
in this scale of distributions, and obtain the following results:

(i) We first relate the output density of the algorithm to a classical object of the theory of modular
forms, namely the Eisenstein series, which are eigenfunctions of the hyperbolic Laplacian [Theorem 2].

(ii) We also focus on the properties of the output basis, and we study three main parameters: the first
minimum, the Hermite constant, and the orthogonal projection of a second minimum onto the orthogonal
of the first one. They all play a fundamentéle in a detailed analysis of the LLL algorithm. We relate
their “contour lines” with classical curves of the hyperbolic complex plane [Theorem 3] and provide sharp
estimates for the distribution of these output parameters [Theorem 4].

(ii ) We finally consider various parameters which describe the execution of the algorithm (in a more
precise way than the number of iterations), namely the so—called additive costs, the bit-complexity, the
length decreases, and we analyze their probabilistic behaviour [Theorems 5 and 6].

Along the paper, we explain théle of the valuationr, and the transition phenomena between the Gauss
Algorithm and the Euclidean algorithms which occur when —1.

Towards an analysis of the LLL algorithm. The present work thus fits as a component of a more
global enterprise whose aim is to understand theoretically how the LLL algorithm performs in practice,
and to quantify precisely the probabilistic behaviour of lattice reduction in higher dimensions.
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Figure 1: On the left: experimental results for the ratib/n) Iog% [here,n is the dimensionb; is the first
vector of the LLL reduced basis and dles the determinant of the lattidd. On the right, the output distribution of

“local bases” for the LLL algorithm (see Sectidns]3.8 4.7).

We are particularly interested in understanding the results of experiments conducted by1&kvhich

are summarized in Figufé 1. We return to these experiments and their meanings in[Sefction 3.8. We explain
in Sectior] 4.J how our present results may explain such phenomena and constitute a first (important) step
in the probabilistic analysis of the LLL algorithm.

Plan of the paper. We first present in Sectidr) 2 the algorithms to be analyzed and their main parameters.
Then, we present a complex version of these algorithms, which leads to view each algorithm as a dynami-
cal system. Finally, we perform a probabilistic analysis of such parameters: g¢ction 4 is devoted to output
parameters, whereas Sectjign 5 focuses on execution parameters.

2 The lattice reduction algorithm in the two dimensional-case.

A lattice £ c R" of dimensionp is a discrete additive subgroup Bf'. Such a lattice is generated by
integral linear combinations of vectors from a famBy.= (by,bo,...bp) of p < n linearly independent
vectors ofR", which is called a basis of the lattiag A lattice is generated by infinitely many bases that
are related to each other by integer matrices of determitdntLattice reduction algorithms consider
a Euclidean lattice of dimensiomin the ambient spacB" and aim at finding a “reduced” basis of this
lattice, formed with vectors almost orthogonal and short enough.

The LLL algorithm designed in [13] uses as a sub-algorithm the lattice reduction algorithm for two
dimensions (which is called the Gauss algorithm) : it performs a succession of steps of the Gauss algorithm
on the “local bases”, and it stops when all the local bases are reduced (in the Gauss sense). This is why it
is important to precisely describe and study the two—dimensional case. This is the purpose of this paper.
The present section describes the particularities of the lattices in two dimensions, provides two versions
of the two—dimensional lattice reduction algorithm, namely the Gauss algorithm, and introduces its main
parameters of interest.
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Figure 2: A lattice and three of its bases represented by the parallelogram they span. The basis on the left is minimal
(reduced), whereas the two other ones are skew.

2.1 Lattices in two dimensions.

Up to a possible isometry, a two—dimensional lattice may always be considered as a sigsét/iih a
small abuse of language, we use the same notation for denoting a complex muniband the vector of
R? whose components af@lz [0z). For a complex, we denote byz| both the modulus of the complex
z and the Euclidean norm of the vectgrfor two complex numbers, v, we denote byu-v) the scalar
product between the two vectansandv. The following relation between two complex numbars will
be very useful in the sequel

v_ (u \2/) .det(uz,v) )

u -l ul

A lattice of two dimensions in the complex plafdgis the setZ of elements ofC (also called vectors)
defined byL = Zu® Zv = {au+bv, a,b € Z}, where(u,v), called abasis is a pair ofR-linearly
independent elements 6f Remark that in this case, due [¢ (1), one bigg/u) # 0.

Amongst all the bases of a latticg, some that are called reduced enjoy the property of being formed
with “short” vectors. In dimension 2, the best reduced basesrémanal bases that satisfy optimality
properties: defina to be a first minimum of a lattic& if it is a nonzero vector ofL that has smallest
Euclidean norm; the length of a first minimum 6fis denoted by\1(£). A second minimunv is any
shortest vector amongst the vectors of the lattice that are linearly independenhefEuclidean length
of a second minimum is denoted By(L). Then a basis isinimalif it comprises a first and a second
mininum (See Figurg]2). In the sequel, we focus on particular bases which satisfy one of the two following
properties:

(P) it has a positive determinant [i.e., detv) > 0 or O(v/u) > 0]. Such a basis is callgabsitive

(A) it has a positive scalar product [i.éu-v) > 0 or 0(v/u) > 0]. Such a basis is callatute
Without loss of generality, we may always suppose that a basis is acute (resp. positive), sincgione of
and(u,—v) is.
The following result gives characterizations of minimal bases. Its proof is omitted.

Proposition 1. [Characterizations of minimal bases.]
(P) [Positive bases.]Let (u,V) be a positive basis. Then the following two conditions (a) and (b) are
equivalent:
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(a) the basis (u,V) is minimal;
(b) the pair (u,Vv) satisfies the three simultaneous inequalities:

v v 1 v
Po): |=1=1, P): |O()| <3 d (P3): O(-)>0
(PO Y21 (R D(DI<5  and (R): O(Y)>
(A) [Acute bases.] Let (u,v) be an acute basis. Then the following two conditions (a) and (b) are
equivalent:
(@) the basis (U,V) is minimal;
(b) the pair (u,V) satisfies the two simultaneous inequalities:

NI

(A1) : |\é\21, and (Az): 0< D(E)S

2.2 The Gaussian reduction schemes.

There are two reduction processes, according as one focuses on positive bases or acute bases. According
as we study the behaviour of the algorithm itself, or the geometric characteristics of the output, it will

be easier to deal with one version than with the other one: for the first case, we will choose the positive
framework, and, for the second case, the acute framework.

The positive Gauss Algorithm. The positive lattice reduction algorithm takes as input a positive ar-
bitrary basis and produces as output a positive minimal basis. The positive Gauss algorithm aims at
satisfying simultaneously the conditio(B) of Proposition 1. The conditiond>) and(Ps) are simply
satisfied by an exchange between vectors followed by a sign chargev. The condition(P;) is met

by an integer translation of the type:

vVi=v—qu with g:=[t(vu)], Tt(WUu):= D(%) = 2

where | x] represents the integer nearest to the )@aIAfter this translation, the new coefficientv, u)
satisfies 0< 1(v,u) < (1/2).

PGauss(u,v)
Input. A positive basigu,v) of C with |v| < |u|, [T(v,u)| < (1/2).
Output. A positive minimal basigu,v) of £(u,v) with |v| > |u].

While  |v] <|u| do

(u,v) == (v, —u);
q:=[t1(wu)l,
Vi=v—(qu;

T The function| ] is defined agx+1/2| for x> 0 and|x] = —| —x] for x < 0.
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On the input pai(u,v) = (vo, V1), the positive Gauss Algorithm computes a sequence of vegtdesined
by the relations

Vier=—Vici+Givi - with gii=[T(vi-1,vi)]. ®3)
Here, each quotiert} is an integer ofZ, P(u,v) = p denotes the number of iterations, and the final pair
(Vp,Vp+1) satisfies the conditiond) of Proposition 1. Each step defines a unimodular mafjxwith

det; =1,
- (G -1 - Vier \ _af Vi
M.—<l 0), with ( v >_M'<Vi1>’

so that the Algorithm produces a mattif for which
("P“):M("l) with 9 = M- My _1-...- M. (4)

The acute Gauss Algorithm. The acute reduction algorithm takes as input an arbitrary acute basis and
produces as output an acute minimal basis. ThisuA&s algorithm aims at satisfying simultaneously the
conditions(A) of Proposition 1. The conditiof?) is simply satisfied by an exchange, and the condition
(A2) is met by an integer translation of the type:

v:=¢g(v—qu) with q:=|t(vUu)], € =sign(t(v,u) — [T(vu)]),

wheret(v,u) is defined as in[(2). After this transformation, the new coefficigntu) satisfies 0<
T(wu)l < (1/2).

AGAUSS(u,V)

Input. An acute basigu, V) of C with |v| < |u|, 0 <Tt(v,u) < (1/2).
Output. An acute minimal basiéu,v) of £L(u,v) with |v| > |u].
While |v| <|u| do

(U,v) = (v u);
q:= [t(vu)] ;&= sign(t(v,u) — [T(vu)}),
v:=¢g(v—qu);

On the input pait(u,v) = (Wp,ws ), the Gauss Algorithm computes a sequence of veatpdefined by
the relations wir1 =& (W_1—Gw) with
G = [t(Wi—1,wi)], & =sign(T(Wi—1,Wi) — [T(Wi—1,Wi)]). (5)

Here, each quotierdj is a positive integerp = p(u,v) denotes the number of iterations [this will be the
same as the previous one], and the final pa, wp, 1) satisfies the condition@\) of Proposition 1. Each
step defines a unimodular matei§ with detAf = ¢ = +1,

7\6=<_81iqi %'), with <W\;\Zl>:9\d(w\?ﬁl)’

so that the algorithm produces a matfifor which

( WVF\)I;:l ) :9\5( o ) With A= Ao Np_i-..- 26.
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Comparison between the two algorithms. These algorithms are closely related, but different. The
AGAuUss Algorithm can be viewed as a folded version of theAGs Algorithm, in the sense defined in
[4]. We shall come back to this fact in Sectjon|3.3. And the following is true:

Consider two bases: a positive basis (Vo, V1), and an acute basis (Wo, W) that satisfy Wo = Vo and Wy =
Nivi with N1 = £1. Then the sequences of vectors (Vi) and (W;) computed by the two versions of the
Gauss algorithm (defined in Eq.(3),(3)) satisfy w; = n;V; for some n; = +1 and the quotient G is the
absolute value of quotient .

Then, when studying the two kinds of parameters —execution parameters, or output parameters— the two
algorithms are essentially the same. As already said, we shall use thesRB@lgorithm for studying
the output parameters, and the AGss Algorithm for the execution parameters.

2.3 Main parameters of interest.
The size of a paifu,v) € Z[i] x Z][i] is

£(u,v) := max{((|u?),£(v?)} = £ (max{|ul?,[vI*}),

where/(x) is the binary length of the integ&r The Gram matribXG(u, v) is defined as

= (M, 9).

u-v) v

In the following, we consider subses, which gather all the (valid) inputs of si relative to each ver-
sion of the algorithm. They will be endowed with some discrete probaliijjtyand the main parameters
become random variables defined on these sets.

All the computations of the Gauss algorithm are done on the Gram matBicesvi1) of the pair
(vi,Vi11). Theinitialization of the Gauss algorithreomputeshe Gram Matrix of the initial basis: it
computes three scalar products, which takegiadratic timE] with respect to the length of the input
£(u,v). After this, all the computations of theentral partof the algorithmare directly doneon these
matrices; more precisely, each step of the process is a Euclidean division between the two coefficients of
the first line of the Gram matri%(v;,vi_1) of the pair(v;,vi_1) for obtaining the quotien;, followed
with the computation of the new coefficients of the Gram ma&{x 1, Vi), namely

Nigal? = Vica P =200 (- vic) + S (Ve V) = g P = (Ve vi).
Then the cost of theth step is proportional té(|q;|) - (|vi|?), and the bit-complexity of the central part
of the Gauss Algorithm is expressed as a function of

p(u,v)
BuY) = 3 £(la) (P, (6)

where p(u,v) is the number of iterations of the Gauss Algorithm. In the sedBelill be called the
bit-complexity.

* we consider the naive multiplication between integers of Blizashose bit-complexity i©(M?) .
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The bit-complexityB(u, V) is one of our parameters of interest, and we compare it to other simpler costs.
Define three new costs, the quotient bit-cQgt,v), the difference cosb(u,v), and the approximate
difference cosD:

p(uv)

p(u,v)
Qu,v) = ZI ((ail),  D(uv) = ; C(lail) [ e(wil?) —e(vol?)] 7

p(uv) v
D(u.v)i=2 5 Ulal)lg| .
which satisfyD(u,v) — D(u,v) = O(Q(u,Vv)) and

B(u,v) = Q(u,V) £(|u]?) + D(u,v) + [D(u,v) — D(u,v)]. (8)

We are then led to study two main parameters related to the bit-cost, that may be of independent interest:

(a) The so-called additive costs, which provide a generalization of Qosthey are defined as the
sum of elementary costs, which only depend on the quotgntsore precisely, from a positive
elementary cost defined orlN, we consider the total cost on the indutv) defined as

Cowv)= 3 al). ©)

When the elementary cossatisfiesc(m) = O(logm), the cosC is said to be of moderate growth.

(b) The sequence of thieth length decrease (for i € [1..p]) and the total length decreade= dj,

defined as
Vi 2 2

Vo

Vp
Vo

di = - (10)

)

Finally, the configuration of the output bagi8 V) is described via its Gram—Schmidt orthogonalized
basis, that is the systefd*, V) whereu* := 0 andv* is the orthogonal projection efdnto the orthogonal
of <d>. There are three main output parameters closely related to the minima of the f4tiice,

_ |detu,v)|

A(U,v) == A1 (L(u,v)) = [0], H(u,v) = W = |\7*|7 (11)

LNy AWy fd
YUY Thequy)] — wwy) o] (12)

We come back later to these output parameters.

3 The Gauss Algorithm in the complex plane.

We now describe a complex version for each of the two versions of the Gauss algorithms. This leads
to view each algorithm as a dynamical system, which can be seen as a (complex) extension of (real)
dynamical systems relative to the centered Euclidean algorithms. We provide a precise description of
linear fractional transformations (LFTs) used by each algorithm. We finally describe the (two) classes of
probabilistic models of interest.
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3.1 The complex framework.

Many structural characteristics of lattices and bases are invariant under linear transformations —similarity
transformations in geometric terms— of the fo8n: u+— Auwith A € C\ {0}.

(a) Afirstinstance is the execution of the Gauss algorithm itself: it should be observed that translations
performed by the Gauss algorithms only depend on the quanftity) defined in ), which equals
O(v/u). Furthermore, exchanges dependwafu|. Then, ifv; (or w;) is the sequence computed by
the algorithm on the inputu,v), defined in Eq.[(B8)[(5), the sequence of vectors computed on an
input pairS, (u,v) coincides with the sequen&(vi) (or S,(w;)). This makes it possible to give a
formulation of the Gauss algorithm entirely in terms of complex numbers.

(b) A second instance is the characterization of minimal bases given in Proposition 1 that only depends
on the ratioz = v/u.

(c) A third instance are the main parameters of interest: the execution paramMefzsdefined in
(7[9110) and the output parametarsL, y defined in [(1if,12). All these parameters admit also com-
plex versions: FoX € {A,u,y,D,C,d}, we denote byX(z) the value ofX on basis(1,z). Then,
there are close relations betweX(u,v) andX(z) for z=v/u:

X(u,Vv)

X(z) = T for Xe{Au}, X(z) =X(u,v), for Xe{D,C,d,y}.

It is thus natural to consider lattice bases taken up to equivalence under similarity, and it is sufficient to
restrict attention to lattice bases of the foffnz). We denote by (z) the lattice£(1,z). In the complex
framework, the geometric transformation effected by each step of the algorithm consists of an inversion-
symmetryS: z— 1/z, followed by a translatioa — T 9z with T(z) = z+ 1, ans a possible sign change
J:z— —2

The upper half planél := {ze C; 0(z) > 0} plays a centraldle for the PQuss Algorithm, while the

right half plane{ze C; O(z) > 0, 0(z) # 0} plays a centraldle in the AGauss algorithm. Remark

just that the right half plane is the unid@ih,. UJH_ whereJ : z+— —zis the sign change and

H, :={zeC; 0O(2 >0,0(z) >0}, H_:={zeC; 0O(2 >0,0(z) <0}

3.2 The dynamical systems for the GAuss algorithms.
In this complex context, the PAbss algorithm brings into the vertical stripB,. U B_ with

QS:{ZGH; |D(z)|§;}, B, =BNH,, B =3BNH_,
reduces to the iteration of the mapping
1 1 1 1
ue=-3+[o(3)]=-3-[2(-)] )
and stops as soon aselongs to the domaiff = #, U F_ with

Tz{zeH; |7 > 1, |D(z)|§;}, Fr=FnH,, F :=FnNH_. (14)
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Such a domain, represented in Figlfe 3, is familiar from the theory of modular forms or the reduction
theory of quadratic forms_[17].

Consider the paifB,U) where the map) : B — B is defined in[(1B) foz € B\ ¥ and extended tg with

U(z) =zfor ze . This pair(B,U) defines a dynamical system, affdcan be seen as a “hole”: since

the PGuuss algorithm terminates, there exists an inde% 0 which is the first index for whickJ P(z)
belongs toF . Then, any complex number & gives rise to a trajectorg,U (z),U?(2),...,UP(z) which

“falls” in the hole F, and stays insidg as soon it attaing . Moreover, sincef is a fundamental domain

of the upper half plan&l under the action OIPSL;Z(Z)E], there exists a tesselationkfwith transforms of

F of the formh(F) with h € PSLx(Z). We will see later that the geometry 8f\ 7 is compatible with

the geometry off .

]:—i-
0,1) \

/—\ 0.0 BN\ ﬁ_

I

Figure 3: The fundamental domaing, ? and the stripsB, B,

In the same vein, the AGuss algorithm brings into the vertical strip
~ 1
'B{ZG(C; O(z) #0, 0§D(z)§2}£B+UJfB,

reduces to the iteration of the mapping

U(z):s<1) <1—LD <1)D with  €(2) := sign(0(2) — |0(2)]), (15)

4 4 4

§ We recall thaPSlLy(Z) is the set of LFT’s of the fornfaz+b)/(cz-+d) with a,b, c,d € Z andad — bc = 1.
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and stops as soon aselongs to the domaigf

i:{zec; Iz >1 oSD(z)g;}:ﬁqu_. (16)

Consider the palfiB U) where the ma;bJ B — B is defined in( ‘) foz e QS\? and extended tef

with U(z) = zfor ze . This pair (B, U) also defines a dynamical system, afictan also be seen as a
“hole”.

3.3 Relation with the centered Euclid Algorithm.

Itis clear (at least in an informal way) that each version of Gauss algorithm is an extension of the (cen-
tered) Euclid algorithm:

(i) for the PGuuss algorithm, it is related to the Euclidean division of the fovs: qu+r with |r| €
[0,4u/2]

(i) for the AGauss algorithm, it is based on the Euclidean division of the forms: qu+ er with
e:=+1r€[0,4+u/2].
If, instead of pairs, that are the old pdir,v) and the new pai(r,u), one considers rationals, namely the
old rationalx = u/v or the new rationay = r /u, each Euclidean division can be written with a map that
expresses the new rationahs a function of the old rational asy =V (x) (in the first case) oy = V( )
(in the second case). With:= [-1/2,+1/2] and ] := [0,1/2], the maps/ : I — I orV : 1 — I are
defined as follows

V(x):= )—1( - Ll(-‘ , forx#0, V(0)=0, a7
V(X) —s(i) ()1(— m> forx#0, V(0)=0. (18)

[Here,g(x) := sign(x— |x])]. This leads to two (real) dynamical systeiiisV) and(1,V) whose graphs

are represented in Figyrg 4. Remark that the tilded system is obtained by a folding of the untilded one (or
unfolded one), (first along theaxis, then along thg axis), as it is explained in_[4]. The folded system

is called the F-EBcLID system (or algorithm), whereas the unfolded one is called thesdtb system

(or algorithm).

Of course, there are close connections betwéeand —V on the one hand, arid andV on the other
hand: Even if the complex systert8,U) and(ﬁ? U) are defined on strips formed with complex numbers
zthat are not real (i.e[]z# 0), they can be extended to real inputs “by contmwty This defines two
new dynamical system(®,U) and3 ,U), and the real systenig, —V) and(1,V) are just the restriction

of the extended complex systems to real inputs. Remark now that the fundamental dﬁnﬁlme no
longer “holes” since any real irrational input stays inside the real interval and never “falls” in them. On
the contrary, the trajectories of rational numbers end at 0, and finally each rational is mapped to

3.4 The LFT's used by the PGauss algorithm.

The complex numbers which intervene in the RGs algorithm on the inputy = v1/vp are related to
the vectors(v;) defined in ) via the relatiog = vi;1/v;. They are directly computed by the relation
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Figure 4: The two dynamical systems underlying the centered Euclidean algorithms: on the left, the unfolded one
(U-EucLID); on the right, the folded one (F+ELID)

Z11:=U(z), so that the old;_1 is expressed with the new omeas

: 1
z1=hm(z), with hp(z):= ——

This creates a continued fraction expansion for the initial compjeaf the form
70 =h(zp) with h:= h[ml] o h[mz] o... h[mp],

which expresses the inpat= zy as a function of the output= z,. More generally, thé-th complex
numberz satisfies
z = hi(zp) with  hi i= N johm, 0. h[mp].

Proposition 2. The set G of LFTs h: z— (az+b)/(cz+d) defined with the relation z= h(2) which sends
the output domain F into the input domain B\ F is characterized by the set Q of possible quadruples
(a,b,c,d). A quadruple (a,b,c,d) € Z* with ad— bc = 1 belongs to Q if and only if one of the three
conditions is fulfilled

(i)(c=1orc>3)and (|a <c/2);

(i)c=2,a=1,b>0,d>0;

(li)c=2,a=-1,b<0,d<0.
There exists a bijection betweeh and the sef? = {(c,d); c¢> 1,gcd(c,d) =1}. On the other hand,
for each pair(a, c) in the set

C:={(a0); g €[-1/2,+1/2], ¢ > 1;geda,c) = 1}, (19)

any LFT of G which admitg(a, c) as coefficients can be writtenlas= hi, o) o T9 with g € Z andh, o) (2) =
(az+hyp)/(cz+do), with |bo| < |a/2|, |do| < |c/2].
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Figure 5:  On the left, the “central” festoor¥g1). On the right, three festoons of the strif relative to
(0,1),(1,3),(—1,3) and the two half-festoons &t1,2) and(1,2).

Definition. [Festoons]If G, denotes the set of LFT’s of G which admit (a,C) as coefficients, the
domain

T(aa,c) = U h(f) = h(aﬁc) (U Tq?) (20)

he Glac) qeZ

gathers all the transforms of h( ) which belong to B\ F for which h(ie) = a/c. It is called the festoon
ofa/c.

Remark that, in the case when= 2, there are two half-festoons gt2land—1/2 (See FigurE]S).

3.5 The LFT's used by the AGAuss algorithm.

In the same vein, the complex numbers which intervene in theyg3 algorithm on the inputy = wy /wo
are related to the vectofsy;) defined in ) via the relatiog = wi1/w;. They are computed by the
relationz 1 :=U(z), so that the old;_ is expressed with the new ogeas

_ 1
 m+ez

Z1=hme(2) with  hime) (2)
This creates a continued fraction expansion for the initial compjeaf the form

L= F‘(Zp) with h:= Ny e1) © Nimy ) © - - - h<mpv£p>'

More generally, thé-th complex numbez; satisfies

z=hi (Zp) with Hi = h<n1+1>5i+1> © h<m-¢—275i+2> O h<mp=£p>' (21)
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We now explaln the particulable which is played by the dis® of diameter] = [0,1/2]. F|gure@5 shows
that the domamB\ D decomposes as the union of six transforms of the fundamental dgmaiamely

B\D=Jh(F) with K:={,SSTIST,ST2,STAS}. (22)
he K

This shows that the dist0 itself is also a union of transforms of the fundamental domfainRemark
that the situation is different for the P@ss algorithm, since the frontier ab lies “in the middle” of
transforms of the fundamental domain(see Figurg6).

— ST2JSF~

Figure 6: On the left, the six domains which constitute the dom&in\ D,. On the right, the diskD is not
compatible with the geometry of transforms of the fundamental donsains

As Figure[T shows it, there are two main parts in the execution of theuss Algorithm, according to
the position of the current complexwith respect to the diskD whose equation is

D:={z O (i) > 2}

While z belongs toD, the quotient{m;, €;) satisfies(my, &) > (2,+1) (wrt the lexicographic order), and
the algorithm uses at each step the set

H = {hmeys  (Me) > (2,4+1)}
so thatD can be written as
D= J h(B\D) with #H":= S k. (23)
he#+ k>1

The part of the AQussalgorithm performed when belongs taD is called the ©REGAUSS algorithm.
The total set of LFT’s used by thedREGAUSS algorithm is then the sel ™ = Uy-1HX. As soon ag,
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does not any longer belong b, there are two cases. #f belongs tof, then the algorithm ends. bui
belongs toﬁv%\ (? U D), there remains at most two iterations (due@ (22) and F@ire 6), that constitutes
the ANAL Gauss algorithm, which uses the s& of LFT’s, called the final set of LFT's. Finally, we
have proven:

Proposition 3. The set é formed by the LFT’s which map the fundamental domain ﬁ' into the set B \ 9~7
decomposes as G = (H*- K)\{l} where

y{*;:z}[k, H = {hme; (Me) > (2,+1)}, K :={1,SSTJIST,ST2J,STAS}.
k>0

Here, if D denotes the disk of diameter [0,1/2)], then H* is the set formed by the LFT’s which map %\ D

into D and X is the final set formed by the LFT’s which map 5~F into 53 \ D. Furthermore, there is a
characterization of H* due to Hurwitz which involves the golden ratio = (1++/5)/2:

az+b
H:={h(z) = azth. (a,b,c,d) € Z* b,d > 1,ac> 0,
cz+d
c d 1 c¢ 1
|ad—bc =1, |a < u7b§ —,——< =<}
2 27 ¢ d o
COREGAUSS(2) FINAL GAUSS(2)
Input. A complex number irD. Input. A complex number inNBliD.
Output. A complex number irB\ D. Output. A complex number inf.
While ze Ddo z:=U(2); While z¢ F do z:=U(2);
AGAUSS(z)

Input. A complex number imB \ 7.
Output. A complex number infF.

COREGAUSS (2);
FINAL GAUSS (2);

Figure 7: The decomposition of the AGss Algorithm.

3.6 Comparing the COREGAUSS algorithm and the F-EucLID algorithm.

The CoREGAUSS algorithm has a nice structure since it uses at each step the sarhe Stis set is
exactly the set of LFT’s which is used by the R+&.1D Algorithm relative to the dynamical system
defined in[(IB). Then, the @REGAUSS algorithm is just a lifting of this F-BEcLID Algorithm, whereas
the final steps of the A@ussalgorithm use different LFT’s, and are not similar to a lifting of a Euclidean
Algorithm. This is why the @ REGAUSS algorithm is interesting to study: we will see in Secfion 5.3 why
it can be seen as an exact generalization of theuE+ED algorithm.
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Figure 8: The domaingR = k] alternatively in black and white.

Consider, for instance, the numbRrof iterations of the @REGAuUsSs algorithm. Then, the domain
[R> k+ 1] gathers the complex numbezgor which UX(z) are inD. Such a domain admits a nice
characterization, as a union of disjoint disks, namely

R>k+1]= J h(D), (24)
he #k

which is represented in Figu@ 6. The dis®) for h € #H* is the disk whose diameter is the interval
[h(0),h(1/2)] = h(I). Inside the F-EBcLID dynamical system, the interva(1) (relative to a LFTh e
H¥) is called a fundamental interval (or a cylinder) of depthit gathers all the real numbers of the
interval I which have the same continued fraction expansion of diepthhis is why the diskh(D) is
called a fundamental disk.

This figure shows in a striking way the efficiency of the algorithm, and asks natural questions: Is it possible
to estimate the probability of the evelfR > k+ 1]? Is it true that it is geometrically decreasing? With
which ratio? These questions are asked (and answered) in [8], at least in the “uniform” model. We return
to these questions in Sectipn.5.

3.7 Probabilistic models for two dimensions.

Since we focus on the invariance of algorithm executions under similarity transformations, we assume
that the two random variablés| andz = v/u are independent and consider densifiesn pairs of vectors
(u,v) which are of the fornt (u,v) = f1(Ju|) - f(v/u). Moreover, it is sufficient to consider paifs, v) of
sizeM with a first vectoru of the formu = (c,0) with ¢(c?) = M. Finally, we define the discrete models
of sizeM as v
Qv = {(u,v) € Z* JEB\F, u=(c0 ((c?) =M},

Ou = {(uv) € 7% ‘ée%\?, u=(c,0) £(c®=M}.
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In both cases, the complex= v/u belongs taQ[i] and is of the forma/c) +i(b/c). When the integers

¢ andM tend too, this discrete model “tends” to a continuous model, and the defhsgydefined on a
subset ofC. It is sometimes more convenient to view this density as a function defin@f cand we
denote byf the functionf viewed as a function of two real variablegy. It is clear that the@les of two
variablesx,y are not of the same importance: the variaple 0(z) plays the crucial@le, whereas the
variablex = 0(2) plays an auxiliarydle. This is why the two main models that are now presented involve
densitiesf (x,y) which only depend ow.

Results of Akhavi([ll] and Akhavi, Marckert, Rouault [2] show that densities “with valuation” play a
natural Ble in lattice reduction algorithms. We are then led to consider the 2—dimensional(bages
which follow the so—called model of valuatior{with r > —1), for which

|det(u, V)|

W < Y| = @(y”rl), when y— 0.

Pl (uv);
We note that, when the valuatiortends to—1, this model tends to the “one dimensional model”, where
u andv are colinear. In this case, the Gauss Algorithm “tends” to the Euclidean Algorithm, and it is
important to precisely describe the transition. This model “with valuation” was already preserited in [21]
in a slightly different context, but not actually studied there.

The model with valuation defines a scale of densities, for which the weight of skew bases may vary. When
r tends to—1, almost all the input bases are formed of vectors which form a very small angle, and, with a
high probability, they represent hard instances for reducing the lattice.

In the complex framework, a densifyon the set§ ¢ C\ R is of valuationr (with r > —1) if it is of the
form

f(2 =102 -9(2) where g(z) #0 forO(z)=0. (25)
Such a density is called of tyge g). We often deal with the standard density of valuatipn
1
()= - |0@)  with Ar:// dxd 26
(@)= 575100 ()= [, ¥ oxdy (26)

Of course, whem = 0, we recover the uniform distribution oA\ # with A(0) = (1/12)(2m+3v/3).
Whenr — —1, thenA(r) is ©[(r +1)~1]. More precisely

r+1
1 (V3 4
AW‘H4<2> =log3-

Notations. The (continuous) model relative to a densitys denoted with an index of the forgf), and
when the valuation is the standard density of valuatidthe model is denoted with an index of the form
(r). The discrete models are denoted by two indices, the integelMsa the index which describes the
function f, as previously.

3.8 The LLL algorithm and the complex framework.

Consider a lattice oR" generated by a s& := {bs,by,...,by} of n independent vectors. The LLL
algorithm “reduces” the basB by successively dealing with two-dimensional latticdgsgenerated by
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the so-called local bas®&k: Thek-th local basiBy is formed with the two vectorsy, v, defined as the
orthogonal projection dfy, bk 1 on the orthogonal of the subspags, by, ...,bx_1). The LLL algorithm

is a succession of calls to the Gauss algorithm on these local bases, and it stops when all the local bases are
reduced (in the Gauss meaning). Then, the complex oatpléfined from(y, V) as in G) is an element

of the fundamental domaift. Figure 1 (on the right) shows the experimental distribution of outpyts ~

which does not seem to depend on in#lex[1..n]. There is an accumulation of points in the “corners” of

F, and the mean value of parameyes close to 1.04.

4 Analysis of the output parameters.

This section describes the probabilistic behaviour of output parameters: we first analyze the output den-
sities, then we focus on the geometry of our three main parameters defifiedl[in](11, 12). We shall use the
PGauss Algorithm for studying the output parameters.

4.1 Output densities.

For studying the evolution of distributions (on complex numbers), we are led to consider the 2—variables
functionh that corresponds to the complex mappatg h(z). More precisely, we consider the functibn

which is conjugated tov,w) — (h(v),h(w)) with respect to ma@, namelyh = @10 (h,h) o ®, where
mappingsd, @1 are linear mapping&? — C? defined as

oY) = (2=xtiy.z=x—1y), Y27 = (Z;”;Z) |
Since® and® 1! are linear mappings, the Jacobiimof the mappinch satisfies

Jhxy) = H'(2)-W(2)| = W (2) %, (27)

sinceh has real coefficients. Consider any measurableiset? . The final densityf on 4 is brought by
all the antecedenty2) for h € G, which form disjoints subsets &\ . Then,

/ f(%,9)dRdy — // f(x,y) dxdy
heg

Using the expression of the Jacobipn|(27), and interverting integral and sum lead to

// I (2)[2f o h(% §)dRdy = //( N (2)2f oh(R, ))d)”(d)?.
heg heg

Finally, we have proven:

Theorem 1. (i) The output density f on the fundamental domain F can be expressed as a function of the
input density f on B\ F as

fxy) =3 IM(@[foh®ry),
heG

where G is the set of LFTs used by the PGAUSS algorithm defined in Proposition 2.
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(i) In the same vein, the output density f on the fundamental domain F can be expressed as a function
of the input density f on B\ F as

fxy) =3 IN@Pfohxy).

heg

where é is the set of LFTs used by the AGAUSS algorithm defined in Proposition 3.

(iii ) Finally, the output density f on the domain B \ D can be expressed as a function of the input density
f onD as

fry =3 IN@Pfohry),
heH+

where H is the set of LFTs used by the COREGAUSS algorithm defined in Proposition 3.

4.2 The irruption of Eisenstein series.

We now analyze an important particular case, where the initial density is the standard density of valuation
r defined in ). Since each element@®fives rise to a unique pafc,d) with ¢ > 1,gcd(c,d) = 1 for
which

P | ey 1 ¥
|h (Z)| - ‘C2+d|47 froh(xay) - A(I’) |Ci+d|2r’ (28)
the output density off is  f,(%,y) = 1 > y . (29)
A(r)( ) -, [c2+d|H
21

It is natural to compare this density to the density relative to the measure relative to “random lattices”; in
the particular case of two dimensions, the ¥gt= SLy(R)/SLy(Z) is exactlﬂ] the fundamental domain

. Moreover, the measure of densififz)~2 is invariant under the action #fSly(Z): indeed, for any

LFT hwith deth = £1, one has

I0(h@)| = |02)|- N ()],  sothat // —dxdy:/ W @) g oy // ~ dxdy

Then, the probability, on F of densitﬂ

31

n(xy):=—

7 (30)

is invariant under the action ¢¥Sl»(Z). If we make apparent this densityinside the expression df
provided in [29), we obtain:

Theorem 2. When the initial density on B\ ¥ is the standard density of valuation r, denoted by f; and
defined in (26)), the output density of the PGAUSS algorithm on ¥ involves the Eisenstein series Es of

T Not exactly: up to a convenient definition &f on its frontier.
I'the integralff, n(xy)dxdy= 1.
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weight s= 2-+r: With respect to the Haar measure [l on F, whose density 1 is defined in (B0), the output
density f; is expressed as

. n y
fr (x,y) dxdy= %F@rr(x, y)n(x,y)dxdy where Fs(X,y) = (C’d)ﬂm.
c>1

is closely related to the classical Eisenstein series Es of weight S, defined as

1 y®
Es(x,y) :== 5 —
) 2 (cd)ez? lcz+ d|2S
(cd)£(00)

={(29)- [Fs(x.y) +Y7].

When r — —1, classical results about Eisenstein series prove that

1 .
r——

Tt
2(5— l) = 1m5+f(x7y) = 17

which imply that the ouput distribution relative to the input distribution of valuation r tends to the distri-
bution V7 relative to random lattices whenr — —1.

The serie€s are Maass forms (see for instance the baok [5]): they play an impoditenirthe theory of
modular forms, becauds is an eigenfunction for the Laplacian, relative to the eigenvallie- s). The
irruption of Eisenstein series in the lattice reduction framework was unexpected, and, at the moment, it is
not clear how to use the classical well-known properties of the Eisenstein Bgf@studying the output
densities.

4.3 Geometry of the output parameters.

The main output parameters are defined i (11,12).XFer{\, 1y}, we denote by(z) the value ofX
on basiq1,z), and there are close relations betwédn, v) andX(z) for z=v/u:

)\(U7V) = ‘U| ')\(2)7 U—(U7V) = ‘U| ! u(Z), V(U,V) = y(Z)
Moreover, the complex versions of paramefens, y can be expressed with the input—output gaig).

Proposition 4. If z= X1y is an initial complex number of B\ ¥ leading to a final complex 2= X+ 1y
of F, then the three main output parameters defined in (I 112)) admit the following expressions

R e R SR CE
Then, the following inclusions hold:
A2 =t] [D(z) > “ftﬂ . M@=uc|0@< éuﬂ . (31)

If z leads to 2 by using the LFT h € G with z=h(2) = (aZ+b)/(cz+d), then:

_|cz—af?

M) =lez-al, vz = u<z>:|czy_a|.
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_ : a\?2 P2 P
a\ 2 t?
Fa(a,c,t) = {<X7y)- y>07 (X_E) +y2§ ?}
Se(a,c,u) = {(xy); y>0, |y\<L ‘x—g‘} forcu<1
“Vi_ae! ¢ =
Se(a,c,u) = {(xy); y>0,} forcu>1

Figure 9: The three main domains of interest: the Ford dBk&, ¢, p), the Farey diskBa(a,c,t), the angular sectors
Se(a,c,u).

Proof. If the initial pair (v1,Vp) is written as in) as

(Vl) _ M—l (Vp+1> ’ with M71 = (2 3) and z= h(z) = af+b7

then the total length decrease satisfies

vpl? _ vpl> 1
Vol [cVpra+dvpl2  |c2+d?

=[n(2), (32)

[we have used the fact that déft = 1.] This proves thak?(z) equalglY(2)| as soon ag = h(2). Now, for
z=h(2), the relations

_ Y
 Jcz+d[?’

y

easily lead to the end of the proaf.

4.4 Domains relative to the output parameters.

We now consider the following well-known domains defined in Fiure 9. The Fordrdigk c,p) is a
disk of center(a/c,p/(2¢?)) and radiugp/(2¢?): it is tangent toy = 0 at point(a/c,0). The Farey disk
Fa(a,c,t) is a disk of centefa/c,0) and radiug/c. Finally, the angular sect@e(a, c,u) is delimited by
two lines which intersect &/ c, and form with the liney = 0 angles equal té-arcsir(cu). These domains
intervene for defining the three main domains of interest.

Theorem 3. The domains relative to the main output parameters, defined as
Fp):={zeB\7; v@<p}, At)={zeB\F; Az <t},

M(u):={ze B\ F; W2 <u}
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are described with Ford disks Fo(a,c,p), Farey disks Fa(a,c,t), and angular sectors Se(a,c,u). More
precisely, if F(q) denotes the Festoon relative to pair (a,C) defined in @) and if the set C is defined as

in (19), one has:

r(p)= U Fo(a,c,p) N Fac) A(t) = U Fa(a,Cc,t) N Fac)
(ac)eC (ac)ecC

M(u)= |J se(a,c,u)n Fag-
(ac)eC

Each “local” definition of seté\,[", M can be transformed in a “global definition” which ho more involves
the festoons. It involves, for instance, a subfamily of complete (intersecting) Farey disks)(for
quadrilaterals (foM) [see Figuré 10].

Define the subse®(t) of set? defined in Sectioh 3|4 as

P(t):={(c,d); cd>Lct<ldt<1(c+d)it>1/(cd) =1},

and, for a paifa/c,b/d) of rationals satisfyingd —bc= —1, denote byS(a/c,b/d) the intersection of
B\ F with the vertical strip{(a/c) <x < (b/d)}.

The “global” definition of domaim\(t) is provided in[12]: consider a paga/c,b/d) of rationals satisfy-
ing ad — bc= —1 whose denominator pafc,d) belongs taP(t). There exists a local characterization of
A(t)nS(a/c,b/d) which does not depend any longer on the festoons, namely

A(t)NS(a/c,b/d) = Fa, (a,c,t) UFa_ (b,d,t) UFa(a+b,c+d,t). (33)

Here Fa, (a,c,t),Fa_(b,d,t) are the half Farey disks formed with the intersectionsFafa,c,t),
Fa(b,d,t) with the stripS(a/c,b/d). The domain o ) is exactly the union of the two digks (a,c,t)
andFa_(b,d,t) if and only if the condition(c? + d* + cd)t? > 1 holds. The Farey disk relative to the
median(a+b)/(c+d) only plays a &le when(c? +d? +cd)t? < 1. This last condition is satisfied in
particular if maxct, dt) is smaller than 11/3, or, equivalently, when botbandd belong to the interval
[0,1/(tv/3)]. Whent — 0, the proportion of pairg¢a/c,b/d) for which the intersection of Eq3) is
formed with three disks tends tg'8.

Then the following inclusions hold (where the “left” union is a disjoint union)

| Fa(act)cAt)c |J Fa(act). (34)
(ac)ec (ac)eC
c<1/t ¢<2/(Va)

We now deal with the domais (u): consider a paifa/c, b/d) of rationals satisfyingd — bc= —1 whose
denominator paifc,d) belongs to?(u). Then, the denominatof of any rationale/f of the interval
Ja/c,b/d[ satisfiesfu > (c+d)u > 1, and the domaifie(g, f,u) N ¢ 1) €quals the whole festoofe, 1)
We obtain a characterization bf(u) which does not depend any longer on the festoons, namely

M(u)nsS(a/c,b/d) = Se(a,c,u)NSe(b,d,u)NSe(b—a,d—c,u). (35)
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&l

DO —

Figure 10: On the top: the domaifi(p) := {z Yy(2) < p}. On the left,p = 1 (in white). On the right,
the festoonff g 1) together withFo(0,1,p) for p=1,po = 2/+/3,p1 = (14 po)/2. — On the middle, the
domainA(t) N B., with A(t) := {z A(z) <t} fort=0.193 and = 0.12. — On the bottom, the domai

M(u)N By withM(u) :={z W(z) <u} foru=0.193 andu=0.12.

23
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The domain of) may coincide with the triangle(a, c,u) N Se(b,d,u) when the two sides of the
triangle intersect on the frontief, ) N Fpq). But, this is not always the case since the two sides of
the triangle may intersect inside the festo$_,q-c). In this case, the domain ﬂBS) is a “true”
quadrilateral. This last case occurs if and only if the conditich+ d? — cd)u® > (3/4) holds. This
condition is satisfied in particular if m{ou, du) is larger than,/3/2. This occurs in the intervéd/c, b/d]
when bothc andd belong to[(v/3/2)(1/u),1/u]. Whenu — 0, the proportion of pairga/c,b/d) for
which the intersection of Eqp (B5) is a “true” quadrilateral tends[10-21/3/2)]2.

4.5 Distribution functions of output parameters.

Computing the measure of disks and angular sectors with respect to a standard density of vdkedi®n
to the estimates of the main output distributions:

Theorem 4. When the initial density on B\ ¥ is the standard density of valuation r, the three main
output parameters admit the following distributions:

U2r+3) 2

]P(I’)[y(z) < p] = Al(r) ’ Z(2l’ +4) P for p<1,
PrA(2) <t] o(t'*?) for >0,
PrA(2) <t] = ©(t?|logt|) for r=0,
P(r) [)\(Z) < t] @(t2r+2) for r<Q,
Ppu@ <u = O *?).

In the case whenr > O, there are precise estimates for parameter A, whent — 0:

Z(r + 1) 472

PnA(2) <t] ~t—0 A f ,
(I’)[ (Z)— ] t—0 Z(r)Z(r+2) or r>0
1.
Pr[A(2) <t] ~—0 A2(0)5:t%|logt| for r=0.
(2
For any valuation r > —1, the following inequalities hold
r+1
1 1 (V3 42 2\ s
<t|>—x— | — <ul < — .
Pz <t] > AT TT1 ( 5 > te Pyy[u(z) < Ul < Ag(r) 73 u

The constants A (1) involve Euler’s Gamma function and the measure A(r) defined in @) in the following
way

_ VRT(r+3/2) _ VT2, 11

MO=an Tere 0 PO an ez P T AN G

Proof. [Sketch] First, the measure (wrt the standard density of valuajioh each basic domain (disks
of Farey or Ford type, triangles) is easy to compute. For a disk of radicentered on the real axis (resp
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tangent to the real axis), this measure equals(2p'2 (resp. A1(r)(2p)"+2), and involves constants
A;(r) defined in the theorem. Furthermoregifienotes the Euler totient function, there are exatfly)
basic disks of the same radius in each domain. Then, the identity

$(c) _{(s-1)
C; s e for Os>2

explains the occurrence of the functigfs— 1) /{(s) in our estimates. Consider two examples:

(a) Forp < 1, the domairf (p) is made with disjoint Ford disks of radigg (2c?). An easy application
of previous principles leads to the result.

(b) ForA(t), these same principles, together with relat@ (34) entail the following inequalities

2y LGP P2 <t]<t™? Y LG

Cr+2’
c<2/(V3)

and there are several cases when 0 according the sign of Forr > 0, the Dirichlet series involved are
convergent. For < 0, we consider the series

¢(c)  L(s+r+1)
C; ct2ts  I(s+r+2)’

(which has a ple ats= —r), and Tauberian theorems (or Perron’s formularfer Q) provide an estimate
for

¢() 1 o(c) 1
c; o2 N—e @N 1, (forr>0), and 0;7 NN @NlogN.

For domainM(u), the study of quadrilaterals can be performed in a similar way. The measure (wrt
standard density of valuatian of a triangle of horizontal bassand heightis of the formAg(r)ah+1,

and involves the constaig(r) defined in the theorem. Furthermore, the height of each quadrilateral of
M(u) is ©(u?), and the sum of the basaqual 1. TherP([u(z) < u] = ©(u*2). Furthermore, using

the inclusions of (31) leads to the inequaliy.

Interpretation of the results. We provide a first interpretation of the main results described in the previ-
ous theorem.

(i) For anyyp > 1, the probability of the ever§ > yo| is

((r+3) 1

] :Al(r)mﬁl

. 1
Py = Yol =Py [¥(2) < %
This defines a function of the variabjg — Wr(yo), whose derivative is a power function of varialyte
of the form @(yg“‘”’). This derivative is closely related to the output dengjtyf Theorem 2, via the
equality

+1/2

Wy (Yo) 32/1 , fr (X, yo)dx
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Now, whenr — —1, the functiony; (y) has a limit which is exactly the density, defined in[(3D), which
is associated to the Haar measpsalefined in 7.2.

(i) The regime of the distribution function of parametahanges when the sign of valuatioohanges.
There are two parts in the domalt): the lower part, which is the horizontal stfip< 0(z) < (2/+/3)t?],
and the upper part defined as the intersectiof\(6f with the horizontal strig(2/+/3)t? < 0(z) < t]. For
negative values af, the measure of the lower part is dominant, while, for positive valuestbfs is the
upper part which has a dominant measure.r=e10, there is a phase transition between the two regimes:
this occurs in particular in the usual case of a uniform density.

(iii ) In contrast, the distribution function of paramegehas always the same regime. In particular, for
negative values of valuatian the distribution functions of the two parametexsandp are of the same
form.

Open questions.Is it possible to get information on the constants hidden inQisefor parameteq (in
case of any valuation) and far(in case of a negative valuation)? This will be important in the study of
the LLL algorithm (See Sectign 4.7).

Is it possible to describe the distribution function of paramptiar p > 1? Figuré ID [top] shows that its
regime changes @t= 1. This will be important for obtaining a precise estimate of the mean V&{yg/|
as a function of and comparing this value to experiments reported in the Introduction.

4.6 The corners of the fundamental domain

With Theorem 4, it is possible to compute the probability that an output basis lies in the corners of the
fundamental domain, and to observe its evolution as a function of valuatidhis is a first step for a
sharp understanding of FigJre 1[right].

Proposition 5.  When the initial density on B\ F is the standard density of valuation r, the probability
for an output basis to lie on the corners of the fundamental domain is equal to

{(2r+3)
C(r):=1—Au(r) - ———.
There are three main cases of interest for 1 —C(r)
3 3t {3 \/ﬁ -3/2
r =1]: = r=0: ————= r . —e .
e A e YL rool:

4.7 Returning to the LLL Algorithm.

The LLL algorithm aims at reducing all the local bagsn the Gauss meaning. For obtaining the output
density at the end of the algorithm, it is interesting to describe the evolution of the distribution of the local
bases along the execution of the algorithm.

There exists for instance a variant of the LLL algorithm, introduced by Villard [23] which performs a
succession of phases of two types, the odd ones, and the even ones. We adapt this variant and choose to
perform the AGwssalgorithm, because, as we shall explain in Sedtjon 6, it has a better structure. During
one even (resp. odd) phase, thbhole AGAuss algorithm is performed on all local basBg with even
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(resp. odd) indices. Since local bases with odd (resp. even) indices are “disjoint”, it is possible to perform
these Gauss algorithnis parallel. This is why Villard has introduced this algorithm.
Consider the Odd phase, and two successive BsaadBy. » with odd indices, respectively endowed
with some initial densitiey andF, . Denote byz andz, » the complex numbers associated to local
baseq uk, vk) and(uk2,Vik+2) via relation ). Then, the LLL algorithm reduces these two local bases (in
the Gauss meaning) and computes two reduced local bases dendig&dWy and (U2, Vk+2), which
satisfy in particular

Vel = [ue - H(Z), [0z = [Uks2] - MZes2)-

Then our Theorem 4 provides insights on the distribution@),A(z2). Since, in our model, the
random variablefu| andz (resp. |uc2| andz. ) are independent, we obtain a precise information on
the distribution of the normgr |, |li;-2|.

In the Even phase, the LLL algorithm considers the local bases with an odd index. Now, thBbhasss
formed (up to a similarity) from the two previous output bases, as:

Ut = Vi, Vipr = V%] ]k,

wherev can be assumed to follow a uniform law pal/2,+1/2]. Moreover, at least at the beginning of
the algorithm, the two variableg|, |y, »| are independent. All this allows to obtain precise informations
on the new input densitl 1 of the local basiBy1. We then hope to “follow” the evolution of densities
of local bases along the execution of the LLL algorithm.

5 Analysis of the execution parameters.

We finally focus on parameters which describe the execution of the algorithm: we are mainly interested
in the bit—complexity, but we also study additive costs that may be of independent interest. We here use
an approach both based on tools that come from dynamical system theory and analysis of algorithms. We
shall use here the A@uss algorithm, with the decomposition provided in Proposition 3.

5.1 Dynamical systems and transfer operators.

Recall that a dynamical system is a pair formed by a compad sed a mappindV : X — X for which

there exists a (finite or denumerable) Qet(whose elements are called digits), and a topological partition
{Xq}qeq of the setX in subsetsy such that the restriction & to each elemenX, of the partition is

C? and invertible. Here, we are led to so—called complete dynamical systems, where the restriction of
Wiy, : Xq — X is surjective. A specialdle is played by the se#/ of branches of the inverse functigvi—?

of W that are also naturally numbered by the index@getve denote by the inverse of the restriction

W|x,, S0 thatXq is exactly the imagéq (X). The set#¥ is the set of the inverse branches of the iterate
WK: its elements are of the forimg,y ohg,) o---ohy,, and are called the inverse branches of dégpfrhe

setH* = Ux=0H¥ is the semi-group generated by.

Given an initial poiniin X, the sequence/(x) := (x, WxW?x,...) of iterates ok under the action oV
forms the trajectory of the initial point We say that the system has a hglé any point of X eventually
falls in'Y: for anyx, there existp € N such thaWP(x) € Y.

The main study in dynamical systems concerns itself with the interplay between properties of the trans-
formationW and properties of trajectories under iteration of the transformation. The behaviour of typical



28 B. Vallee and A. Vera

trajectories of dynamical systems is more easily explained by examining the flow of densities. The time
evolution governed by the may modifies the density, and the successive densftiek, ..., f,,... de-

scribe the global evolution of the system attime 0,t =1t =2, ....

We will study here two dynamical systems, respectively related to the€-B algorithm and to ORE-

GAuss algorithm, and defined in Sections 3.3 3.5.

5.2 Case of the F-EucLID system.

We first focus on the case whins a compact interval of the real line. Consider the (elementary) operator
Xasn» relative to a mappind, which acts on function$ of one variable, depends on some paramster
and is formally defined as

Xsm[f10¢) = [N (x)[*- f oh(x). (36)
The operatoiXy | expresses the part of the new density which is brought when one uses the branch

and the operator

Hg = z HS.[h] (37)
heH

is called the transfer operator. Fo£ 1, the operatoH; = H is the density transformer, (or the Perron-
Frobenius operator) which expresses the new deffisig a function of the old densitfy via the relation
f1 = H[fo]. In the case of the F-EcLID algorithm, due to the precise expression of the’ebne has,

foranyx e I =[0,1/2]
2s
= 5 (ors) (i)
mefr) \M+EX M-+ £x

The density transformdd admits a unique invariant density(x) which involves the golden ratip =

(14+5)/2,
1 1 1
V)= foge (cp+x+ (@—X) '

This is the analog (for the FEcLID algorithm) of the celebrated Gauss density associated to the standard
Euclid algorithm and equal tdl/log2)1/(1+ x).

The main properties of the FUELID algorithm are closely related to spectral properties of the transfer
operatorHs, when it acts on a convenient functional space. We return to this fact in Sgcfjon 5.4.

5.3 Case of the AGAussalgorithm.

Theorem 1 describes the output denditgs a function of the initial densit§. The output densitf(i)
is written as a sum of all the portions of the density which are brought by all the anteca@@ntghen

he é We have seen in the proof of this theorem that the Jacobian of the transforixagipa- h(x,y) =
h(x+iy) intervenes in the expression bfas a function off. Furthermore, the Jacobid(x,y) is equal
to [ (2)]2. It would be natural to consider an (elementary) oper#iQry,, of the form

Yas[fl(2) = N (2)*- f(h(2)).

In this case, the sum of such operators, taken over all the LFT’s which intervene in one step oMh8AG
algorithm, and viewed & = 1, describes the new density which is brought at each going during
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this step, when the density (%1\ F is f. However, such an operator has not good properties, because the
modulus/h’(z)| does not define an analytic function. Itis more convenient to introduce another elementary
operator which acts on functiofisof two variables, namely

Xas 1 [F1(z,u) = h(2)*- h(u)*- F (h(2),h(u)),

whereh is the analytic extension ¢f| to a complex neighborhood é,1/2]. Such an operator acts on
analytic functions, and the equalities

Xos [h [Fl(z2) = Y s h [f](2), Xos [h [F](x,x) = Xos,[h [f](x) for f(z2):=F(z2), (38)

prove that the elementary operatd(g 1, are extensions of the operatotss ) that are well-adapted to

our purpose. Furthermore, they are also well-adapted to deal with densities with valuation. Indeed, when
applied to a density of valuationr, of the formf(z) = F(z 2), whenF (z,u) = |z— u|"L(z,u) involves an
analytic functionL which is non zero on the diagona u, one has

XZS[F](LZ) = |y|r125+r [L](Z,Z).

Such operators satisfy a crucial relation of composition: with multiplicative properties of the derivative of
goh, we easily remark that

Ksih ©Xs[g) = Xs[goh]:

Then, the operators relative to the main set of LFZ_N}",SK,}[ associated to the AGJss algorithm via
Proposition 3, defined as

ﬂS:: z ij[h], Kg:= Z &,[h] Gs:= Z XA’[h]y (39)

hesl he X heg

satisfy with Proposition 3,
Gs=Kso(l—Hg) 1—1. (40)

Remark that the operatét,; admits the nice expression

1 % 11
HaFlew = S (omiw ) F(mre )
(me)=(2,1) (m-+€z)(m+eu) m+€z’ m+¢u

Due to [38), this is an extension bifs (defined in[(3f), which satisfies relatibtyg[F](x,X) = Has[ f](X)
whenf is the diagonal map d¥. Furthermore, assertiofig) and(iii ) of Theorem 1 can be re-written as:
Consider the densities (the input density f and the output density f) as functions of two complex variables

2,2, namely f(x,y) = F(z,2), f(x,y) = F(2,2). Then
(Assertion (ii)): F = G[F], (Assertion (iii )): F =Hyo (I —Hy) 1[F]

and the operators Gz, Hy o (I —H,) ™ can be viewed as (total) “density transformers” of the algorithms
(the AGAUSS algorithm or the COREGAUSS algorithm) since they describe how the final density F can
be expressed as a function of the initial density F.
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The operators defined ifi (39) are called transfer operatorss ¥dt, they coincide with density trans-
formers, and, for other values gfthey can be wiewed as extensions of density transformers. They play
a central dle in studies of dynamical systems. The main idea in “dynamical analysis” methodology is
to use these operatoxss | and to modify them in such a way that they become “generating operators”
that generate themselves generating functions of interest. For instance, if@hjastdefined for the
mappingh, it is natural to add a new parametefor marking the cost, and consider the weighted operator
Xsw(c),in defined as

Xasw(e). 1 [F1(z U) = expiwe(h)] - h(2)®- h(u)®- F (h(2), h(u)).

Of course, wherw = 0, we recover the operatof,s . When the cost is additive, i.e.,c(goh) =
c(g) + c(h), the composition relation

Ksw (0.l © Xsw,(0),lg = Hsw(c),[goh]

entails, with Proposition 3, an extension [of|(40) as
Gsw(c) = Ksw(e)© (I = Hswe) "~ (41)

5.4 Functional analysis.

Itis first needed to find a convenient functional space where the opétatand its variant$is, ) will
possess good spectral properties : Consider the operitiidkliamete{—1/2,1] and the functional space
B () of all functionsF (of two variables) that are holomorphic in the domaihx 4/ and continuous
on the closure x 7. Endowed with the sup-norm,

IFll =sup{[F(zu)l; (zu) € ¥ x V},

B, () is a Banach space and the transfer opefdtoacts onB., (M) for 0(s) > (1/2) and is compact.

Furthermore, when weighted by a cost of moderate growth it ) = O(logq)], for w close enough

to 0, andls > (1/2), the operatoHs,, ) also acts orB. (V). Moreover, (sed [22][]6]), for a complex
numbersclose enough to the real axis, wiits > (1/2), it possesses nice spectral properties; in particular,
in such a situation, the operattl,, ) has a unique dominant eigenvalfigDE), denoted by (s, W),
which is separated from the remainder of the spectrum by a spectrébGaprhis |mpI|es the foIIowmg:

for any fixeds close enough to the real axis, the quasi-inverse (I —Hg, ¢ )) has a dominantgde
located atv = w(c, (s) defined by the implicit equatiol, (s, W (s)) = 1. In particular, whemw = 0, one
has:

(1-H) HFI(zu) = -5 o3z u) [Fixxd (@2)

where(x) is an extension of the invariant densipy and satisfieg)(x,x) = @(x). An exact expression
for yis s provided in[[22],

W(zu) = Iojg;(puiz <|og ‘gi“ +|og‘(‘; ‘;) forz£uand  W(z2) =Y.
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5.5 Additive costs.

We recall that we wish to analyze the additive costs described in Sgctjon 2.3. and defined more precisely
. Such a cogt, is defined via an elementary casiefined on quotients, and we are interested by

elementary costs of moderate growth, for whijg|) = O(log|q|). Such costs will intervene in the study

of the bit—complexity cost, and will be relative in this case to the elementaryc@og) := ¢(|q|) where

£(x) denotes the binary length of the integer cost. There is another important case of such an additive cost:

the number of iterations, relative to an elementary cestl.

We first note that can be defined on LFTHR corresponding to one step of the algorithm, via the relation

c(hge)) = c(q); and then it can be extended to the total set of LFT’s in a linear wayh fethy ohz o
..ohp, we definec(h) asc(h) := c(hy) +c(h2) + ... +c(hp). This gives rise to another definition for the

complex version of the cost defined Byz) :=C(1,2). If z¢ %\? leads toz’e ¥ by using the LFT

he é with z= h(2), thenC(z) equals (by definitiong(h).

We study cosC in the continuoﬁmodel relative to a density of type (r,g) defined in|(2b), and

we wish to prove thak — Pt [C¢) = k| has a geometrical decreasing, with an estimate of the ratio. For

this purpose, we use the moment generating function of thezgstienoted byE 1, (expwC)]) which
satisfies

£y (expwC))) k;)exp[wk] Z expwc(h)] / / (x,y)dxdy

heg

When the density is of the formi (R5), using a change of variables, the expression of the Jacobian, and
relation [28) leads to

E(r)(expnC)) = 3 expiwe(h)] /[y W(2)*"g(h(2) h(z))dxcly

heG

This expression involves the transfer oper&gr. ) of the algorithm AGwss, and with @)
Ef)(expwCy)]) = /?yr [Kayrwo (I =Hpypw) ™t —1][d](z 2)dxdy

The asymptotic behaviour &C ) = K] is obtained by extracting the coefficient of ¢xp] in the moment

generating function. This series has@eate"(?t") for the valuew(2+r) of w defined by the spectral
equatiorh ) (2+r,w(2+r)) = 1 that involves the dominant eigenvalue of the core opetdsgfc,. Then,
with classical methods of analytical combinatorics, we obtain:

Theorem 5. Consider a step-cost C of moderate growth, namely ¢ : N — R with ¢(q) = O(log(q)) and
the relative additive cost C(¢) defined in @) Then, for any density f of valuation r, the cost C) follows
an asymptotic geometric law. Moreover, the ratio of this law is closely related to the dominant eigenvalue
of the core transfer operator ﬂ&w-, (©)> via the relation

P1y[Cie) = K] ~ a(r) exp—kwg) (2+1)], for k — oo, (43)

** Itis also possible to transfer this continuous model to the discrete one. This is done for instance in [8].
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where a(r) is some strictly positive constant which depends on density f and cost c. The ratio Wc)(2+T)
is defined by the spectral relation A(¢)(2+1,W(2+r)) = 1; it only depends on cost C and the valuation r,
not on the density itself, and satisfies W(¢)(2+r) = O(r +1) whenr — —1.

In the particular case of a constant step-aostjual to 1, the operatdts, 1) is simplye" - H,, and the
valuew(y)(s) is defined by the the relatiog’A(s) = 1: this entails that the ratio n.43) is just equal to
A(2+r). We recover in this case the main results 0f [, 22].

In this case, there exists an alternative expression for the mean number of iterations oRtHBADSS
algorithm which uses the characterization of Hurwitz (recalled in Proposition 3). Furthermore, the prob-
ability of the even{R > k+ 1] can be expressed in an easier way uging (24), as

/ Yxdy= // (3 @)y day

// yrH2+r z) dxdy

whereA4(r) is the measure ab with respect to the standard density of valuatipn

VILI((r+1)/2)
42 T (r/2+2)

PR>k+1] =

he}[k

Aalr) =

(44)

This leads to the following result:

Theorem. [Daude, Flajolet, Valee] Consider the continuous model with the standard density of valuation
r. Then, the expectation of the number of iterations R of the COREGAUSS algorithm admits the following
expression
2--1 1
(2r+4) (de) (cd)z+r”
do<c<dg?

—Hop) [ 1](z,z)dxdy=

Furthermore, for any fixed valuation r > —1, the number of iterations follows a geometric law
Py[R> K+ 1] ~keo A(T)A(2+T)K

where A(S) is the dominant eigenvalue of the core transfer operator Hg and a(r) involves the dominant
projector Ps relative to the dominant eigenvalue A(S) under the form

/ y P2y [1](z)dxdy

It seems that there does not exist any close expression for the dominant eigexfealudowever, this
dominant eigenvalue is polynomial-time computable, as it is proven by Lhote [15]._Jin [10], numerical
values are computed in the case of the uniform density, i.eA(®randE )[R,

E(g[R] ~ 13511315744  \(2) ~0.0773853773
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5.6 Bit-complexity

We are interested in the study of the bit-compleBigefined in Sectiop 23, and it is explained there why
it is sufficient to study cost®, D defined by

P(u,v) P(u,v) Vi
Q(u,v) = £(]qil), D(u,v):=2 (laiplg|—|-
Wy = 3 dla).  DLv:=2 3 dahig|g
These costs are invariant by similarity, iX(Au,Av) = X(u,v) for X € {Q, D, P}. If, with a small abuse of
notation, we leX(z) := X(1,z), we are led to study the main costs of interest in the complex framework. It
is possible to study the mean value of the bit—complexity of thexd&s algorithm, but, here, we restrict
the study to the case of thedREGAUSS algorithm, for which the computations are nicer.

In the same vein as ifi (B2), thieh length decrease can be expressed with the derivative of thenL FT
defined in[(21), as

vi2 " Vi 2
|v(|)|2 =|h(2)| sothat 2Ig<||\/(')||> =lg|h{(2)].

Finally, the complex versions of cosgs D are

P(2) P(2)
Q2 = _;E(Iqil), D(2) := _;f(lqil)lglhi’(i)l-

Remark that Ighi(2)| - [ (2)|° is just the derivative of1/log2)|h(2)[° with respect tes. The costQ is

just an additive cost relative to cost= ¢ which was already studied in Section]5.5. But, we here adopt
a slightly different point of view: we restrict ourselves to the®EGAUSS algorithm, and focus on the
study of the expectation.

To an operatoKs,y ), We associate two operatofe) Xy andAX i, defined as

d 1d

WioXsi = gulswie.lw-0,  AXsp = 1092 ds~s0() 1

The operatolV) is using for weighting with cost, while A weights with Igh'(2)|. The refinement of
the decomposition of the sgf ™ as
HT = [H*] - H - [H*]
gives rise to the parallel decomposition of the operators (in the reverse order). If we weight the second
factor with the help oV, we obtain the operator

[(1=Hg) o WyHg] o (1 =Hg) ™t =Wy [(1 —Hg) 1],

which is the “generating operator” of the c@3{z). If, in addition of weighting the second factor with the
help of W), we take the derivativa of the third one, then we obtain the operator

A(I=Hg) Y] o Wy Hg] o (1 —Hg) ™t

which is the “generating operator” of the cd3{z). These functional®y),A are also central in the
analysis of the bit—complexity of the Euclid Algorithin [1€]] [3].
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For the standard densityof valuationr, the mean values of paramet satisfy
()1=EQ= s []YWoll o) Y122 dxd
q = (r) - A4(I‘) %\D (Z) 24r ) y

d(r) = E D] = ﬁ / 30?810 —Hae) o [WigHzye] o (1 —Hay) (1) (z2)dxdy

and involve the measur(r) of disk 2 wrt to the standard density of valuationwhose expression is
given in [44). Remark tha(r) ~ (r +1)~* whenr — —1. With (43), this proves that

ar)=er+17Y,  din)=e[r+1)7?,  (r—-1)
We have provided an average—case analysis of parantgt®rg the continuous model. It is possible to
adapt this analysis to the discrete model. We have proven:

Theorem 6. On the set Qy of inputs of size M endowed with a density f of valuation r, the central
executioﬂ of the Gauss algorithm has a mean bit—complexity which is linear with respect to the size M.
More precisely, for an initial standard density of valuation r, one has

Em,(r)[B] = a(r)M+d(r) +©[q(r)] +& (M)

&(M) = OM?)(r+1)Mexg—(r+1)M] for—-1<r <0,

& (M) O(M3expg—M)) forr > 0.

The two constants q(r) and d(r) are the mean values of parameters Q,D with the (continuous) standard
density of valuation r. They do not depend on M, and satisfy

with

an=o[r+17Y, dn=e[r+17%,  (r—-1).

Fort — —1and M — o with (r +1)M — 1, then Ey ()[B] is O(M?).

Open question. Provide a precise description of the phase transition for the behaviour of the bit-
complexity between the Gauss algorithm for a valuatien —1 and the Euclid algorithm.

6 Conclusion

In the version of the LLL algorithm previously described in Secfion 4.7, there are two dynamical systems,
the Odd dynamical system (relative to the Odd phases) and the Even dynamical system (relative to the
Even phases). The Odd (resp. Even) dynamical system performs (in parallel) the dynamical system
relative to the AQuss on all the complex numbes of odd (resp. even) indices. Between the end of

one phase and the beginning of the following phase, computations in the vein of $edtion 4.7 take place.
The dynamics of each system, Odd or Even, is easily deduced from the dynamics ofAbs #€ystem.

In particular, there is an Even Hole and an Odd Hole, which can be described as a function of the hole of
the AGausssystem. But the main difficulty for analyzing theo®-EVEN Algorithm will come from the
difference on the geometry of the two holes —the Odd one and the Even one... This is a work in progress!

™ This is, by definition (see Secti.3), the execution of the algorithm, EXCEPT the initialization process where the Gram matrix
is computed.
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