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Numerical Study of the Effect of t he Leading 

Edge Shape on Cavitation Around Inducer 

Blade Sections

Olivier COUTIER-DELGOSHA **, Jean-Luc REBOUD*** 

and Regiane FORTES-PATELLA**** 

A numerical study of the cavitation behaviour of two-dimensional hydrofoils 

simulating a section of an inducer blade is presented. Two leading edge shapes were 

chosen to approach rocket engine inducer designs. They were tested with respect to 

the development of sheet cavitation. The numerical model of cavitating flows is based 

on the 3D code FINE/TURBO™, developed by NUMECA International. The cavita­

tion process is taken into account by using a single fluid model, which considers the 

liquid vapour mixture as a homogeneous fluid whose density varies with respect to the 
static pressure. Numerical results are compared with experimental ones, obtained in 

the CREMHyG large cavitation tunnel(ll. Pressure distributions along the foil suction 
side and the tunnel walls were measured for different cavity lengths. Total pressure 

measurements along the foil suction side allow characterizing the effects of cavitation 

on the liquid flow. Influence of the leading edge shape on the cavitation behaviour and 

comparison between experiments and numerical predictions are discussed. 

Key Words: Numerical Simulations, Cavitation, Rocket Engine Turbo-Pumps, 

Inducers, Hydrofoils 

1. Introduction 

The prediction of the cavitation behaviour is of 
first importance for the design of rocket engine turbo­

pumps. Indeed, this phenomenon results in strong 

unsteady forces acting on the pump components, and 

it may lead to substantial performance losses. The 

analysis of the vapour occurrence in the pump, as well 

as the study of the unsteady effects related to cavita­

tion, could directly influence the pump inducer design. 

oped in collaboration with SNECMA Moteurs and the 

French space agency CNES. The final objective is to 

provide assistance to the design and prevision of 

operating range of rocket engine turbo-pumps, taking 

into account the steady state and unsteady effects of 

cavitation. The model is based on the commercial 
code FINE/TURBO™, developed by NUMECA Inter­

national(s). To simulate the cavitation process, a 

single-phase flow model is implemented(9J based on 

previous studies in 2D(2J,(Io),(llJ. 
Several studies based on multi-phase flow 

approaches were developed during the last 10 

years(2J,(sJ. They lead now to the development of 

three-dimensional N a vier-Stokes codes that take into 

account the cavitation process(4J-(7). In this context, a 
numerical model, aiming to take into account the 

cavitation phenomenon in inducers geometry is devel-
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The aim of the present paper is to evaluate the 
ability of the numerical model to take into account the 

influence of the leading edge shape on cavitation 

behaviour in inducer geometries. The study concerns 
two hydrofoils simulating a section of an inducer 

blade, held in a cavitation tunnel with two different 

angles of attack. They are characterised by two 

different leading edge geometries, chosen to approach 

rocket engine inducer desigd1l. Experimental results 

are compared with 2D computations in the different 

cases. A three-dimensional simulation of the com­

plete hydrofoil geometry is also performed in one 

case, to illustrate the 3D effects on the cavitation 
sheet. 
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Nomenclature 

CP: pressure coefficient ( =(P- Pref)/(1/2p Vre/))

Lcav : cavity length (m) 

Lref : reference length (=chord of the foil) (m) 

V: velocity (m/s) 

Vref: reference velocity (=inlet flow velocity) 

(m/s) 

P : static pressure (Pa) 

Pref: reference pressure (=inlet static pressure) 
(Pa) 

Pv : vapour pressure (Pa) 

CJ: cavitation number ( =(Pref- Pv)/(1/2p Vre/))

P: liquid density (kg/m3) 

2. Experiment 

The experimental study of the cavitation behav­

iour of two-dimensional hydrofoils simulating a mid­

span section of an inducer blade has been performed in 

the large cavitation tunnel of the CREMHyG labora­

tory (Fig. 1) (ll. 
The upper and lower walls of the cavitation tun­

nel have been designed to generate along the suction 

side of the foil a pressure distribution as close as 

possible to the one existing along the inducer blade in 

non-cavitating condition. The hydrofoil chords are 

0.9 meter long and their maximum thickness is about 

14 mm. A 5 mm thin streamlined leg, through which 

pressure taps have been drilled, holds the foils. The 

reference flow velocity Vref and static pressure Pref 

are measured in the upstream rectangular section Sref 

(137 X 120 mm2) , located at 200 mm upstream the foil 
leading edge. Those reference values are used to 

define the cavitation number CJ. The maximum inlet

flow velocity Vref may be larger than 30 m/ s. No 
marked effect of the amount of air dissolved in water 

has been observed on developed cavitation. During 

the present experiments, the air content of the water 

has been kept near saturation. 

The behaviours of two different leading edges 

have been compared with respect to the development 

of sheet cavitation. Their shapes are reported on 

Fig. 2. The first leading edge presents a parabolic 

shape, about 3 mm long, creating with the suction side 

Fig. 1 Large cavitation tunnel (width=O.l2 m) and 

inducer type blade section 

a sharp ridge. It simulates a blade whose upstream 

end has been bevelled. The second one is sharper and 

its rounded upstream end, where the cavity detach­

ment occurs, presents a small curvature radius close 
to 0.2 mm. The two profiles will respectively be 

named hereafter "bevelled leading edge" (BLE) foil 
and "sharp leading edge" (SLE) foil. The second 

hydrofoil is 3 mm shorter than the first one and its 

relative thickness is a little smaller, but their two 

suction sides are identical. 

Two different angles of attack have been tested : 

4. 1 and 4.5 degrees. They have been chosen to provide 

flow conditions close to those predicted in a blade-to­

blade channel of the inducer at its nominal operating 
point. Because of the small ratio between the tunnel 

height and the chord length, the 0.4 degrees difference 

has a great influence on the cavitation behaviour. 

Pressure measurements have been performed 

along the foils suction side (10 taps) and the tunnel 

walls (3 taps in the reference section, 7 along the 

lateral and lower walls and 4 along the upper wall) . 

Pressure taps are connected with 1 mm diameter 
Polyamide pipes to piezo-resistive transducers with 

accuracy better than +I- 0.1% of the 5 bar range. 

The flow rate is measured by an electromagnetic 

flow meter, with a relative ·accuracy of 0.2%. The 

combination of inaccuracies on pressure and velocity 

measurements ensures on the pressure coefficient Cp 
and on the cavitation number CJ a global uncertainty 

of +/-0.02 at Vref=10m/s. 

Total pressure measurements have been per­

formed using a 4 holes probe along 3 axes crossing the 

upper channel at 37%, 70% and 95% of the chord from 

the leading edge (Fig. 1). Velocities have been 

deduced from the total and static pressure measure­

ments. Comparisons with LDA data acquired along 
the same axes were used to validate the method under 

non-cavitating and cavitating conditions. 

3. Physical Model 

Two-phase flow models are based on the assump­

tion that the fluid is present in the computational 0.065 " _g 0.06 � 0.005 0.01 0.015 0.02 0.025 0.03 x/chord 
Fig. 2 Geometry of the bevelled leading edge (BLE) and 

the sharp leading edge (SLE). Angle of attack= 

4.5 degrees 
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domain both as liquid and vapour. The vapour is 

characterized by the density Pv and the liquid by the 

density P1. On each cell of the mesh, the unknowns are 

calculated for each phase, by averaging them on the 

volume occupied respectively by liquid and gas [for 

example : Ref. (12)]. 

In the present work, we apply a single fluid model 

based on previous numerical and physical work devel­

oped in LEGI<2),(u)_ It considers only one fluid, char­

acterized by a density p that varies in the 

computational domain according to a state law. 

When the density in a cell equals the liquid one P1, the 

whole cell is occupied by liquid, and if it equals the 

vapour one Pv, the cell is full of vapour. Between 
these two extreme values, the cell is occupied by a 

liquid/vapour mixture that we still consider as one 

homogeneous single fluid. The void fraction a= 
(p-pl)/(pv-pl) corresponds to the local ratio of 

vapour contained in the mixture. In this simple model, 

the void ratio a is related to the state law, the fluxes 

between the phases are treated implicitly, and no 

supplementary assumptions are required. 

Moreover, concerning the momentum fluxes, our 

model assumes that locally (in each cell) , velocities 

are the same for liquid and for vapour : in the mixture 

regions gas structures are supposed to be perfectly 
carried along by the main flow. This hypothesis is 

often assessed for this problem of sheet-cavity flows, 

in which the interface is considered to be in dynamic 

equilibrium<6),(!s),(l4). The momentum transfer between 

the phases is thus strongly linked to the mass transfer. 

In the present work the empirical barotropic law 

p(P) used is presented in Fig. 3. When the pressure is 

respectively higher or lower than the vapour pressure, 
the fluid is supposed to be purely liquid or purely 

vapour, according respectively to the Tait equation 

and to the perfect gas law. The two fluid states are 

joined smoothly in the vapour-pressure neighbour­

hood. It results in the evolution law characterized 

mainly by its maximum slope 1/Amin2, where Amin2= 
dP/dp. Amin can thus be interpreted as the minimum 

speed of sound in the mixture. 

1200 �------· 1 Tait equation 
I ,: ,. .. )h� c:: 

�\....._ _______ _ 
! 400 law l : ::; 1 Amin I I 200 I =1rn/s I 0 pvl - � 

Pv 

PI 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 Pressure (bar) 

Fig.  3 The barotropic state law p(P) 

4. Numerical Model 

To calculate cavitating flows we apply the 

commercial code FINE/TURBO™ developed by 

NUMECA International. It is a three-dimensional 

structured mesh code that solves the time dependant 

Reynolds-averaged N avier-Stokes equations. A 

detailed description of the code is given in Ref. ( 8 ) . 

Unsteady calculations 

Time accurate resolutions use the dual time step­
ping approach (see Ref. (15)). Pseudo-time derivative 

terms are added to the equations. They march the 

solution towards convergence at each physical time 

step. The code resorts to a multigrid strategy to 
accelerate the convergence, associated with a local 

time stepping and an implicit residual smoothing. 

This kind of resolution is devoted to highly com­

pressible flows. In the case of low-compressible or 

incompressible flows, its efficiency decreases dramati­

cally. This well-known problem has been addressed 
by many authors and solved by introducing a precon­

ditioner<s)_ This one is based on the studies of Refs. 

(16), (17). It consists in multiplying the pseudo-time 

derivatives by a preconditioning matrix r-1. Such 

modifications have no influence on the converged 

result, since these terms are of no physical meaning, 

and converge to zero. 

The discretization is based on a finite volume 

approach. We use a second order central scheme, 

which must be associated with two artificial dissipa­

tion terms, respectively of second and fourth order. 

The first one is activated in the strong pressure gradi­

ent areas, such as shocks. The other one is used in the 

whole domain, and it results in a second order space 

accuracy. The pseudo-time integration is made by a 
four-step Runge-Kutta procedure. 

The physical time-derivative terms are discret­

ized with a second order backward difference scheme 

that ensures a second order accuracy in time. 

This numerical model was adapted to treat the 

cavitation process<9). The key point of this adaptation 

is the modification of the state law of the fluid. Our 

barotropic law implies the simultaneous treatment of 
two different cases : the fluid is highly compressible in 

the two-phase flow areas (the Mach number can be as 
high as 4 or 5) and it is almost incompressible in the 

pure vapour or pure liquid areas. So the main 

difficulty consisted in managing these two different 

states of the fluid, without creating any spurious 

discontinuity in the flow field. Besides, the cavitation 

consists in a very sharp and very rapid process. It 

means that the density time fluctuations and the 

density repartition must be smoothed, to avoid numer­

ical instabilities. Thus, we use an under-relaxation of 
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the variations of the density to prevent too fast chang­

ing during one pseudo-time step. We also modified the 

switch between the two types of artificial dissipations. 

The second difference term is now also activated in 

the strong density gradient areas, such as cavitation 
sheet interface. 

Turbulence model 

We use for the calculations presented in this 

paper a classical Baldwin-Lomax turbulence model. 

Other calculations considering k-E turbulence models 

are in progress to improve the physical analyses. A 

more detailed study of the influence of the turbulence 

model on unsteady cavitation simulation is proposed 

in Ref. (18). It shows a major effect of the compres­
sibility effect modelling on the unsteady behaviour of 
cloud cavitation. 

Boundary conditions 

The boundary condition setting is based on a 
system of dummy cells. Classical incompressible 

types of boundary conditions are applied : imposed 

velocities at the inlet, and an imposed static pressure 

at the outlet. Numerical studies have been started in 

LEGI to improve these conditions, mainly by taking 
into account the test rig influence<'9l, but have not been 

applied in the cavitating case yet. Laws of the wall 

are applied along solid boundaries. 

Initial transient treatment 

First of all, a steady step is carried out, with a 

pseudo vapour pressure low enough to ensure no 

vapour presence in the whole computational domain. 

Then, this vapour pressure is increased progressively 

BLE 

during the early time steps, until the required cavita­

tion number !5 is reached. Vapour appears progres­

sively in the low static pressure regions during this 

transient. The cavitation number is then kept con­

stant throughout the computation. 

5. Two-dimensional Results 

2D computations were performed on both geome­

tries, for the two experimental angles of attack of 4.1 
and 4.5 degrees. A 10 000 cells mesh was applied in the 

four cases (Fig. 4), and a large range of cavitation 

numbers was considered, according to the experimen­

tal results. In the case of the SLE foil at 4.5 degrees 

incidence, a second mesh has been tested, more refined 
near the leading edge. 

In all computations a cavitation sheet appears on 

the suction side of the foil and completely stabilises as 

soon as the operating cavitation number is reached. 

Then, decreasing the cavitation number !5 in succes­

sive steps allows drawing the relationship: cavitation 

number !5 versus cavity length. Figures 5 ( a ) and 

( b ) present the results for the two angles of attack, 

respectively in the case of the BLE and SLE foils. 

Experimental results are also provided on these 

figures, to enhance comparison. We obtain a reliable 

agreement between numerical and experimental 

results, the case of the SLE foil at 4.5 degrees angle of 

attack needing nevertheless at particular treatment, 

as will be discussed hereafter. 

4.1 degree angle of attack: experiments and com­

putations confirm that the leading edge shape has 

SLE 

Fig. 4 Detail of the mesh near the leading edges : BLE and SLE foil 

1 

"' E "' ·u; 0 0 D 
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_j\ """-( '- ..a.f'\ y 0 0.05 0.1 Lca�Jl�ef 0.2 
' 

0.25 0.3 
"' E "' "iii 

1 ---

_( 
y 0 0.05 0.25 0.3 

Experimental result i-41 o --+---Numerical result i=4.1 ° 
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( a )  ( b )  

Fig. 5 Cavitation number CJ vs. (Lcav! Lref) laws: (a) BLE foil; (b ) SLE foil*

(* at 4.5 degrees, the arrow shows the succession of calculations) 
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(a) (b) 

Fig. 6 Comparison of numerical pressure distributions ( a) and leading edge flow fields 
(b) for the two hydrofoils in non-cavitating conditions 

almost no influence on the cavities length at low 

incidence. Visualisations with stroboscopic light show 

smooth and quasi-steady cavitation sheets at all the 

cavitation numbers tested. Only a short fluctuating 

wake downstream of the cavity is composed of small 

travelling vapour structures. 

4.5 degree angle of attack: experimental observa­

tions report the unsteady behaviour of the cavities on 

the two foils, and a strong influence of the leading 

edge shape. At a given cavitation number r5, the mean 
cavity length is about two times larger on the SLE foil 

than on the BLE foil, and correspondingly for the 

same cavity length the cavitation number is about 

25% higher. This effect was first not obtained in the 

numerical simulations with decreasing progressively 

the cavitation number : contrarily, it can be observed 

on Fig. 5 ( b )  that very short cavities are predicted in 

the case of the SLE foil. That is why the computation 

was continued, re-increasing the cavitation number 

from the lowest value. A strong hysteresis phenome­

non is then observed, the cavity remaining much lar­

ger during the re-increasing phase. 

It can be seen on Fig. 6 ( a ) that the pressure 

distribution obtained by the calculation along the 

suction side is the same on BLE and SLE foils, except 

for the 2% of the chord from the leading edge. The 

minimum pressure, which occurs very close to the 

leading edge, is a little lower on the SLE foil. The 
velocity fields calculated in non-cavitating condition 

are illustrated by Fig. 6 ( b ) . An area of separated 

flow can be seen in the case of the SLE foil. According 

to numerical simulations, the separated flow is pro­

gressively filled with vapour when the cavitation 

number is decreased. For low value of r5, the cavity 

length becomes much larger than the initial separated 

flow structure. While increasing again the cavitation 

number the cavity length remains larger than in the 

decreasing phase, and the agreement with experiment 

becomes much better. 

In fact, the hysteresis phenomenon is not observed 

experimentally. The hysteresis predicted by the 

numerical calculations can be related to the physical 

and numerical models that do not well describe the 

shear effects of separated flows and do not capture the 

unsteadiness of the flow in cavitation region. Indeed, 

from the experimental point of view the cavities 

exhibit an unsteady behaviour associated with large 

vapour cloud shedding at 4.5 degree angle of attack 

for both hydrofoils. The numerical model fails to 
simulate this behaviour, and predicts a completely 

stable cavity. This current limitation of the model 

could be linked to the use of standard turbulence 

model(lsl. Work is in progress to qualify various 

effects of the model used and of the numerical scheme, 

to improve the simulations of unsteady cloud cavita­

tion behaviours. 

Figure 7 shows the density of the fluid obtained 
for the four cases, for the cavitation number corre­

sponding to a cavity length close to 15% of the chord. 

It can be noticed that the high angle of attack leads to 

a faster growing of the cavity thickness downstream 

of the detachment point, and to a larger void ratio 

along the foil surface. 

Quantitative comparisons are investigated be­

tween experiments and the numerical results in the 

case of the bevelled leading edge at high angle of 
attack. The static pressure evolution along the profile 

is represented in Fig. 8 for a cavity length increasing 

from 5% of the chord to 20% of the chord. 

We observe a general good agreement between 

the numerical results and the experimental data : the 

charts confirm that the cavity length is correctly 

predicted. The pressure downstream of the closure 

area is a little over-estimated by the calculation, 

which is mainly an effect of the 2D simulation that do 

not take into account the obstruction effects linked to 
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(a) (b) 

(c) (d) 

Fig. 7 Shape of the cavities with Lcav=15% Lref, (a) Bevelled leading edge 
-i=4.5", (b) Bevelled leading edge - i=4T, (c) Sharp leading 
edge -i=4.5", (d) Sharp leading edge -i=4.1" 

beveled leading edge - i=4.5' - Lcav/Lref=5% 
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Fig. 8 S tatic pressure dis tribution on the profile : numerical and experimen tal results 

(BLE foil, Vref=16 m/s) 

the boundary layers developing along the sidewalls of 

the tunnel. Nevertheless, the most important discrep­

ancy concerns the pressure increase in the cavity 

closure area, which appears more pronounced in the 
calculations than in the experiments. This sharp 

elevation predicted by the model in the cavity wake 

can be related to the complete stabilization of the 

cavitation sheet. The real behaviour involves self­

oscillations of the cavitation sheet and the measured 

time-averaged pressure distributions downstream of 

the cavities appear smoothed. 
Velocity profiles across the upper channel are 

more closely studied. The velocity distribution along 

three axes almost perpendicular to the foil suction 

side, respectively at 37%, 70%, and 95% of the chord 

length were investigated by means of a 4 holes probe. 

The component of the velocity vectors normal to 
these sections is represented in Fig. 9 in non-cavitat­

ing and cavitating conditions. The numerical results 

and the experimental data are compared. Because the 

obstruction effect due to the boundary layers along 

the sidewalls and along the leg holding the foil is not 

taken into account in the 2D simulation, the experi­

mental mean velocity in the 3 sections are about 10% 

higher than the numerical ones. Then, in order to 

compare the profiles, all values have been divided by 

the mean velocity in non-cavitating condition. 

In non-cavitating conditions, the boundary layer 

appears almost symmetric on both sides of the chan­

nel. In cavitating condition, the important increase of 

6



1 2 
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Fig. 9 Velocity profiles in three sections located respectively at 37%, 70%, and 

95% of the chord. All values are divided by the mean velocity in the 
corresponding section in non cavitating condition. (BLE foil at 4.5 degree, 
Vref=16 m/s). Non cavitating condition experimental points+; numerical 

result (full line) ; Cavitating condition (Lcav/Lref=15%) experimental 
points .A ; numerical result (full line) ; Difference between non-cavitating 

and cavitating conditions experimental e ; numerical result (full line) 

Fig. 10 Cavity shape : SLE foil, 0"=0.02. Grey surface corresponds to a void ratio of 5%. 

Streamlines of the flow in the vicinity of the cavity surface are drawn in red 

the displacement thickness due to the presence of the 

cavity wake is clearly visible all along the foil suction 

side (y/h=O). The interaction between the wake and 

the flow at the foil trailing edge leads to the slight 

decrease of the flow rate passing in the upper channel 

in cavitating conditions, which modifies a little the 

flow circulation around the foil and the resulting lift<1l. 

The agreement between measurement and simulation 

is satisfactory, in non cavitating and cavitating condi­
tions. The quantitative influence of the cavitation 

sheet on the suction side boundary layer is notably 

well predicted. 

6. Three-dimensional Computation 

A three dimensional calculation taking into 

account the complete experimental geometry was 

performed, to illustrate the 3D ability of the numerical 

code and to estimate the effect of 2D simplifications 

applied in the previous cases. A 106 cells mesh of the 

SLE foil at 4. 1 degrees angle of attack is used. The 

cavitation number is fixed to 0.2, which leads to a 

cavity length close to 5% of the chord. The cavity 

shape, shown in Fig. 10, is clearly three-dimensional, 

with an important influence of the sidewalls boundary 
layers, also visible on the streamlines drawn from the 

foil leading edge. 

7. Conclusion 

A numerical study of the cavitation behaviour of 

two-dimensional hydrofoils simulating a section of an 

inducer blade was presented. Two-dimensional com­

putations were performed in different cases : two 

different foil leading edge shapes, two different angles 

of attack. A good agreement with experiments is 

generally obtained for the cavity length at different 

cavitation numbers. In one case, namely the sharp 

leading edge foil at the higher angle of attack, the 

presence of a separated flow near the sharp leading 
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edge, observed for non-cavitating conditions, creates 

the condition of a strong hysteresis phenomenon in the 

numerical result. Only the simulation performed by 

increasing the cavitation number from its minimum 

value provides a behaviour that conforms to experi­

mental observations. With this angle of attack, the 

cavity is larger than with the bevelled leading edge 

foil, in both experiments and simulations. The self­
oscillating behaviour of cavitation is not simulated at 

the present stage of the model. There is no effect of 

the leading edge shape at the lower angle of attack. 

Static pressure distributions along the foil suction side 

and velocity profiles in the cross sections of the foil 

suction side channel agree well with measurements. 
The presence of the cavitation sheet leads to the 

modification of the boundary layer all along the foil, 

with a probable effect on the trailing edge flow. A first 

3D computation shows the influence of sidewall bound­

ary layers on attached cavity. 

Acknowledgements 

This work is supported by a doctoral grant from 

the Education French Ministry MERT, SNECMA 

Moteurs (Rocket Engine Division), and by the French 

space agency CNES. The laboratory CREMHyG 

(Grenoble, France) provided experimental results. 

References 

( 1 )  Reboud, ].L., Rebattet, C. and Morel, P., Effect of 
the Leading Edge Design on Sheet Cavitation 

around a Blade Section, Proc. of the 18th IAHR 
Symp. Hydraulic Machinery and Cavitation, 
Valencia, Spain, (1996). 

( 2 ) Delannoy, Y. and Kueny, ].L., Two Phase Flow 

Approach in Unsteady Cavitation Modelling, 

Proc. of Cavitation and Multiphase Flow Forum, 
A SME-FED, Vol. 98 (1990) , pp. 153-158. 

( 3 )  Kubota, A., Kato, H. and Yamaguchi, H., A New 

Modelling of Cavitating Flows: A Numerical 

Study of Unsteady Cavitation on a Hydrofoil 
Section, ]. Fluid Mech., Vol. 240 (1992), pp. 59-96. 

( 4 )  Takasugi, N., Kato, H. and Yamagushi, H., Study 
on Cavitating Flow around a Finite Span Hydro­
foil, Proc. of Cavitation and Multiphase Flow 
Forum, A SME-FED Vol. 153 (1993), pp. 177-182. 

( 5 ) Alajbegovic, A., Grogger, H. and Philipp, H., 
Calculation of Transient Cavitation in Nozzle 
Using the Two-fluid Model, Proc. of the 12th 

Annual Conf. on Liquid Atomization and Spray 
Systems, Indianapolis, (1999). 

( 6 ) Kunz, R., Boger, D., Chyczewski, T., Stinebring, 

D. and Gibeling, H., Multi-phase CFD Analysis of 
Natural and Ventilated Cavitation about Sub-

merged Bodies, Proc. of the 3rd ASME/JSME 
Joint Fluids Engineering Conference, San Francis­
co, (1999). 

( 7 )  Bunnell, R.A. and Heister, S.D., Three-dimen­

sional Unsteady Simulation of Cavitating Flows 
in Injector Passages, ]. Fluid Eng. Vol. 122 (2000),

pp. 791-797. 
( 8 )  Hakimi, N., Preconditioning Methods for Time 

Dependent N a vier-Stokes Equations, Ph.D. The­
sis, Vrije Universiteit Brussels, Belgium, (1997). 

( 9 )  Coutier-Delgosha, 0., Fortes-Patella, R., Reboud, 
].L. and Hakimi, N., Numerical Simulation of 
Cavitating Flow in an Inducer Geometry, Proc. of 
the 4th European Conference on Turbomachinery, 

Firenze, Italy, (2001). 
(10) Reboud, ].L. and Delannoy, Y., Two-phase Flow 

Modelling of Unsteady Cavitation, Proc. of the 
2nd Int. Symp. on Cavitation, Tokyo, (1994). 

(ll) Reboud, ].L., Stutz, B. and Coutier, 0., Two-phase 

Flow Structure of Cavitation : Experiment and 
Modelling of Unsteady Effects, Proc. of the 3rd 

Int. Symp. on Cavitation, Grenoble, France, 
(1998). 

(12) Ishii, M., Thermo-fluid Dynamic Theory of Two­
phase Flow, (1975), Eyrolles, Paris. 

(13) Merkle, C.L., Feng, ]. and Buelow, P.E.O., 

Computational Modelling of the Dynamics of 

Sheet Cavitation, Proc. of the 3rd Int. Symp. on 
Cavitation, Grenoble, France, (1998). 

(14) Song, C.C.S. and He, J., Numerical Simulation 

of Cavitating Flows by Single-phase Flow 
Approach, 3rd Int. Symp. on Cavitation, Grenoble, 
France, (1998). 

(15) Jameson, A., Time Dependant Calculations Using 
Multigrid, with Application to Unsteady Flows 
Past Airfoils and Wings, AIAA Paper 91-1596, 

(1991). 

(16) Turkel, E., Preconditioning Methods for Solving 
the Incompressible and Low Speed Compressible 
Equations, Journal of Camp. Phys., Vol. 72 (1987), 
pp. 277-298. 

(17) Choi, D. and Merkle, C.L., The Application of 

Preconditioning in Viscous Flows, Journal of 

Camp. Phys., Vol. 105 (1993), pp. 207-223. 
(18) Coutier-Delgosha, 0., Fortes-Patella, R. and

Reboud, ].L., Evaluation of the Turbulence Model 
Influence on the Numerical Simulations of Un­
steady Cavitation, Proc. of A SME FED SMOl, 
Cavitation and Multiphase Flow Forum, New 

Orleans, (2001). 
(19) Longatte, F., Contribution il. !'Analyse Pheno­

menologique des Ecoulements Instationnaires 

dans les Turbomachines : Etude du Couplage 

Pompe-Circuit et Rotor-Stator, Ph.D. Thesis, 

I NPGrenoble, France, (1998). 

8




