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1 Practical significance and interest of the test-case

A calculation of the cavitating flow field occurring in a Venturi type duct is presented
in the present paper. Experimental results obtained in the same flow configuration
by Stutz & Reboud (2000) are also reported. Convergent and divergent angles of the
lower wall of the Venturi type section are respectively about 18◦ and 8◦ (see figure 2).
According to experimental observations in this geometry the flow is characterized by
unsteady cavitation behavior, with quasi-periodic fluctuations. Each cycle is composed of
the following successive steps: the attached sheet cavity grows from the Venturi throat.
A re-entrant jet is generated at the cavity closure and flows along the Venturi bottom
toward the throat. Its interaction with the cavity surface results in the cavity break off.
The generated vapor cloud is then convected by the main stream, until it collapses.

The challenge consists in simulating correctly this unsteady behavior. Two tests are
proposed to evaluate the consistency of the numerical solution with the experiments:

• the evaluation of overall parameters (mean volume of vapor, standard deviation,
frequency of the periodic fluctuations, phase average of the cavity shape evolution),

• the description of the flow inside the sheet of cavitation (time-averaged values and
standard deviations of velocities and void fraction)

The numerical simulation of this problem requires a coupling between the Navier-
Stokes equations, a model of turbulence (the Reynolds number in the proposed config-
uration equals 1.6 106), and a physical model of cavitation to predict the inception of
cavitation and the behavior of the liquid/vapour mixture.

2 Definitions and physical model description

2.1 Physical model of cavitation

The present work considers a single fluid model: the fluid density ρ varies in the computa-
tional domain according to a barotropic equation of state, ρ(P ), that links the density to
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the local static pressure (see figure 1). This equation considers that phase change occurs
within a small range of pressure, ∆Pvap, centered on the saturation pressure Pvap. When
the pressure in a cell is larger than Pvap +∆Pvap/2, the fluid is supposed to be pure liquid,
the entire cell is occupied by liquid, and its density ρl is calculated by the Tait equation
(Knapp et al. , 1970).

ρ

ρref

= n

√

P + P0

P T
ref + P0

, (1)

where P T
ref is the pressure at the domain outlet, ρref is the liquid density, and for water,

P0 = 3 108 Pa and the exponent is n = 7. If the pressure is lower than Pvap−∆Pvap/2, the
cell is full of vapor and its density ρv is given by the perfect gas law (isotherm approach),

P

ρ
= RT, (2)

where R = 462 J/K/kg for water vapor. In the other situations, the cell is occupied by
a liquid/vapor mixture, which is considered as one single fluid with a variable density ρ.
This one is directly related to the void fraction α = (ρ(P ) − ρl)/(ρv − ρl) corresponding
to the local density of the fluid.

To model the mixture state, the barotropic equation of state presents a smooth
transition in the vapor pressure value neighborhood, in the range Pvap ± ∆Pvap/2.
In direct relation with the range ∆Pvap, this equation is characterized mainly by its
maximum slope 1/Cmin

2, where C2
min = ∂P/∂ρ. Cmin can thus be interpreted as the

minimum speed of sound in the mixture. Its calibration was done in previous studies
(Coutier-Delgosha et al. , 2003b). The optimal value was found to be independent of the
hydrodynamic conditions, and is about 1.5 m/s for cold water (20oC), with Pvap = 0.023
bar, and corresponding to ∆Pvap ≈ 0.06 bar. These values are used here throughout the
presented results.

Mass fluxes resulting from vaporization and condensation processes are treated
implicitly by the barotropic state law, and no supplementary assumptions are required.
Concerning the momentum fluxes, the model assumes that locally velocities are the same
for liquid and for vapor: in the mixture regions vapor structures are supposed to be per-
fectly carried by the main flow. This hypothesis is often assessed to simulate sheet-cavity
flows, in which the interface is considered to be in dynamic equilibrium (Merkle et al. ,
1998). The momentum transfer between the phases is thus strongly linked to phase change.

2.2 Numerical resolution

To solve the time-dependant Reynolds-averaged Navier-Stokes equations associated with
the barotropic equation of state presented here above, the numerical code applies, on
2D structured curvilinear-orthogonal meshes, the SIMPLE algorithm (Patankar, 1981)),
modified to take into account the cavitation process. It uses an implicit method for
the time-discretization, and the HLPA non-oscillatory second order convection scheme
proposed by Zhu (1991). The numerical model is detailed in Coutier-Delgosha et al.

(2003b).
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Figure 1: Barotropic state law ρ(P ). Water 20◦C.

2.3 Turbulence model

In our previous studies (Coutier-Delgosha et al. , 2002, 2003b), either the k-ω model
proposed by Wilcox (1998) or the k-ǫ RNG model presented by Yakhot et al. (1992)
were applied to model cavitating flows. Results obtained have demonstrated that for both
models, corrections of the influence of the vapor/liquid mixture compressibility on the
turbulence should be taken into account to obtain the unsteady effects due to cavitation.
For the present test case, the modified k-ǫ RNG model presented in Coutier-Delgosha
et al. (2003a) is applied.

3 Geometry and boundary conditions

The main features of the geometry can be seen in figure 2. The precise description of the
Venturi section is given as a list of coordinates for the lower wall of the Venturi (see table
1) and the upper wall of the Venturi (see table 2).

The velocity field is imposed at the computational domain inlet, and the static pressure
is imposed at the outlet. Along the solid boundaries, the turbulence models are associated
with laws of the wall. Details of the prescribed values are given in section 3.3.

3.1 Grid

The computational grid is composed of 160×50 orthogonal cells (figure 2). A special
contraction of the mesh is applied in the main flow direction just after the throat, so that
the two-phase flow area is efficiently simulated: about fifty grid points are used in this
direction to model the 45 mm long mean cavity obtained by numerical calculations in the
case σ = 2.4 where σ is defined in (3)(results presented hereafter). In the other direction,
a contraction is also applied close to the walls, to obtain at the first grid point the non-
dimensional parameter y+ of the boundary layer varying between 30 and 100, and to use
standard laws of the wall. The grid is finer in the bottom part of the Venturi section than
in its upper part, to enhance the accuracy in the cavitation domain: cavities obtained
contain about thirty cells across their thickness.
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x y x y x y x y
(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)

-152.093 0.000 13.361 14.980 61.921 8.665 151.062 -6.654
-51.706 0.000 14.508 14.833 64.027 8.376 154.938 -7.351
-42.924 2.163 15.676 14.683 66.178 8.079 158.903 -8.064
-35.553 4.558 16.869 14.531 68.396 7.770 162.936 -8.794
-29.280 6.594 18.085 14.377 70.636 7.450 167.058 -9.547
-23.971 8.324 19.326 14.218 72.921 7.117 171.269 -10.323
-19.437 9.795 20.591 14.054 75.251 6.771 175.548 -11.128
-15.589 11.045 21.881 13.889 77.626 6.411 179.894 -11.965
-12.318 12.108 23.187 13.719 80.045 6.037 184.353 -12.837
-9.538 13.011 24.531 13.540 82.510 5.647 188.878 -13.749
-7.175 13.779 25.898 13.357 85.041 5.240 193.493 -14.705
-5.166 14.432 27.309 13.180 87.595 4.818 198.198 -15.708
-3.459 14.986 28.720 12.998 90.216 4.378 202.992 -16.758
-2.007 15.458 30.177 12.805 92.882 3.923 207.876 -17.859
-0.774 15.859 31.655 12.613 95.615 3.450 212.827 -19.004
0.274 16.201 33.179 12.419 98.393 2.961 217.912 -20.188
0.509 16.298 34.724 12.220 101.216 2.456 223.065 -21.396
0.751 16.377 36.293 12.012 104.106 1.934 240.606 -24.016
0.992 16.455 37.906 11.799 107.041 1.398 258.752 -26.682
1.239 16.509 39.541 11.589 110.043 0.848 277.123 -29.392
2.143 16.395 41.199 11.379 113.089 0.283 295.717 -32.170
3.064 16.273 42.901 11.160 116.226 -0.294 314.983 -35.016
4.005 16.161 44.649 10.932 119.407 -0.881 334.474 -37.906
4.964 16.040 46.419 10.699 122.633 -1.479 354.188 -40.840
5.943 15.915 48.211 10.463 125.949 -2.085 374.575 -43.842
6.941 15.794 50.070 10.225 129.331 -2.699 395.185 -46.911
7.959 15.664 51.952 9.984 132.781 -3.328 416.244 -50.048
8.997 15.529 53.856 9.736 136.299 -3.975 437.751 -52.938
10.056 15.397 55.805 9.480 139.883 -4.632 459.929 -55.111
11.136 15.263 57.799 9.215 143.535 -5.296 1111.627 -119.228
12.238 15.123 59.838 8.945 147.254 -5.970

Table 1: Description of the lower wall of the Venturi shown in figure 2. Coordinates must be read from
top to bottom and left to right.

3.2 Initial conditions

To start unsteady calculations, the following numerical procedure is applied: first of all,
a stationary step is carried out, with an outlet pressure value high enough to avoid any
vapor in the whole computational domain. Then, this pressure is lowered slowly at each
new time-step, down to the value corresponding to the desired cavitation number σ defined
by

σ =
Pupstream − Pvap

ρrefV 2
ref/2

. (3)

Vapor appears during the pressure decrease. The cavitation number is then kept
constant throughout the computation.
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x y x y
(mm) (mm) (mm) (mm)

-152.093 50.003 194.008 46.598
116.114 50.003 198.735 46.329
119.340 49.958 203.552 46.083
122.611 49.936 208.480 45.814
125.971 49.869 213.499 45.522
129.399 49.801 218.629 45.254
132.871 49.712 223.871 44.962
136.433 49.600 229.181 44.671
140.062 49.465 246.879 43.708
143.759 49.309 265.025 42.700
147.522 49.129 283.619 41.692
151.376 48.928 302.438 40.661
155.274 48.726 321.704 39.586
159.262 48.502 341.195 38.510
163.316 48.278 361.133 37.413
167.461 48.054 381.744 36.293
171.673 47.830 402.354 35.150
175.974 47.584 423.637 33.985
180.343 47.337 445.368 32.775
184.823 47.113 1120.140 -9.653
189.371 46.844

Table 2: Description of the upper wall of the Venturi shown in figure 2. Coordinates must be read from
top to bottom and left to right.

3.3 Calculations

Calculations are performed with non-dimensional variables based on the following reference
parameters :

Ua = U/Uref Uref = 7.2 m/s at the inlet
ρa = ρ/ρref ρref = ρliquid

Cp = (P − Pref ) / (1

2
ρrefU2

ref ) Pref = Poutlet of the domain

σ = (Pref − Pvap) / (1

2
ρrefUref

2) Pvap = 2000 Pa
Ta = T/Tref Tref = Lref/Uref

Lref = chord of the Venturi = 0.224 m

Physical and numerical parameters applied:

Cmin (minimum speed of sound in the mixture) 1.5 m/s
Re (Reynolds number based on Lref , Vref , and water properties) 1.6 106

ρv/ρl (ratio of vapor to liquid density) 0.01
Inlet turbulence level 1%
∆t (non dimensional time-step) 0.005
time order discretization 1

It is proposed to consider six flow configurations corresponding to the six cavitation
numbers, σ, reported in table 3. For each calculation, the total simulation time required
to eliminate the initial transient effects is at least 40 Tref . The sheet of cavitation
systematically adopts the oscillating behavior observed in experiments. The oscillations
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Figure 2: Curvilinear-orthogonal mesh of the Venturi type section.

are almost periodic, and their frequency as well as the mean cavity length depends on
the cavitation parameter, σ.

As the final cavity obtained is fundamentally unstable, it cannot be characterized by
its final shape or the final void fraction distribution. The comparisons are thus based on
the transient evolution of the cavitating flow. This evolution can be defined at each time
by the vapor quantity present in the domain or by the cavity shape (length, volume).
We propose to focus on the vapor volume oscillations. For each computation, the time-
averaged vapor volume and its standard deviation are indicated in table 3. The cavitation
cycle frequency can be calculated by using a FFT analysis of the inlet pressure signal and
is also given in table 3.

RESULTS

σ Mean vapor Volume /
L3

ref × 104

Standard deviation of the
vapor volume / L3

ref × 104

Oscillation
frequency (Hz)

2.32 123 32.9 17

2.34 44.3 9.1 30

2.37 19.7 5.8 41

2.40 13.8 2.4 55

2.44 6.9 1.9 68

2.52 4.4 1.6 82

Table 3: Values of the six cavitation numbers with the corresponding results.

The transient evolution observed for σ=2.4 during the unsteady calculation is
presented in figure 3. Figure 3(a) illustrates at a given time and for each cross section
of the Venturi type duct the value of the minimal density present in the section. It
gives information concerning the vapor cloud shedding process: the part of the cavity
that breaks off clearly appears, and the fluctuation frequency can be easily calculated.
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Moreover, it also shows the minimum density, i.e. the maximum void ratio in each
section. The two other curves shown in figures 3(b) and 3(c) represent respectively the
total vapor volume and the inlet pressure evolutions.

4 Comparison with experiments

4.1 Overall behavior

First, the evolution of the cavity shape at a given cavitation number is compared with
pictures obtained from experiments. Two phase-averaged cavitation cycles are presented
in figure 4. The right one results from experimental visualizations: Video frames acquired
during a 100 ns exposure time under Laser sheet light are identified and digitized in 256
grey levels. A sampling technique is applied to classify them in nine sets corresponding
to the different states of the recorded quasi-periodic pressure signal. Then, averaging
the grey levels pixel per pixel for each set allows drawing a sequence of phase-averaged
images, from an initial data set of 300 frames. The left part of the figure 4 corresponds
to the same sequence obtained by numerical simulation (calculation duration equal to
20 Tref , i.e. about 30 cycles). The same sampling technique is applied: the computational
result is decomposed into 30×9 short sequences corresponding to the nine steps of the
cavitation cycle and the phase-averaging process is applied.

From the results of table 3 concerning the effect of the cavitation number, a compari-
son can be proposed with results reported by Stutz & Reboud (2000): the frequency of
the self-oscillation behavior is drawn with respect to the ratio Vref/Lcav. In both the
numerical simulation and the experiments Lcav is chosen as the maximum length of the
attached cavity.

4.2 Flow field inside the sheet of cavitation

Local comparisons are proposed in the case σ = 2.4 with experimental data obtained
by double optical probes measurements. This technique and the results are presented
in detail in Stutz & Reboud (1997, 2000). This is an intrusive technique, which allows
measurements of the local void ratio and the velocities of the two-phase structures inside
the cavitation sheet. Four data profiles located respectively at x = 1.410−2 m, 3.110−2 m,
4.910−2 m, and 6.510−2 m, are available. The time-averaged and standard deviation values
of the velocity u and the void ratio α are compared along the four profiles in figure 6.

The three main features that should be obtained are:

• presence of the re-entrant jet, characterized by negative or zero mean values of the
velocity u close to the wall.

• the rather low mean void ratio observed in the main part of the cavitation sheet: it
does not exceed 25%, excepted in the upstream end of the cavity.

• the general high level of velocity and void fraction fluctuations of the same order of
magnitude than the mean values.

These three characteristics of the flow are strongly related to the overall unsteady
oscillation of the cavitation sheet. So an accurate numerical simulation of these features
is linked to the capability of the model to predict the unsteadiness of the cavitating flow.
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(a) Temporal evolution (in abscissa) of the cavity length (graduated in ordinate) (Instantaneous
attached and cloud cavities at T = 12Tref are given at left)

(b) Time evolution of the volume of vapor in the flow field

(c) Time evolution of the inlet pressure, (Pinlet − Poutlet)/
1

2
ρlU

2

ref

Figure 3: Transient evolution of the unsteady cavitating flow in the Venturi type duct (σ = 2.4).
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Figure 4: Numerical (on the left) and experimental (on the right) phase-averaged sequences of unsteady
cavitation (σ = 2.4).

Figure 5: Experimental and numerical oscillation frequency.
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Figure 6: Time-averaged and standard deviation values of void ratio α and velocity u. Comparison
between numerical results (lines) and optical probes measurements (points) for σ = 2.4. Cavity external
shape in dotted line from image processing - ratio 3 between vertical and horizontal scales.
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