
HAL Id: hal-00211088
https://hal.science/hal-00211088

Preprint submitted on 21 Jan 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptive thresholding estimation of a Poisson intensity
with infinite support

Patricia Reynaud-Bouret, Vincent Rivoirard

To cite this version:
Patricia Reynaud-Bouret, Vincent Rivoirard. Adaptive thresholding estimation of a Poisson intensity
with infinite support. 2008. �hal-00211088�

https://hal.science/hal-00211088
https://hal.archives-ouvertes.fr


ha
l-

00
21

10
88

, v
er

si
on

 1
 -

 2
1 

Ja
n 

20
08

Adaptive thresholding estimation of a Poisson intensity

with infinite support

Patricia Reynaud-Bouret1 and Vincent Rivoirard2

Abstract The purpose of this paper is to estimate the intensity of a Poisson process N by using
thresholding rules. In this paper, the intensity, defined as the derivative of the mean measure of N
with respect to ndx where n is a fixed parameter, is assumed to be non-compactly supported. The
estimator f̃n,γ based on random thresholds is proved to achieve the same performance as the oracle
estimator up to a logarithmic term. Oracle inequalities allow to derive the maxiset of f̃n,γ. Then,
minimax properties of f̃n,γ are established. We first prove that the rate of this estimator on Besov
spaces Bαp,q when p ≤ 2 is (log(n)/n)α/(1+2α). This result has two consequences. First, it establishes
that the minimax rate of Besov spaces Bαp,q with p ≤ 2 when non compactly supported functions are
considered is the same as for compactly supported functions up to a logarithmic term. This result
is new. Furthermore, f̃n,γ is adaptive minimax up to a logarithmic term. When p > 2, the situation
changes dramatically and the rate of f̃n,γ on Besov spaces Bαp,q is worse than (log(n)/n)α/(1+2α).
Finally, the random threshold depends on a parameter γ that has to be suitably chosen in practice.
Some theoretical results provide upper and lower bounds of γ to obtain satisfying oracle inequali-
ties. Simulations reinforce these results.

Keywords Adaptive estimation, Model selection, Oracle inequalities, Poisson process, Thresh-
olding rule

Mathematics Subject Classification (2000) 62G05 62G20

1 Introduction

1.1 Motivations

Statistical inference for the problem of estimating the intensity of some Poisson process is considered
in this paper. For this purpose, we assume that we are given observations of a Poisson process on
R and our goal is to provide a data-driven procedure with good performance for estimating the
intensity of this process.

This problem has already been extensively investigated. For instance, Rudemo [34] studied data-
driven histogram and kernel estimates based on the cross-validation method. Kernel estimates were
also studied by Kutoyants [29] but in a non-adaptive framework. Donoho [14] fitted the universal
thresholding procedure proposed by Donoho and Johnstone [16] for estimating Poisson intensity
by using the Anscombe’s transform. Kolaczyk [27] refined this idea by investigating the tails of the
distribution of the noisy wavelet coefficients of the intensity. Still in the wavelet setting, Kim and
Koo [25] studied maximum likelihood type estimates on sieves for an exponential family of wavelets.
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And for a particular inverse problem, Cavalier and Koo [10] first derived optimal estimates in the
minimax setting. More precisely, for their tomographic problem, Cavalier and Koo [10] pointed
out minimax thresholding rules on Besov balls. By using model selection, other optimal estimators
have been proposed by Reynaud-Bouret [31] who obtained oracle type inequalities and minimax
rates on a particular class of Besov spaces. In the more general setting of point measure, let us
mention the work by Baraud and Birgé [4] which deals with histogram selection with the use of
Hellinger distance. These model selection results have been generalized by Birgé [6] who applied
a general methodology based on T -estimators whose performance is measured by the Hellinger
distance. However, as explained by Birgé [6], this methodology is too computationally intensive
to be implemented. Related works in other settings are worth citing. For instance, in Poisson
regression, Kolaczyk and Nowak [28] considered penalized maximum likelihood estimates, whereas
Antoniadis et al. [2] and Antoniadis and Sapatinas [3] focused on wavelet shrinkage.

For our purpose, it is capital to note that in the previous works, estimation is performed by
assuming that the intensity has in practice a compact support known by the statistician, [0, 1]
in general. Actually, procedures of previous works are used after preprocessing. The support is
indeed assumed to be in [0,M ], where M is a known constant given either by some extra-knowledge
concerning the data or by the largest observation. Then, all the observations are rescaled by dividing
by M so that observations belong to [0, 1]. But all the previous estimators depend on a tuning
parameter, which therefore depends in practice onM . IfM is overestimated, the estimation is poor.
Even taking the largest observation can be too rough if the distribution is heavy-tailed so that the
largest observation may be very far away from the main part of the intensity. These problems
become more crucial if one deals with data coming from other more complex point processes (see
[19] or [32]) where one knows that the support is overestimated by the theory and where the classical
trick of using the largest observation cannot be considered. Consequently the assumption of known
and bounded support is not considered in the present paper.

Let us now describe more precisely our framework. We begin by giving the definition of a
Poisson process to fix notations.

Definition 1. Let N be a random countable subset of R. N is said to be a Poisson process on R if

- for all A ⊂ R, the number of points of N lying in A is a random variable, denoted NA, which
obeys a Poisson law with parameter denoted by µ(A) where µ is a measure on R,

- for all finite family of disjoints sets A1, . . . , An, NA1 , . . . , NAn are independent.

The measure µ, called the mean measure of N , is assumed to be finite to obtain almost surely
a finite set of points for N . We denote by dN the discrete random measure

∑

T∈N δT so we have
for any function g,

∫

g(x)dNx =
∑

T∈N
g(T ).

We assume that the mean measure is absolutely continuous with respect to the Lebesgue measure
and for n, a fixed integer, we denote by f the intensity function of N defined by

∀ x ∈ R, f(x) =
µ(dx)

ndx
.

We are interested in estimating f knowing the almost surely finite set of points N . The parameter
n is introduced to derive results in an asymptotic setting where f is held fixed and n goes to +∞.
Furthermore, note that observing the n-sample of Poisson processes (N1, . . . , Nn) with common
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intensity f with respect to the Lebesgue measure is equivalent to observe the cumulative Poisson
process N = ∪ni=ANi with intensity n× f with respect to the Lebesgue measure. And in addition,
this setting is close to the problem of density estimation where we observe a n-sample with density
f/
∫

f(x)dx.
Our goal is to build constructive data-driven estimators of f and for this purpose, we consider

thresholding rules whose risk is measured under the L2-loss. Our framework is the following. Of
course, f is non-negative and since we assume that µ(R) < ∞, this implies that f ∈ L1. Since
we consider the L2-loss, f is assumed to be in L2. In particular, f is not assumed to be bounded
(except in the minimax setting) and, as said previously, its support may be infinite.

In a different setting, the problem of estimating a density with infinite support has been partly
solved from the minimax point of view. See [8] where minimax results for a class of functions
depending on a jauge are established or [21] and [18] for Sobolev classes. In these papers, the loss
function depends on the parameters of the functional class. Similarly, Donoho et al. [17] proved
the optimality of wavelet linear estimators on Besov spaces Bαp,q when the Lp-risk is considered.
First general results where the loss is independent of the functional class have been pointed out
by Juditsky and Lambert-Lacroix [24] who investigated minimax rates on the particular class of
the Besov spaces Bα∞,∞ for the Lp-risk. When p > 2 + 1/α, the minimax risk is bounded by

(log(n)/n)2α/(1+2α) so is of the same order up to a logarithmic term as in the equivalent estimation
problem on [0, 1]. However, the behavior of the minimax risk changes dramatically when p ≤ 2+1/α,
and in this case, it depends on p. In addition, Juditsky and Lambert-Lacroix [24] pointed out a
data-driven thresholding procedure achieving minimax rates up to a logarithmic term. In the
maxiset setting, this procedure has been studied by Autin [1] and compared to other classical
thresholding procedures. Finally, we can also mention that Bunea et al. [9] established oracle
inequalities without any support assumption by using Lasso-type estimators.

1.2 The estimation procedure

Now, let us describe the estimation procedure considered in our paper. For this purpose, we assume
in the following that the function f can be written as follows:

f =
∑

λ∈Λ

βλϕ̃λ, with βλ =

∫

f(x)ϕλ(x)dx (1.1)

where (ϕ̃λ)λ∈Λ and (ϕλ)λ∈Λ are two infinite families of linearly independent functions of L2. Most
of the further results are valid by taking (ϕ̃λ)λ∈Λ = (ϕλ)λ∈Λ to be an orthonormal basis of L2 (the
Haar basis for instance). However, minimax results are established by considering special cases of
biorthogonal wavelet bases and in this case (ϕ̃λ)λ∈Λ and (ϕλ)λ∈Λ are different (see Section 3). We
note

||f ||ϕ̃ =

(

∑

λ∈Λ

β2
λ

)1/2

which is equal to the L2-norm of f if (ϕ̃λ)λ∈Λ is orthonormal. We consider thresholding estimators
based on observations (β̂λ)λ∈Γn , where Γn is a subset of Λ chosen later and

∀ λ ∈ Λ, β̂λ =
1

n

∫

R

ϕλ(x)dNx.

Observe that ∀ λ ∈ Λ, β̂λ is an unbiased estimator of βλ. As Juditsky and Lambert-Lacroix [24], we
threshold β̂λ according to a random positive function of λ depending on n and on a fixed parameter
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γ fixed later, denoted by ηλ,γ and the thresholding estimator of f is

f̃n,γ =
∑

λ∈Γn

β̃λϕ̃λ, (1.2)

where
∀ λ ∈ Λ, β̃λ = β̂λ1|β̂λ|≥ηλ,γ

.

In the sequel, we denote f̃γ = (f̃n,γ)n.

The procedure (1.2) can also be seen as a model selection procedure. Indeed, for all g =
∑

λ∈Λ αλϕ̃λ,
we define the least square contrast by

γn(g) = −2
∑

λ∈Λ

αλβ̂λ +
∑

λ∈Λ

α2
λ.

For all subset of indicesm, we denote by Sm the subspace generated by {ϕ̃λ, λ ∈ m}. The projection
estimator onto Sm is defined by

f̂m = arg min
g∈Sm

γn(g) =
∑

λ∈m
β̂λϕ̃λ.

Note that
γn(f̂m) = −

∑

λ∈m
β̂2
λ.

If we set
pen(m) =

∑

λ∈m
η2
λ,γ ,

then the thresholding estimator can be seen as a penalized projection estimator since we have

f̃n,γ = f̂m̂ =
∑

λ∈Γn

β̂λ1|β̂λ|≥ηλ,γ
ϕ̃λ

with
m̂ = arg min

m⊂Γn

[

γn(f̂m) + pen(m)
]

. (1.3)

Such an interpretation is used in Section 4.1 and for the proof of the main result of this paper.

1.3 Overview of the paper

In this paper, our goals are threefold. First of all, we wish to derive theoretical results for the
L2-risk of f̃γ by using three different points of view (oracle, maxiset and minimax), then we wish
to discuss precisely the choice of the threshold and finally we wish to perform some simulations.

Let us now describe our results for our first aim. Theorem 1 is the main result of the paper.
With a convenient choice of the threshold and under very mild assumptions on Γn, Theorem 1
proves that the thresholding estimate f̃γ satisfies an oracle type inequality. We emphasize that
this result is valid under very mild assumptions on f . Indeed, classical procedures use a bound
for the sup-norm of f (see [10], [17] or [31]). This is not the case here where the threshold is
the sum of two terms, a purely random one that is the main term and a deterministic one (see
(2.2)). The definition of the threshold is extensively discussed in Section 2. By using biorthogonal
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wavelet bases, we derive from Theorem 1 the oracle inequality satisfied by f̃γ . More precisely,
Theorem 2 in Section 4.1 shows that f̃γ achieves the same performance as the oracle estimator up
to a logarithmic term which is the price to pay for adaptation. From Theorem 2, we derive the
maxiset results of this paper. Let us recall that the maxiset approach consists in investigating the
maximal space (maxiset), where a given procedure achieves a given rate of convergence. For the
maxiset theory, there is no a priori functional assumption. For a given procedure, the practitioner
states the desired accuracy by fixing a rate and points out all the functions that can be estimated
at this rate by the procedure. Obviously, the larger the maxiset, the better the procedure. We
prove in Section 4.2, that under mild conditions, the maxiset of the estimate f̃γ for classical rates
of the form (log(n)/n)α/(1+2α) is, roughly speaking, the intersection of two spaces: a weak Besov
space denoted Wα and the classical Besov space Bα2,∞ (see Theorem 3 and Section 4.2 for more
details). Interestingly, this maxiset result provides examples of non bounded functions that can be
estimated at the rate (log(n)/n)α/(1+2α) when 0 < α < 1/4 (see Proposition 1). Furthermore, we
derive from the maxiset result most of the minimax results briefly described now.

As said previously, Juditsky and Lambert-Lacroix [24] established minimax rates for the problem
of estimating a density with an infinite support for the particular class of Besov spaces Bα∞,∞ and for
the Lp-loss. To the best of our knowledge, minimax rates are unknown for Besov spaces Bαp,q except
for very special cases described above. Our goal is to deal with this issue in the Poisson setting
and for the L2-loss. We emphasize that for the minimax setting, we assume that the function to
be estimated is bounded. The results that we obtain are the following. When p ≤ 2, under mild
assumptions, the minimax rate of convergence associated with Bαp,q is the classical rate n−α/(1+2α) up
to a logarithmic term. So, it is of the same order as in the equivalent estimation problem on compact
sets of R. Furthermore, our estimate achieves this rate up to a logarithmic term. When p > 2,
using our maxiset result, we prove that this last result concerning our procedure is no more true.
But we prove under mild conditions that the rate of f̃γ is not larger than (log(n)/n)α/(2+2α−1/p)

up to a constant. Note that when p = ∞, (log(n)/n)α/(2+2α) is the rate pointed out by Juditsky
and Lambert-Lacroix [24] for minimax estimation under the L2-loss on the space Bα∞,∞. Of course,

when compactly supported functions are considered, f̃γ is adaptive minimax on Besov spaces Bαp,q
up to a logarithmic term.

The second goal of the paper is to discuss the choice of the threshold. The starting point
of this discussion is as follows. The main term of the threshold is (2γlog(n)Ṽλ,n)

1/2 where Ṽλ,n
is an estimate of the variance of β̂λ and γ is a constant to be calibrated (see (2.2) for further
details). As usual, γ has to be large enough to obtain the theoretical results (see Theorem 1).
Such an assumption is very classical (see for instance [24], [17], [10] or [1]). But, as illustrated by
Juditsky and Lambert-Lacroix [24], it is often too conservative for practical issues. In this paper,
the assumption on the constant γ is as less conservative as possible and actually most of the results
are valid if γ > 1. So, the first issue is the following: what happens if γ ≤ 1? Theorem 8 of Section
5 proves that the rate obtained for estimating the simple function 1[0,1] is larger than n−(γ+ε)/2 for
any ε > 0. This proves that γ < 1 is a bad choice since, with γ > 1, we achieve the parametric
rate up to a logarithmic term. Finally we consider a special class of intensity functions denoted
Fn. Theorems 9 and 10 provide upper and lower bounds of the maximal ratio on Fn of the risk of
f̃γ by the oracle risk and prove that γ should not be too large.

Finally we validate the previous range of γ and refine it through a simulation study so that
one can claim that γ = 1 is a fairly good choice for all the encountered situations (finite/infinite
support, bounded/unbounded intensity, smooth/non-smooth functions).
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1.4 Outlines

The paper is organized as follows. In Section 2, the main result of this paper is established. Then,
Section 3 introduces biorthogonal wavelet bases that are used to give oracle, maxiset and minimax
results pointed out in Section 4. Section 5 discusses the choice of the threshold, whereas Section 6
provides some simulations. Finally, Section 7 gives the proof of the theoretical results.

2 The main result

In the sequel, for R > 0, if F is a given Banach space, we denote F(R) the ball of radius R
associated with F . For any 1 ≤ p ≤ ∞, we denote

||g||p =

(
∫

|g(x)|pdx
) 1

p

with the usual modification for p = ∞. To state the main result, let us introduce the following
notations that are used throughout the paper. We set

∀ λ ∈ Λ, V̂λ,n =

∫

R

ϕ2
λ(x)

n2
dNx,

the natural estimate of Vλ,n that is the variance of β̂λ:

∀ λ ∈ Λ, Vλ,n = E(V̂λ,n) =
σ2
λ

n
,

where

∀ λ ∈ Λ, σ2
λ =

∫

R

ϕ2
λ(x)f(x)dx.

Theorem 1. We assume that (1.1) is true and Γn is such that for λ ∈ Γn,

||ϕλ||∞ ≤ cϕ,n
√
n

and that for all x ∈ R,
card{λ ∈ Γn : ϕλ(x) 6= 0} ≤ mϕ,nlogn, (2.1)

where cϕ,n and mϕ,n depend on n and on the family (ϕλ)λ∈Λ. Let γ > 1. We set

ηλ,γ =

√

2γlognṼλ,n +
γlogn

3n
||ϕλ||∞, (2.2)

where

Ṽλ,n = V̂λ,n +

√

2γlognV̂λ,n
||ϕλ||2∞
n2

+ 3γlogn
||ϕλ||2∞
n2

and consider f̃n,γ defined in (1.2). Then for all ε < γ−1 and for all p ≥ 2 and q such that 1
p+ 1

q = 1

and γ
q > 1 + ε,

ε

2 + ε
E(||f̃n,γ − f ||2ϕ̃) ≤ E



 inf
m⊂Γn







(

1 +
2

ε

)

∑

λ6∈m
β2
λ + ε

∑

λ∈m
(β̂λ − βλ)

2 +
∑

λ∈m
η2
λ,γ









+

+ c0(1 + ε)p2‖f‖1c
2
ϕ,nmϕ,nlog(n)

[

n
− γ

q(1+ε) + n−
γ
q (max(‖f‖1; 1))

1
q

]

,

where c0 is an absolute constant.
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Note that this result is proved under very mild conditions on the decomposition of f . In partic-
ular we never use in the proof that we are working on the real line but only that the decomposition
(1.1) exists. Observe also that if we use wavelet bases (see (3.1) in Section 3 below where we recall
the standard wavelet setting) and if

Γn ⊂
{

λ = (j, k) ∈ Λ : 2j ≤ nc
}

,

where c is a constant, then mϕ,n does not depend on n and in addition,

sup
n

[

cϕ,nn
−(c−1)/2

]

<∞.

The threshold seems to be defined in a rather complicated manner. But, first observe that ∀ θ > 0,
∀λ ∈ Γn,

√

2γlog(n)V̂λ,n +
γlog(n)

3n
‖ϕλ‖∞ ≤ ηλ,γ ≤ c1,θ

√

2γlog(n)V̂λ,n + c2,θ
γlog(n)

3n
‖ϕλ‖∞, (2.3)

with c1,θ =
√

1 + 1
2θ , c2,θ =

(

3
√

2θ + 6 + 1
)

.

Since V̂λ,n is the natural estimate of Vλ,n, the first term of the left hand side of (2.3) is similar to
the threshold introduced by Juditsky and Lambert-Lacroix [24] in the density estimation setting.
But unlike Juditsky and Lambert-Lacroix [24], we add a deterministic term that allows to consider
γ close to 1 and to control large deviations terms. In addition, since ηλ,γ cannot be equal to 0,
this allows to deal with very irregular functions. However, observe that, most of the time, the
deterministic term is negligible compared to the first term as soon as λ ∈ Γn satisfies ‖ϕλ‖∞ =
on(n

1/2). Finally, in the same spirit, Vλ,n is slightly overestimated and we consider Ṽλ,n instead of

V̂λ,n to define the threshold.
The result of Theorem 1 is an oracle type inequality. By exchanging the expectation and the

infimum, the result provides the expected oracle inequality claimed in Theorem 2 of Section 4.1.
Theorem 2 is derived from Theorem 1 by evaluating E(

∑

λ∈Γn
η2
λ,γ) and by using biorthogonal

wavelet bases.

3 Biorthogonal wavelet bases and Besov spaces

In this paper, the intensity f to be estimated is assumed to belong to L1∩L2. In this case, f can be
decomposed on the Haar wavelet basis and this property is used throughout this paper. However,
in Section 4.3, the Haar basis that suffers from lack of regularity is not considered. Instead, we
consider a particular class of biorthogonal wavelet bases that are described now. For this purpose,
let us set

φ = 1[0,1].

For any r ≥ 0, there exist three functions ψ, φ̃ and ψ̃ with the following properties:

1. φ̃ and ψ̃ are compactly supported,

2. φ̃ and ψ̃ belong to Cr+1, where Cr+1 denotes the Hölder space of order r + 1,

3. ψ is compactly supported and is a piecewise constant function,

4. ψ is orthogonal to polynomials of degree no larger than r,
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5. {(φk, ψj,k)j≥0,k∈Z, (φ̃k, ψ̃j,k)j≥0,k∈Z} is a biorthogonal family: ∀ j, j′ ≥ 0, ∀ k, k′ ∈ Z,

∫

R

ψj,k(x)φ̃k′(x)dx =

∫

R

φk(x)ψ̃j′,k′(x)dx = 0,

∫

R

φk(x)φ̃k′(x)dx = 1k=k′ ,

∫

R

ψj,k(x)ψ̃j′,k′(x)dx = 1j=j′,k=k′,

where for any x ∈ R and for any (j, k) ∈ Z
2,

φk(x) = φ(x− k), ψj,k(x) = 2j/2ψ(2jx− k)

and
φ̃k(x) = φ̃(x− k), ψ̃j,k(x) = 2j/2ψ̃(2jx− k).

This implies that for any f ∈ L1 ∩ L2, for any x ∈ R,

f(x) =
∑

k∈Z

αkφ̃k(x) +
∑

j≥0

∑

k∈Z

βj,kψ̃j,k(x),

where for any j ≥ 0 and any k ∈ Z,

αk =

∫

R

f(x)φk(x)dx, βj,k =

∫

R

f(x)ψj,k(x)dx.

Such biorthogonal wavelet bases have been built by Cohen et al. [11] as a special case of spline
systems (see also the elegant equivalent construction of Donoho [15] from boxcar functions). Of
course, recall that all these properties except the second and the forth ones are true for the Haar
basis, where φ̃ = φ and ψ̃ = ψ = 1[0,1/2]−1]1/2,1], which allows to obtain in addition an orthonormal
basis. This last point is not true for general biorthogonal wavelet bases but we have the frame
property: there exist two constants c1 and c2 only depending on the basis such that

c1





∑

k∈Z

α2
k +

∑

j≥0

∑

k∈Z

β2
j,k



 ≤ ‖f‖2
2 ≤ c2





∑

k∈Z

α2
k +

∑

j≥0

∑

k∈Z

β2
j,k



 .

In the sequel, when wavelet bases are used, we set

Λ = {λ = (j, k) : j ≥ −1, k ∈ Z}. (3.1)

We denote for any λ ∈ Λ, ϕλ = φk (respectively ϕ̃λ = φ̃k) if λ = (−1, k) and ϕλ = ψj,k (respectively
ϕ̃λ = ψ̃j,k) if λ = (j, k) with j ≥ 0. Similarly, βλ = αk if λ = (−1, k) and βλ = βj,k if λ = (j, k) with
j ≥ 0. So, (1.1) is valid. An important feature of the bases introduced previously is the following:
there exists a constant µψ > 0 such that

inf
x∈[0,1]

|φ(x)| ≥ 1, inf
x∈supp(ψ)

|ψ(x)| ≥ µψ, (3.2)

where supp(ψ) = {x ∈ R : ψ(x) 6= 0}. This property is used throughout the paper.

Now, let us recall some properties of Besov spaces that are extensively used in the next section. We
refer the reader to [13] and [20] for the definition of Besov spaces, denoted Bαp,q in the sequel, and
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a review of their properties explaining their important role in approximation theory and statistics.
We just recall the sequential characterization of Besov spaces by using the biorthogonal wavelet
basis (for further details, see [12]). Let 1 ≤ p, q ≤ ∞ and 0 < α < r + 1, the Bαp,q-norm of f is
equivalent to the norm

||f ||α,p,q =







||(αk)k||ℓp +
[

∑

j≥0 2jq(α+1/2−1/p)||(βj,k)k||qℓp
]1/q

if q <∞,

||(αk)k||ℓp + supj≥0 2j(α+1/2−1/p)||(βj,k)k||ℓp if q = ∞.

We use this norm to define the radius of Besov balls. For any R > 0, if 0 < α′ ≤ α < r + 1,
1 ≤ p ≤ p′ ≤ ∞ and 1 ≤ q ≤ q′ ≤ ∞, we obviously have

Bαp,q(R) ⊂ Bαp,q′(R), Bαp,q(R) ⊂ Bα′

p,q(R).

Moreover

Bαp,q(R) ⊂ Bα′

p′,q(R) if α− 1

p
≥ α′ − 1

p′
. (3.3)

The class of Besov spaces Bαp,∞ provides a useful tool to classify wavelet decomposed signals in
function of their regularity and sparsity properties (see [23]). Roughly speaking, regularity increases
when α increases whereas sparsity increases when p decreases. Especially, the spaces with indices
p < 2 are of particular interest since they describe very wide classes of inhomogeneous but sparse
functions (i.e. with a few number of significant coefficients). The case p ≥ 2 is typical of dense
functions.

4 Oracle, maxiset and minimax results

Along this section, we use biorthogonal wavelet bases as defined in Section 3.

4.1 Oracle inequalities

Ideal adaptation is studied in [16] using the class of shrinkage rules in the context of wavelet function
estimation. This is the performance that can be achieved with the aid of an oracle. In our setting,
the oracle does not tell us the true function, but tells us, for our thresholding method, the coefficients
that have to be kept. This “estimator” obtained with the aid of an oracle is not a true estimator,
of course, since it depends on f . But it represents an ideal for a particular estimation method.
The approach of ideal adaptation is to derive true estimators which can essentially “mimic” the
performance of the oracle estimator. So, using the interpretation of thresholding rules as model
selection rules, the oracle provides the model m̄ ⊂ Γn such that the quadratic risk of f̂m̄ is minimum.
Since, we have for any m ⊂ Γn,

E(||f̂m − f ||2ϕ̃) =
∑

λ∈m
Vλ,n +

∑

λ6∈m
β2
λ,

the oracle estimator f̂m̄ is obtained by taking m̄ = {λ ∈ Γn : β2
λ > Vλ,n} and

f̂m̄ =
∑

λ∈Γn

β̂λ1β2
λ>Vλ,n

ϕ̃λ.

Its risk (the oracle risk) is then

E(||f̂m̄ − f ||2ϕ̃) = E

∑

λ∈Γn

(β̂λ1β2
λ>Vλ,n

− βλ)
2 +

∑

λ/∈Γn

β2
λ =

∑

λ∈Γn

min(β2
λ, Vλ,n) +

∑

λ/∈Γn

β2
λ.
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Our aim is now to compare the risk of f̃n,γ to the oracle risk. We deduce from Theorem 1 the
following result.

Theorem 2. Let us fix two constants c ≥ 1 and c′ ∈ R, and let us define for any n, j0 = j0(n) the
integer such that 2j0 ≤ nc(log(n))c

′

< 2j0+1. Let γ > c and let ηλ,γ be as in Theorem 1. Then f̃n,γ
defined with

Γn = {λ = (j, k) ∈ Λ : j ≤ j0}
achieves the following oracle inequality:

E(||f̃n,γ − f ||2ϕ̃) ≤ C1(γ, ϕ)





∑

λ∈Γn

min(β2
λ, Vλ,nlog(n)) +

∑

λ/∈Γn

β2
λ



+
C2(γ, ‖f‖1, c, c

′, ϕ)

n
(4.1)

where C1(γ, ϕ) is a positive constant depending only on the basis and of the value of γ and where
C2(γ, ‖f‖1, c, c

′, ϕ) is also a positive constant depending on γ and the basis but also on ‖f‖1, c and c′.

The oracle inequality (4.1) satisfied by f̃n,γ proves that this estimator achieves essentially the
oracle risk up to a logarithmic term. This logarithmic term is the price we pay for adaptivity, i.e.
for not knowing the wavelet coefficients that have to be kept. In section 5, optimization of the
constants of the stated result is performed for a particular class of functions.

4.2 Maxiset results

As said in the introduction, if f∗ is a given procedure, the maxiset study of f∗ consists in deciding
the accuracy of the estimate by fixing a prescribed rate ρ∗ and in pointing out all the functions
f such that f can be estimated by the procedure f∗ at the target rate ρ∗. The maxiset of the
procedure f∗ for this rate ρ∗ is the set of all these functions. So, we set the following definition.

Definition 2. Let ρ∗ = (ρ∗n)n be a decreasing sequence of positive real numbers and let f∗ = (f∗n)n
be an estimation procedure. The maxiset of f∗ associated with the rate ρ∗ and the L2-loss is

MS(f∗, ρ∗) =

{

f ∈ L1 ∩ L2 : sup
n

[

(ρ∗n)
−2

E||f∗n − f ||2ϕ̃
]

< +∞
}

,

the ball of radius R > 0 of the maxiset is defined by

MS(f∗, ρ∗)(R) =

{

f ∈ L1 ∩ L2 : sup
n

[

(ρ∗n)
−2

E||f∗n − f ||2ϕ̃
]

≤ R2

}

.

To establish the maxiset result of this section, we use Theorem 2, so we need to assume that
the estimation procedure is performed in a ball of L1 ∩ L2. Even, if the size of the balls does not
play an important role, this assumption is essential. In this setting, we use the following notation.
If F is a given space

MS(f∗, ρ∗) := F

means in the sequel that for any R > 0, there exists R′ > 0 such that

MS(f∗, ρ∗)(R) ∩ L1(R) ∩ L2(R) ⊂ F(R′) ∩ L1(R) ∩ L2(R)
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and for any R′ > 0, there exists R > 0 such that

F(R′) ∩ L1(R
′) ∩ L2(R

′) ⊂MS(f∗, ρ∗)(R) ∩ L1(R
′) ∩ L2(R

′).

In this section, for any α > 0, we investigate the set of functions that can be estimated by f̃γ =
(f̃n,γ)n at the rate ρα = (ρn,α)n, where for any n,

ρn,α =

(

log(n)

n

) α
1+2α

.

More precisely, we investigate for any radius R > 0:

MS(f̃γ , ρα)(R) =

{

f ∈ L1 ∩ L2 : sup
n

[

ρ−2
n,αE||f̃n,γ − f ||2ϕ̃

]

≤ R2

}

.

To characterize maxisets of f̃γ , we introduce the following spaces.

Definition 3. We define for all R > 0 and for all s > 0,

Ws =

{

f =
∑

λ∈Λ

βλϕ̃λ : sup
t>0

t
−4s
1+2s

∑

λ∈Λ

β2
λ1|βλ|≤σλt <∞

}

,

the ball of radius R associated with Ws is:

Ws(R) =

{

f =
∑

λ∈Λ

βλϕ̃λ : sup
t>0

t
−4s
1+2s

∑

λ∈Λ

β2
λ1|βλ|≤σλt ≤ R

2
1+2s

}

,

and for any sequence of spaces Γ = (Γn)n included in Λ,

Bs
2,Γ =







f =
∑

λ∈Λ

βλϕ̃λ : sup
n





(

log(n)

n

)−2s
∑

λ6∈Γn

β2
λ



 <∞







and

Bs
2,Γ(R) =







f =
∑

λ∈Λ

βλϕ̃λ : sup
n





(

log(n)

n

)−2s
∑

λ6∈Γn

β2
λ



 ≤ R2







.

In [13], a justification of the form of the radius of Ws and further details are provided. These
spaces can be viewed as weak versions of classical Besov spaces, hence they are denoted in the
sequel weak Besov spaces. In particular, the spaces Ws naturally model sparse signals (see [33]).
Note that if for all n,

Γn = {λ = (j, k) ∈ Λ : j ≤ j0}
with

2j0 ≤
(

n

logn

)c

< 2j0+1, c > 0

then, Bs
2,Γ is the classical Besov space Bs/c2,∞ if some properties of regularity and vanishing moments

are satisfied by the wavelet basis (see Section 3). We define Bs
2,Γ and Ws by using biorthogonal

wavelet bases. However, as established in [13], they also have different definitions proving that,
under mild conditions, this dependence on the basis is not crucial at all. Using Theorem 2, we have
the following result.
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Theorem 3. Let us fix two constants c ≥ 1 and c′ ∈ R, and let us define for any n, j0 = j0(n) the
integer such that 2j0 ≤ nc(log(n))c

′

< 2j0+1. Let γ > c and let ηλ,γ be as in Theorem 1. Then, the
procedure defined in (1.2) with the sequence Γ = (Γn)n such that

Γn = {λ = (j, k) ∈ Λ : j ≤ j0}

achieves the following maxiset performance: for all α > 0,

MS(f̃γ , ρα) := B
α

1+2α

2,Γ ∩Wα.

In particular, if c′ = −c and 0 < α
c(1+2α) < r+1, where r is the parameter of the biorthogonal basis

introduced in Section 3,

MS(f̃γ , ρα) := B
α

c(1+2α)

2,∞ ∩Wα.

Remark 1. In order to obtain maxisets as large as possible, Inequality (7.7) of the proof of Theorem
3 suggests to choose γ > 1 as small as possible.

The maxiset of f̃γ is characterized by two spaces: a weak Besov space that is directly connected

to the thresholding nature of f̃γ and the space B
α/(1+2α)
2,Γ that handles the coefficients that are not

estimated, which corresponds to the indices j > j0. This maxiset result is similar to the result
obtained by Autin [1] in the density estimation setting but our assumptions are less restrictive (see
Theorem 5.1 of [1]).
Now, let us point out a family of examples of functions that illustrates the previous result. For this
purpose, we consider the Haar basis that allows to have simple formula for the wavelet coefficients.
Let us consider for any 0 < β < 1/2, fβ such that

∀ x ∈ R, fβ(x) = x−β1x∈]0,1].

The following result points out that if α is small enough, for a convenient choice of β, fβ belongs
to MS(f̃γ , ρα) (so fβ can be estimated at the rate ρα), and in addition fβ 6∈ L∞.

Proposition 1. We consider the Haar basis and we set c′ = −c. For 0 < α < 1/4, under the
assumptions of Theorem 3, if

0 < β ≤ 1 − 4α

2 + 4α
,

then for c large enough,

fβ ∈MS(f̃γ , ρα) := B
α

c(1+2α)

2,∞ ∩Wα,

where B
α

c(1+2α)

2,∞ and Wα are viewed as sequence spaces. In addition, fβ 6∈ L∞.

This result is proved by using the Haar basis, so the functional spaces are viewed as sequence
spaces. We conjecture that for more general biorthogonal wavelet bases, we can also build not
bounded functions that belong to MS(f̃γ , ρα).

4.3 Minimax results

Let F be a functional space and F(R) be the ball of radius R associated with F . F(R) is assumed
to belong to a ball of L1∩L2. Let us recall that a procedure f∗ = (f∗n)n achieves the rate ρ∗ = (ρ∗n)n
on F(R) (for the L2-loss) if

sup
n

[

(ρ∗n)
−2 sup

f∈F(R)
E(||f∗n − f ||2ϕ̃)

]

<∞.
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Let us consider the procedure f̃γ and the rate ρα = (ρn,α)n where for any n,

ρn,α =

(

log(n)

n

) α
1+2α

as in the previous section. Obviously, f̃γ achieves the rate ρα on F(R) if and only if there exists
R′ > 0 such that

F(R) ⊂MS(f̃γ , ρα)(R′) ∩ L1(R
′) ∩ L2(R

′).

Using results of the previous section, if c′ = −c and if properties of regularity and vanishing
moments are satisfied by the wavelet basis, this is satisfied if and only if there exists R′′ > 0 such
that

F(R) ⊂ B
α

c(1+2α)

2,∞ (R′′) ∩Wα(R
′′) ∩ L1(R

′′) ∩ L2(R
′′).

We apply this simple rule for Besov balls. So, in the sequel, we assume that the function f to
be estimated belongs to a ball of L1 ∩ L2. In addition, we assume that f also belongs to a ball
of L∞. This last assumption which is not necessary to derive maxiset results (see Theorem 3 or
Proposition 1) is unavoidable in some sense in the minimax setting. For a precise justification of
this point, see for instance Corollary 1 of [6]. Consequently, in the sequel, we set for any R > 0,

L1,2,∞(R) = {f : ||f ||1 ≤ R, ||f ||2 ≤ R, ||f ||∞ ≤ R} .

In the sequel, minimax results depend on the parameter r of the biorthogonal basis introduced in
Section 3 to measure the regularity of the reconstruction wavelets (φ̃, ψ̃).

4.3.1 Minimax estimation on Besov spaces Bαp,q when p ≤ 2

To the best of our knowledge, the minimax rate is unknown for Bαp,q when p <∞. Let us investigate

this problem by pointing out the minimax properties of f̃γ on Bαp,q when p ≤ 2. We have the following
result.

Theorem 4. Let R,R′ > 0, 1 ≤ p, q ≤ ∞ and α ∈ R such that max(0, 1/p− 1/2) < α < r+ 1. Let
c ≥ 1 large enough such that

α

(

1 − 1

c(1 + 2α)

)

≥ 1

p
− 1

2
. (4.2)

Let us define for any n, j0 = j0(n) the integer such that

2j0 ≤ nc(log(n))−c < 2j0+1.

Then, if p ≤ 2, f̃γ = (f̃n,γ)n defined with

Γn = {λ = (j, k) ∈ Λ : j ≤ j0}

and γ > c achieves the rate ρα on Bαp,q(R) ∩ L1,2,∞(R′). Indeed, for any n,

sup
f∈Bα

p,q(R)∩L1,2,∞(R′)
E(||f̃n,γ − f ||2ϕ̃) ≤ C(γ, c,R,R′, α, p, ϕ)

(

logn

n

)2α/(1+2α)

(4.3)
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where C(γ, c,R,R′, α, p, ϕ) depends on R′, γ, c, on the parameters of the Besov ball and on the
basis.
Furthermore, let p∗ ≥ 1 and α∗ > 0 such that

α∗
(

1 − 1

c(1 + 2α∗)

)

≥ 1

p∗
− 1

2
. (4.4)

Then, f̃γ is adaptive minimax up to a logarithmic term on
{

Bαp,q ∩ L1,2,∞ : α∗ ≤ α < r + 1, p∗ ≤ p ≤ 2, 1 ≤ q ≤ ∞
}

.

This result points out the minimax rate associated with Bαp,q(R)∩L1,2,∞(R′) up to a logarithmic
term and in addition proves that it is of the same order as in the equivalent estimation problem on
[0, 1] (see [17]). It means that, roughly speaking, it is not harder to estimate sparse non-compactly
supported functions than sparse compactly supported functions from the minimax point of view.
In addition, the procedure f̃γ does the job up to a logarithmic term. When p > 2 (i.e., when dense
functions are considered), this conclusion does not remain true.

4.3.2 Minimax estimation on Besov spaces Bαp,q when p > 2

Before considering the case of estimation of non-compactly supported functions, let us establish
the following result. We denote K the set of compact sets of R containing a non-empty interval.
We define for K ∈ K, Bαp,q,K(R) the set of functions supported by K and belonging to Bαp,q(R).

Corollary 1. We assume that assumptions of Theorem 4 are true. For any p ≥ 1, f̃γ achieves the
rate ρα on Bαp,q,K(R) ∩ L1,2,∞(R′).

Furthermore, f̃γ is adaptive minimax up to a logarithmic term on
{

Bαp,q,K ∩ L1,2,∞ : α∗ ≤ α < r + 1, p∗ ≤ p ≤ ∞, 1 ≤ q ≤ ∞,K ∈ K
}

,

where α∗ and p∗ satisfy (4.4).

To prove this corollary, it is enough to apply Theorem 4 and to note that Bαp,q,K(R) ⊂ Bαp,∞,K(R) ⊂
Bα2,∞,K(R̃) for R̃ large enough when p > 2.

When non-compactly supported functions are considered, this result is not true and we can
prove the following theorem.

Theorem 5. Let p > 2 and α > 0. There exists a positive function f such that

f ∈ L1 ∩ L2 ∩ L∞ ∩ Bαp,∞ and f /∈Wα,

where the function spaces are viewed as sequential spaces (the Haar basis is used).

Remark 2. This result is established by using the Haar basis. We conjecture that it remains true
for more general biorthogonal wavelet bases.

This result proves that f̃γ does not achieve the rate ρα on Bαp,∞ when p > 2, showing that
minimax statements of Section 4.3.1 are not valid in this setting. As said previously, it seems to
us that minimax rates and adaptive minimax rates are unknown for Bαp,∞, when 2 < p < ∞ even
if Donoho et al. [17] provided some lower bounds in the density framework. For the case p = ∞,
see [24].

Now, let us investigate the rate achieved by f̃γ on Bαp,q(R) when p > 2.
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Theorem 6. Let R,R′ > 0, 1 ≤ q ≤ ∞, 2 < p ≤ ∞ and α ∈ R such that 1/(2p) < α < r + 1. Let
us define for any n, j0 = j0(n) the integer such that

2j0 ≤ nc(logn)−c < 2j0+1,

with c ≥ 1.Then, f̃γ = (f̃n,γ)n defined with

Γn = {λ = (j, k) ∈ Λ : j ≤ j0}

and γ > c achieves the following performance. For any n,

sup
f∈Bα

p,q(R)∩L1,2,∞(R′)
E(||f̃n,γ − f ||2ϕ̃) ≤ C(γ, c,R,R′, α, p, ϕ)

(

logn

n

)
α

1+α−
1
2p .

where C(γ, c,R,R′, α, p, ϕ) depends on R′, γ, c, c′, on the parameters of the Besov ball and on the
basis.

Note that when p = ∞, the risk is bounded by
(

logn
n

)
α

1+α
up to a constant, which is the rate

of the minimax risk on Bα∞,∞(R) up to a logarithmic term in the density estimation setting (see

Theorem 1 of [24]). However, α
1+α− 1

2p

p→2−→ α
α+ 3

4

and
(

logn
n

)
α

α+ 3
4 >> ρ2

n,α. So, f̃γ is probably not

adaptive minimax on the whole class of Besov spaces. However, we establish that our procedure is
adaptive minimax (with the exact power of the logarithmic factor) over weak Besov spaces without
any support assumption.

4.3.3 Minimax estimation on Wα and adaptation with respect to α

We investigate in this section a lower bound for the minimax risk on Wα(R)∩B
α

1+2α

2,∞ (R′)∩L1,2,∞(R′′)
for R,R′, R′′ > 0 viewed as sequence spaces for the Haar basis and we set

R(Wα(R) ∩ B
α

1+2α

2,∞ (R′) ∩ L1,2,∞(R′′)) = inf
f̂

sup

f∈Wα(R)∩B
α

1+2α
2,∞ (R′)∩L1,2,∞(R′′)

E(||f̂ − f ||2ϕ̃).

Theorem 7. For α > 0, we have

lim inf
n→∞

ρ−2
n,αR(Wα(R) ∩ B

α
1+2α

2,∞ (R′) ∩ L1,2,∞(R′′)) ≥ c(α)R
2

1+2α ,

where c(α) depends only on α, as soon as R′′ ≥ 1 and R′ ≥ R
1

1+2α ≥ 1.

Using Theorem 3, we immediately deduce the following result.

Corollary 2. The procedure f̃γ defined in Theorem 4 with c = −c′ = 1 and with γ > 1 is minimax

on Wα(R) ∩ B
α

1+2α

2,∞ (R′) ∩ L1,2,∞(R′′) and is adaptive minimax on

{

Wα(R) ∩ B
α

1+2α

2,∞ (R′) ∩ L1,2,∞(R′′) : α > 0, 1 ≤ R′′, 1 ≤ R ≤ R′
}

.

Remark 3. These results are established for the Haar basis. It is probably true for more general
biorthogonal wavelet bases, but we were not able to prove it.
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5 How to choose the parameter γ

In this section, our goal is to find lower and upper bounds for the parameter γ. The aim and
proofs are inspired by Birgé and Massart [7] who considered penalized estimators and calibrated
constants for penalties in a Gaussian regression framework. In particular, they showed that if the
penalty constant is smaller than 1, then the penalized estimator behaves in a quite unsatisfactory
way. This study was used in practice to derive adequate data-driven penalties by Lebarbier [30].

We assume that the function f to be estimated belongs to a restricted functional space. More
precisely, we assume that for n large enough, f belongs to Fn where for any n,

Fn =

{

f ∈ L1 ∩ L2 ∩ L∞ : Fλ ≥ (logn)(loglogn)

n
1Fλ>0, ∀ λ ∈ Λ

}

,

with Fλ =
∫

supp(ϕλ) f(x)dx. Observe that Fn only contains functions with finite support. If the

Haar basis is considered, any function supported by [0, 1] that is constant on each interval of a
dyadic partition of [0, 1] belongs to Fn for n large enough. In addition, the interest of the class
Fn lies in the natural bridge it constitutes between the model of this paper and the regression
model for which the number of non-zero coefficients is always bounded by n. These reasons justify
the importance of well estimating functions of Fn with an appropriate choice for γ. We naturally
consider along this section the Haar basis and we define for any n, j0 = j0(n) the integer such that
2j0 ≤ n < 2j0+1. Then f̃n,γ is defined with

Γn = {λ = (j, k) ∈ Λ : j ≤ j0} .

In the sequel, we prove that, roughly speaking, f̃n,γ cannot achieve good performance from the
oracle point of view if the parameter γ is smaller than 1 or larger than 16.

5.1 Lower bound for γ

In this section, we provide a lower bound for the parameter γ. We have the following result.

Theorem 8. We estimate f = 1[0,1] ∈ Fn with f̃n,γ such that in view of (2.3), we set

∀λ ∈ Γn, ηλ,γ =

√

2γlog(n)V̂λ,n + ||ϕλ||∞
log(n)un

n
,

with (un)n a deterministic bounded sequence. Then for all ε > 0, we obtain for any n,

E(||f̃n,γ − f ||2ϕ̃) ≥ 1

nγ+ε
(1 + on(1)).

This result shows that we need γ ≥ 1 to obtain a good convergence rate. Indeed, for any n,
Theorem 2 (established with γ > 1) gives the bound

E(||f̃n,γ − f ||2ϕ̃) ≤ C
logn

n
,

where C is a constant.



Adaptive thresholding estimation of a Poisson intensity 17

5.2 Upper bound for γ

In this section, we provide an upper bound for the parameter γ. In Remark 1, we have already
noticed that the performances of f̃γ are worse when γ increases. More justifications of this point
are provided in this section.

Theorem 9. Let γ = 1 +
√

2 and let ηλ,γ be as in Theorem 1. Then f̃n,γ achieves the following
oracle inequality: for n large enough,

sup
f∈Fn

E(||f̃n,γ − f ||2ϕ̃)
∑

λ∈Γn
min(β2

λ, Vλ,n) + 1
n

≤ 12logn.

Now, let us assume that for a choice of γ, say γmin, the corresponding threshold ηλ,γmin
leads to

satisfying results (for instance, Theorem 9 tells us that γ = 1 +
√

2 is a good choice). Then let us
fix γ larger than γmin and let us consider the estimator f̃n,γ associated with the threshold ηλ,γ as
built in Theorem 1. Our goal is to obtain a lower bound of the maximal risk of f̃n,γ on Fn larger
than the upper bound obtained for ηλ,γmin

. This means that choosing γ is a bad choice. This goal
is reached in the following theorem.

Theorem 10. Let γmin > 1 be fixed and let γ > γmin. We still consider the thresholding rule
associated with γ (see Theorem 1). Then,

sup
f∈Fn

E(||f̃n,γ − f ||2ϕ̃)
∑

λ∈Γn
min(β2

λ, Vλ,n) + 1
n

≥ (
√
γ −√

γmin)
22logn(1 + on(1)).

If we choose γmin = 1+
√

2 and apply Theorem 9, the maximal oracle ratio of the estimator f̃n,γ
is not larger than 12logn. So, if γ > 16, which yields (

√
γ − √

γmin)
2 > 6, the resulting maximal

oracle ratio of f̃n,γ is larger than 12logn. In addition, note that the function used in Theorem 8 is
also in Fn. So, finally the convenient value of γ belongs to [1, 16].

6 Simulations

In this section, some simulations are provided and the performances of the thresholding rule are
measured from the numerical point of view. We also discuss the ideal choice for the parameter γ
keeping in mind that the value γ = 1 constitutes a border for the theoretical results (see Section
5). For these purposes, the procedure is performed for estimating various intensity signals and the
wavelet set-up associated with biorthogonal wavelet bases is considered. More precisely, we focus
either on the Haar basis where

φ = φ̃ = 1[0,1], ψ = ψ̃ = 1[0,1/2] − 1]1/2,1]

or on a special case of spline systems given in Figure 1. This latter basis, called hereafter the spline
basis, has the following properties. First, the support of φ, ψ, φ̃ and ψ̃ is included in [−4, 5]. The
reconstruction wavelets φ̃ and ψ̃ belong to C1.272. Finally, the wavelet ψ is a piecewise constant
function orthogonal to polynomials of degree 4 (see [15]). So, such a basis has properties 1–5
required in Section 3 with m = 0.272. Then, the signal f to be estimated is decomposed as follows:

f =
∑

λ∈Λ

βλϕ̃λ =
∑

k∈Z

β−1,kφ̃k +
∑

j≥0

∑

k∈Z

βj,kψ̃j,k.



18 P. Reynaud-Bouret and V. Rivoirard

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

−3 −2 −1 0 1 2 3 4
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

−4 −3 −2 −1 0 1 2 3 4 5
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

−4 −3 −2 −1 0 1 2 3 4 5
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Figure 1: The spline basis. Top: φ and ψ, Bottom: φ̃ and ψ̃

For estimating f , we use the observations (β̂λ)λ∈Λ associated with a Poisson process N whose
intensity with respect to the Lebesgue measure is n×f . Since φ and ψ are piecewise constant func-
tions, accurate values of the observations are available, which allows to avoid many computational
and approximation issues that often arise in the wavelet setting. To shed light on typical aspects
of Poisson intensity estimation, Figure 2 displays the reconstruction obtained by using only the
coarsest noisy wavelet coefficients of a particular signal (the density of a Gaussian variable with
mean 0.5 and standard deviation 0.25) with n = 4096. We mean that (βj,k)j≥−1,k∈Z is estimated

by (β̂j,k)−1≤j≤10,k∈Z without using thresholding. As expected, variability highly depends on the
local values of the signal. So, our framework is very different from classical regression where we
observe random variables with common variance. The thresholding rule considered in this section
is f̃γ = (f̃n,γ)n with f̃n,γ defined in (1.2) with

Γn = {λ = (j, k) : −1 ≤ j ≤ j0, k ∈ Z}

and

ηλ,γ =

√

2γlog(n)V̂λ,n +
γlogn

3n
||ϕλ||∞.

Observe that ηλ,γ slightly differs from the threshold defined in (2.2) since Ṽλ,n is now replaced with

V̂λ,n. Such a modification is natural in view of (2.3) and Theorem 8. In particular, it allows to
derive the parameter γ as an explicit function of the threshold. We guess that the performances
of our thresholding rule associated with the threshold ηλ,γ defined in (2.2) are very close. Now, to
complete the definition of the estimate, we have to choose the parameters j0 and γ. This choice is
capital and is extensively discussed in the sequel. Using n = 1024, Figure 3 displays 9 examples
of intensity reconstructions obtained with j0 = log2(n) = 10 and γ = 1. These functions are
respectively denoted ’Haar1’, ’Haar2’, ’Blocks’, ’Comb’, ’Gauss1’, ’Gauss2’, ’Beta0.5’, ’Beta4’ and
’Bumps’ and have been chosen to represent the wide variety of signals arising in signal processing
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Figure 2: Plots of the signal f(x) = 1
0.25

√
2π

exp
(

(x−0.5)2

2×0.252

)

and purely noisy reconstruction with

n = 4096 based on the wavelet coefficients until the level 10 and by using the Haar basis.

(see the Appendix for a precise definition of each signal). Each of them satisfies ||f ||1 = 1 and can be
classified according to the following criteria: the smoothness, the size of the support (finite/infinite),
the value of the sup norm (finite/infinite) and the shape (to be piecewise constant or a mixture of
peaks). In particular, the signal ’Comb’ (respectively ’Beta0.5’) is inspired by the construction of
the counter-example proposed in Theorem 5 (respectively Proposition 1).

More interestingly, numerical results are provided to answer the question about the choice of γ.
Given n and a function f , we denote Rn(γ) the ratio between the ℓ2-performance of our procedure
(depending on γ) and the oracle risk where the wavelet coefficients at levels j > j0 are omitted.
We have:

Rn(γ) =

∑

λ∈Γn
(β̃λ − βλ)

2

∑

λ∈Γn
min(β2

λ, Vλ,n)
=

∑

λ∈Γn
(β̂λ1|β̂λ|≥ηλ,γ

− βλ)
2

∑

λ∈Γn
min(β2

λ, Vλ,n)
.

Of course, Rn is a stepwise function and the change points of Rn correspond to the values of γ such
that there exists λ with ηλ,γ = |β̂λ|. The average over 1000 simulations of Rn(γ) is computed provid-
ing an estimation of E(Rn(γ)). This average ratio, denoted Rn(γ) and viewed as a function of γ, is
plotted for three signals ’Haar1’, ’Gauss1’ and ’Bumps’ for n ∈ {64, 128, 256, 512, 1024, 2048, 4096}.
For non compactly supported signals, to compute the ratio, the wavelet coefficients associated with
the tails of the signals are omitted but we ensure that this approximation is negligible with respect
to the values of Rn. The parameter j0 takes the value j0 = log2(n). Fixing j0 = log2(n) is natural
in view of Theorem 2 (applied with c = 1 and c′ = 0) and Theorem 8. Figure 4 displays Rn for
’Haar1’ decomposed on the Haar basis. The left side of Figure 4 gives a general idea of the shape
of Rn, while the right side focuses on small values of γ. Similarly, Figures 5 and 6 display Rn for
’Gauss1’ decomposed on the spline basis and for ’Bumps’ decomposed on the Haar and the spline
bases.
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Figure 4: The function γ → Rn(γ) at two scales for ’Haar1’ decomposed on the Haar basis and for
n ∈ {64, 128, 256, 512, 1024, 2048, 4096} with j0 = log2(n).
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Figure 5: The function γ → Rn(γ) for ’Gauss1’ decomposed on the spline basis and for n ∈
{64, 128, 256, 512, 1024, 2048, 4096} with j0 = log2(n).
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Figure 6: The function γ → Rn(γ) for ’Bumps’ decomposed on the Haar and the spline bases and
for n ∈ {64, 128, 256, 512, 1024, 2048, 4096} with j0 = log2(n).

To discuss our results, we introduce

γmin(n) = argminγ>0Rn(γ).

For ’Haar1’, γmin(n) ≥ 1 for any value of n and taking γ < 1 deteriorates the performances of
the estimate. Such a result was established from the theoretical point of view in Theorem 8. In
fact, Figure 4 allows to draw the following major conclusion for ’Haar1’:

Rn(γ) ≈ Rn(γmin) ≈ 1 (6.1)

for a wide range of γ around γmin > 1 that contains γ = 1. For instance, when n = 4096, the
minimum of Rn, close to 1, is very flat and the minimizer is surrounded by the ”plateau” [1, 177].
So, the values of γmin(n) should not be considered as sacred. Our thresholding rule with γ = 1
performs very well since it achieves the same performance as the oracle estimator.

For ’Gauss1’, γmin(n) ≥ 0.5 for any value of n. Moreover, as soon as n is large enough, the
oracle ratio at γmin is of order 1. Besides, when n ≥ 2048, as for ’Haar1’, γmin(n) is larger than 1.
We observe the “plateau phenomenon” as well and as for ’Haar1’, the size of the plateau increases
when n increases. This can be explained by the following important property of ’Gauss1’. ’Gauss1’
can be well approximated by a finite combination of the atoms of the spline basis. So, we have the
strong impression that the asymptotic result of Theorem 8 could be generalized for the spline basis
as soon as we can build positive signals decomposed on the spline basis.

Conclusions for ’Bumps’ are very different. Remark that this irregular signal has many sig-
nificant wavelet coefficients at high resolution levels whatever the basis. We have γmin(n) < 0.5
for each value of n. Besides, γmin(n) ≈ 0 when n ≤ 256, meaning that all the coefficients until
j = j0 have to be kept to obtain the best estimate. So, the parameter j0 plays an essential role and
has to be well calibrated to ensure that there are no non-negligible wavelet coefficients for j > j0.
Other differences between Figure 4 (or Figure 5) and Figure 6 have to be emphasized. For ’Bumps’,
when n ≥ 512, the minimum of Rn is well localized, there is no plateau anymore and Rn(1) > 2
(Rn(γmin(n)) is larger than 1).

As a preliminary conclusion, it seems that the ideal choice of γ and the performance of the
thresholding rule highly depend on the decomposition of the signal on the wavelet basis. Hence, in
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Figure 7: Average over 100 iterations of the function Rn for signals decomposed on the Haar basis
and for n ∈ {64, 256, 1024, 4096} with j0 = 10.

the sequel, we have decided to force j0 = 10 so that the decomposition on the basis is not too rough.
To extend previous results and for the sake of exhaustiveness Figures 7 and 8 display the average
of the function Rn for the signals ’Haar1’, ’Haar2’, ’Blocks’, ’Comb’, ’Gauss1’, ’Gauss2’, ’Beta0.5’,
’Beta4’ and ’Bumps’ with j0 = 10. For brevity, we only consider the values n ∈ {64, 256, 1024, 4096}
and the average of Rn is performed over 100 simulations. Note also that we fix j0 = 10 and 100
simulations (and not larger parameters) because computational difficulties arise when we deal with
infinite support for heavy-tailed signals (’Beta4’ and ’Comb’) and for a wide range of γ. Figure 7
gives the results obtained for the Haar basis and Figure 8 for the spline basis. To interpret the
results, we introduce

Rlog
n (γ) =

∑

λ∈Γn
(β̃λ − βλ)

2

∑

λ∈Γn
min(β2

λ, Vλ,n log(n))
=

∑

λ∈Γn
(β̂λ1|β̂λ|≥ηλ,γ

− βλ)
2

∑

λ∈Γn
min(β2

λ, Vλ,n log(n))
,

where the denominator appears in the upper bound of Theorem 2. We also measure the ℓ2-
performance of the estimator by using

rn(γ) =
∑

λ∈Γn

(β̃λ − βλ)
2 =

∑

λ∈Γn

(β̂λ1|β̂λ|≥ηλ,γ
− βλ)

2.

Table 1 gives, for each signal and for n ∈ {64, 256, 2048, 4096}, the average of rn(1), denoted rn(1),

the average of Rn(1) , denoted Rn(1) and the average of Rlog
n (1), denoted Rlog

n (1) (100 simulations
are performed). In view of Table 1, let us introduce two classes of functions. The first class is
the class of signals that are well approximated by a finite combination of the atoms of the basis
(it contains ’Haar1’, ’Haar2’ and ’Comb’ for the Haar basis and ’Gauss1’ and ’Gauss2’ for the



24 P. Reynaud-Bouret and V. Rivoirard

64 256 1024 4096 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0
5

10
15
20
25
30
35
40

0 1 2 3 4 5 6 7
0

5

10

15

20

25

30

35

0 1 2 3 4 5 6
0
2
4
6
8

10
12
14
16

0 1 2 3 4 5 6 7
0
2
4
6
8

10
12
14
16
18
20

0 1 2 3 4 5 6 7
0
5

10
15
20
25
30
35
40
45
50

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0
5

10
15
20
25
30
35
40
45
50

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
0
5

10
15
20
25
30
35
40

0 1 2 3 4 5 6 7
0

5

10

15

20

25

30

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
0
2
4
6
8

10
12
14
16

Haar1 Haar2 Blocks

Comb Gauss1 Gauss2

Beta0.5 Beta4 Bumps

Figure 8: Average over 100 iterations of the function Rn for signals decomposed on the spline basis
and for n ∈ {64, 256, 1024, 4096} with j0 = 10.

spline basis). For such signals, the estimation problem is close to a parametric problem and in
this case the performance of the oracle estimate can be achieved at least for n large enough and
(6.1) is true for a wide range of γ around γmin that contains γ = 1. The second class is the class
of irregular signals with significant wavelet coefficients at high resolution levels (it contains all the
other cases except ’Beta0.5’). For such signals, Table 1 shows that Rn(1) seems to increase with

n. But Rlog
n (1) remains constant, showing that the upper bound (with the logarithmic term) of

Theorem 2 is probably achieved up to a constant. ’Beta0.5’ has only one significant coefficient
at each level. This may explain why its behavior seems to be between the first and second class
behavior. Finally let us note that the oracle ratio curve for ’Bumps’, j0 = 10 and n = 4096 has
a minimizer γmin close to 0 and has a different behavior from the one with j0 = 12 (see Figure
6 ). It illustrates again the fact that ’Bumps’ has still some important coefficients at the level of
resolution j0 = 12 that can be taken into account if log2(n) = 12.

Finally, we would like to emphasize the following conclusions. Performances of our thresholding
rule are suitable since the ratio Rn(1) is controlled. Moreover a convenient choice of the basis
improves this ratio but also the performances of the estimator itself. Furthermore, the size of the
support does not play any role (compare estimation of ’Comb’ and ’Haar1’ for instance) and the
estimate f̃n,1 performs well for recovering the size and location of peaks.

7 Proofs

In this section, the notation � represents an absolute constant whose value may change at each
line. For any x > 0, the notation ⌈x⌉ denotes the smallest integer larger than x. Notations of
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Haar Spline

n rn(1) Rn(1) R
log
n

(1) rn(1) Rn(1) R
log
n

(1)

64 0.016 1.0 0.2 0.10 1.4 0.7

256 0.0042 1.1 0.2 0.068 2.0 0.8
Haar1

1024 0.0008 0.8 0.1 0.042 3.3 0.9

4096 0.0002 1.0 0.2 0.016 3.5 0.7

64 0.082 2.6 0.6 0.21 2.1 1.0

256 0.026 3.3 0.6 0.085 1.8 0.7
Haar2

1024 0.0023 1.2 0.2 0.053 2.4 0.9

4096 0.0004 1.0 0.1 0.026 2.9 0.8

64 0.31 1.4 0.9 0.27 1.4 0.9

256 0.26 2.5 1.0 0.21 1.9 1.0
Blocks

1024 0.13 2.9 0.9 0.13 2.6 0.9

4096 0.053 3.7 0.8 0.063 3.2 0.8

64 0.61 1.7 0.4 1.71 1.8 0.8

256 0.12 1.3 0.2 0.78 1.7 0.7
Comb

1024 0.032 1.4 0.2 0.52 2.7 0.8

4096 0.0063 1.1 0.1 0.23 4.0 0.7

64 0.21 2.3 0.9 0.10 2.1 0.7

256 0.072 1.8 0.7 0.060 4.5 0.9
Gauss1

1024 0.039 2.6 0.7 0.0048 1.2 0.2

4096 0.018 2.9 0.7 0.0017 1.2 0.2

64 0.17 1.9 0.7 0.12 2.1 0.7

256 0.07 2.0 0.6 0.05 3.1 0.6
Gauss2

1024 0.031 2.3 0.6 0.012 2.8 0.4

4096 0.015 3.0 0.7 0.0017 1.2 0.2

64 1.6 1.7 1.0 2.2 1.9 1.0

256 1.1 3.4 1.0 1.4 3.8 1.0
Beta0.5

1024 0.45 5.1 0.8 0.51 4.6 0.8

4096 0.045 1.6 0.3 0.066 2.3 0.3

64 0.25 2.1 0.8 0.36 2.2 0.9

256 0.093 2.0 0.6 0.16 2.5 0.8
Beta4

1024 0.041 2.2 0.6 0.061 2.7 0.7

4096 0.020 2.8 0.7 0.024 3.3 0.6

64 4.9 1.8 1.0 4.3 2.0 1.1

256 3.1 2.5 1.0 2.5 2.7 1.0
Bumps

1024 1.5 3.0 0.9 1.2 3.4 0.9

4096 0.62 3.4 0.7 0.38 3.0 0.6

Table 1: Values of rn(1), Rn(1) and Rlog
n (1) for each signal decomposed on the Haar basis or the

spline basis and for n ∈ {64, 256, 1024, 4096}.
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Sections 2 and 3 are used. Recall also that we have set

∀ λ ∈ Λ, Fλ =

∫

supp(ϕλ)
f(x)dx.

7.1 Proof of Theorem 1

Let γ, p, q, ε be as in Theorem 1. We start as usual for model selection with (1.3). One has for all
subset m of Γn

γn(f̃n,γ) + pen(m̂) ≤ γn(f̂m) + pen(m).

If g =
∑

λ∈Λ αλϕ̃λ, setting νn(g) =
∑

λ∈Λ αλ(β̂λ − βλ), we obtain that

γn(g) = ||g − f ||2ϕ̃ − ||f ||2ϕ̃ − 2νn(g).

Hence,
||f̃n,γ − f ||2ϕ̃ ≤ ||f̂m − f ||2ϕ̃ + 2νn(f̃n,γ − f̂m) + pen(m) − pen(m̂).

For any subset of indices m′, let χ(m′) =
√

∑

λ∈m′(β̂λ − βλ)2 and let fm =
∑

λ∈m βλϕ̃λ be the

orthogonal projection of f on Sm for ||.||ϕ̃. Then χ2(m) = νn(f̂m−fm) = ||f̂m−fm||2ϕ̃ = ||f̂m−f ||2ϕ̃−
||fm − f ||2ϕ̃. Hence,

||f̃n,γ − f ||2ϕ̃ ≤ ||fm − f ||2ϕ̃ − χ2(m) + 2νn(f̃n,γ − fm) + pen(m) − pen(m̂).

Furthermore,

νn(f̃n,γ − fm) ≤ ||f̃n,γ − fm||ϕ̃χ(m ∪ m̂) ≤ ||f̃n,γ − f ||ϕ̃χ(m ∪ m̂) + ||fm − f ||ϕ̃χ(m ∪ m̂).

Using twice the fact that 2ab ≤ θa2 + θ−1b2, for θ = 2/(2 + ε) and θ = 2/ε, we obtain that

2νn(f̃n,γ − fm) ≤ 2

2 + ε
||f̃n,γ − f ||2ϕ̃ +

2

ε
||fm − f ||2ϕ̃ + (1 + ε)χ2(m ∪ m̂).

Hence we obtain that

ε

2 + ε
||f̃n,γ − f ||2ϕ̃ ≤

(

1 +
2

ε

)

∑

λ6∈m
β2
λ + (1 + ε)χ2(m ∪ m̂) − χ2(m) + pen(m) − pen(m̂).

But χ2(m ∪ m̂) ≤ χ2(m) + χ2(m̂). After integration it remains to control

A = E((1 + ε)χ2(m̂) − pen(m̂)).

Since
m̂ =

{

λ ∈ Γn : |β̂λ| ≥ ηλ,γ

}

,

we have
A =

∑

λ∈Γn

E

([

(1 + ε)(β̂λ − βλ)
2 − η2

λ,γ

]

1|β̂λ|≥ηλ,γ

)

.

Hence,

A ≤
∑

λ∈Γn

E

(

(1 + ε)(β̂λ − βλ)
21(1+ε)(β̂λ−βλ)2≥η2λ,γ

1|β̂λ|≥ηλ,γ

)

.
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Then, remark that if |β̂λ| ≥ ηλ,γ then |β̂λ| ≥ µlogn
n ||ϕλ||∞, where µ = [

√
6 + 1/3]γ but also that

|β̂λ| ≤ ||ϕλ||∞Nλ

n , hence Nλ ≥ µlogn, where

Nλ =

∫

supp(ϕλ)
dN.

So, one can split A and bound this term by LDLM + LDSM , where

LDLM =
∑

λ∈Γn

E

(

(1 + ε)(β̂λ − βλ)
21(1+ε)(β̂λ−βλ)2≥η2λ,γ

1|β̂λ|≥ηλ,γ
1Nλ≥µlogn1nFλ≥θµlogn

)

,

and

LDSM =
∑

λ∈Γn

E

(

(1 + ε)(β̂λ − βλ)
21(1+ε)(β̂λ−βλ)2≥η2λ,γ

1|β̂λ|≥ηλ,γ
1Nλ≥µlogn1nFλ≤θµlogn

)

,

where θ < 1 is a parameter that is chosen later on. Here, LDLM stands for “large deviation large
mass” and LDSM stands for “large deviation small mass”. Let us begin with LDLM . By the
Hölder Inequality

LDLM ≤
∑

λ∈Γn

(1 + ε)[E|β̂λ − βλ|2p)]1/pP(|β̂λ − βλ| ≥ ηλ,γ/
√

1 + ε)1/q1nFλ≥θµlogn.

Before going further, let us state the following useful lemma:

Lemma 1. For any u > 0

P

(

|β̂λ − βλ| ≥
√

2uVλ,n +
||ϕλ||∞u

3n

)

≤ 2e−u. (7.1)

Moreover, for any u > 0

P

(

Vλ,n ≥ Ṽλ,n(u)
)

≤ e−u, (7.2)

where

Ṽλ,n(u) = V̂λ,n +

√

2V̂λ,n
||ϕλ||2∞
n2

u+ 3
||ϕλ||2∞
n2

u.

Proof. Equation (7.1) easily comes from the classical inequalities (see Kingman’s book [26] or
Equation (5.2) of [31]). The same classical inequalities applied to −ϕ2

λ/n
2 instead of ϕλ/n give

that

P



Vλ,n ≥ V̂λ,n +

√

2u

∫

R

ϕ4
λ(x)

n4
nf(x)dx+

||ϕλ||2∞
3n2

u



 ≤ e−u.

But one can remark that
∫

R

ϕ4
λ(x)

n4
nf(x)dx ≤ ||ϕλ||2∞

n2
Vλ,n.

Set a = u ||ϕλ||2∞
n2 , then

P(Vλ,n −
√

2Vλ,na− a/3 ≥ V̂λ,n) ≤ e−u.
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Let P(x) = x2 −
√

2ax − a/3. The discriminant of this polynomial is 10a/3 which is strictly
larger than 2a. Since Vλ,n and V̂λ,n are positive, this means that one can inverse the equation

P(
√

Vλ,n) = V̂λ,n and we obtain

P(
√

Vλ,n ≥ P−1(V̂λ,n)) ≤ e−u.

But P−1(V̂λ,n) is the positive solution of

(P−1(V̂λ,n))
2 −

√
2aP−1(V̂λ,n) − (a/3 + V̂λ,n) = 0.

So, finally, P−1(V̂λ,n) =
√

V̂λ,n + 5a/6 +
√

a/2. To conclude it remains to remark that Ṽλ,n ≥
(P−1(V̂λ,n))

2. �

Using Equations (7.1) and (7.2) of Lemma 1, we have

P(|β̂λ − βλ| ≥ ηλ,γ/
√

1 + ε)

≤ P

(

|β̂λ − βλ| ≥
√

2γlogn

1 + ε
Ṽλ,n(γlogn) +

γlogn||ϕλ||∞
3(1 + ε)n

)

≤ P

(

|β̂λ − βλ| ≥
√

2γlogn

1 + ε
Ṽλ,n(γlogn) +

γlogn||ϕλ||∞
3(1 + ε)n

, Vλ,n ≥ Ṽλ,n(γlogn)

)

+ P

(

|β̂λ − βλ| ≥
√

2γlogn

1 + ε
Ṽλ,n(γlogn) +

γlogn||ϕλ||∞
3(1 + ε)n

, Vλ,n < Ṽλ,n(γlogn)

)

≤ P(Vλ,n ≥ Ṽλ,n(γlogn)) + P

(

|β̂λ − βλ| ≥
√

2γ

1 + ε
lognVλ,n +

γlogn||ϕλ||∞
3(1 + ε)n

)

≤ n−γ + 2n−γ/(1+ε)

≤ 3n−γ/(1+ε).

We need another lemma which looks like the Rosenthal inequality.

Lemma 2. For all p ≥ 2, there exists some absolute constant C such that

E(|β̂λ − βλ|2p) ≤ Cpp2p

(

V p
λ,n +

[ ||ϕλ||∞
n

]2p−2

Vλ,n

)

.

Proof. We know that a Poisson process is infinitely divisible. This means that for all positive
integer k one can see N as the reunion of k iid Poisson processes, N i with intensity (here) nk−1×f
with respect to the Lebesgue measure. Hence, one can apply Rosenthal inequalities for all k, saying
that

β̂λ − βλ =

k
∑

i=1

∫

ϕλ(x)

n

(

dN i
x − nk−1f(x)dx

)

=

k
∑

i=1

Yi

where for any i,

Yi =

∫

ϕλ(x)

n

(

dN i
x − nk−1f(x)dx

)

.
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So the Yi’s are iid centered variables, all having a moment of order 2p. We apply Rosenthal’s
inequality (see Theorem 2.5 of [22]) on the positive and negative parts of Yi. This easily implies
that

E





∣

∣

∣

∣

∣

k
∑

i=1

Yi

∣

∣

∣

∣

∣

2p


 ≤ K(p)max

((

E

k
∑

i=1

Y 2
i

)p

,

(

E

k
∑

i=1

|Yi|2p
))

,

where

K(p) ≤
(

8 × 2p

log(2p)

)2p

.

It remains to bound the upper limit of E(
∑k

i=1 |Yi|q) for all q ∈ {2p, 2} ≥ 2 when k → ∞. Let us
introduce

Ωk = {∀ i ∈ {1, . . . , k}, N i
R ≤ 1}.

Then, it is easy to see that P(Ωc
k) ≤ k−1(n||f ||1)2 (see e.g., (7.5) below).

On Ωk, |Yi|q = Ok(k
−q) if

∫ ϕλ(x)
n dN i

x = 0 and |Yi|q =
[

|ϕλ(T )|
n

]q
+ Ok

(

k−1
[

|ϕλ(T )|
n

]q−1
)

if

∫ ϕλ(x)
n dN i

x = ϕλ(T )
n where T is the point of the process N i. Consequently,

E

k
∑

i=1

|Yi|q ≤ E

(

1Ωk

(

∑

T∈N

[

[ |ϕλ(T )|
n

]q

+Ok

(

k−1

[ |ϕλ(T )|
n

]q−1
)]

+ kOk(k
−q)

))

+
√

P(Ωc
k)

√

√

√

√

√E





(

k
∑

i=1

|Yi|q
)2


. (7.3)

But,

k
∑

i=1

|Yi|q ≤ 2q−1

(

k
∑

i=1

[[ ||ϕλ||∞
n

]q

(N i
R
)q +

(

k−1

∫

|ϕλ(x)|f(x)dx

)q]
)

≤ 2q−1

([ ||ϕλ||∞
n

]q

N q
R

+ k

(

k−1

∫

|ϕλ(x)|f(x)dx

)q)

.

So, when k → +∞, the last term in (7.3) converges to 0 since a Poisson variable has moments of
every order and

lim sup
k→∞

E

k
∑

i=1

|Yi|q ≤ E

(∫ [ |ϕλ(x)|
n

]q

dNx

)

≤
[ ||ϕλ||∞

n

]q−2

Vλ,n,

which concludes the proof. �

Since
[ ||ϕλ||∞

n

]2p−2

Vλ,n ≤ max

(

V p
λ,n,

[ ||ϕλ||∞
n

]2p
)

,

there exists some constant C̃ such that

E(|β̂λ − βλ|2p) ≤ C̃pp2p

(

V p
λ,n +

[ ||ϕλ||∞
n

]2p
)

.
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Finally,

LDLM ≤ �(1 + ε)p2n−γ/(q(1+ε))
∑

λ∈Γn

(

Vλ,n +

( ||ϕλ||∞
n

)2
)

1nFλ≥θµlogn.

Since ||ϕλ||∞ ≤ cϕ,n
√
n for all λ ∈ Γn, one has

LDLM ≤ �(1 + ε)p2c2ϕ,nn
−γ/(q(1+ε)) ∑

λ∈Γn

(

Fλ +
1

n

)

1nFλ≥θµlogn

≤ �(1 + ε)p2c2ϕ,nn
−γ/(q(1+ε))





∑

λ∈Γn

Fλ +
1

n

∑

λ∈Γn

nFλ
θµlogn



 .

But,
∑

λ∈Γn

Fλ =
∑

λ∈Γn

∫

f(x)1x∈supp(ϕλ)dx =

∫

f(x)dx
∑

λ∈Γn

1x∈supp(ϕλ). (7.4)

Using (2.1), we then have
∑

λ∈Γn

Fλ ≤ ||f ||1mϕ,nlogn.

This is exactly what we need for the first part provided that θ is an absolute constant and µ > 1.
Now we go back to LDSM . Applying the Hölder inequality again one obtains,

LDSM ≤ (1 + ε)
∑

λ∈Γn

E(|β̂λ − βλ|2p)1/pP(Nλ − nFλ ≥ (1 − θ)µlogn)1/q.

To deal with this term, we state the following result.

Lemma 3. There exists an absolute constant 0 < θ < 1 such that if nFλ ≤ θµlogn, then, for all n
such that (1 − θ)µlogn ≥ 2,

P(Nλ − nFλ ≥ (1 − θ)µlogn) ≤ Fλn
−γ .

Proof. We use the same classical inequalities (see Kingman’s book [26] or equation (5.2) of [31]).

P(Nλ − nFλ ≥ (1 − θ)µlogn) ≤ exp

(

− ((1 − θ)µlogn)2

2(nFλ + (1 − θ)µlogn/3)

)

≤ n
− 3(1−θ)2

2(2θ+1)
µ
.

If nFλ ≥ n−γ−1, then provided that 3(1−θ)2
2(2θ+1)µ ≥ 2γ + 2, one has the result. This imposes the value

of θ. Indeed since
3(1 − θ)2

2(2θ + 1)
µ =

3(1 − θ)2

2(2θ + 1)
(
√

6 + 1/3)γ

one takes θ such that
3(1 − θ)2

2(2θ + 1)
(
√

6 + 1/3) = 4.

If nFλ ≤ n−γ−1,

P(Nλ − nFλ ≥ (1 − θ)µlogn) ≤ P(Nλ > (1 − θ)µlogn) ≤ P(Nλ ≥ 2)

≤
∑

k≥2

(nFλ)
k

k!
e−nFλ ≤ (nFλ)

2 ≤ Fλn
−γ. (7.5)
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�

We apply Lemma 3 to bound the deviation and Lemma 2 to bound E(|β̂λ − βλ|2p). Hence,

LDSM ≤ �(1 + ε)p2n−γ/q
∑

λ∈Γn

(

Vλ,n +

[ ||ϕλ||∞
n

]2−2/p

V
1/p
λ,n

)

F
1/q
λ .

Since ||ϕλ||∞ ≤ cϕ,n
√
n,

LDSM ≤ �(1 + ε)p2c2ϕ,nn
−γ/q ∑

λ∈Γn

(F
1+1/q
λ + Fλ).

Finally, as previously, by using (7.4)

LDSM ≤ �(1 + ε)p2c2ϕ,nmϕ,nn
−γ/qlog(n)(||f ||1)max(||f ||1, 1)1/q .

7.2 Proof of Theorem 2

At first, we apply Theorem 1 with cϕ,n = ‖ϕ‖∞2j0/2n−1/2. For the last term, we want to prove
that one can always find q and ε such that 2j0n−γ/(q(1+ε))−1log(n) = o(n−1). But if γ > c then one
can always find q > 1 and ε > 0 such that γ > cq(1 + ε) and this implies also that γ > 1 + ε. So,
by exchanging the infimum and the expectation we obtain that

E(||f̃n,γ − f ||2ϕ̃) ≤ (1 + 2ε−1) inf
m⊂Γn







(1 + 2ε−1)
∑

λ6∈m
β2
λ +

∑

λ∈m
[εVλ,n + E(η2

λ,γ)]







+
C2(γ, ‖f‖1, c, c

′, ϕ)

n
.

But for all δ > 0,

E(η2
λ,γ) ≤ (1 + δ)2γlognE(Ṽλ,n) + (1 + δ−1)

(

γlogn

3n

)2

||ϕλ||2∞.

Moreover

E(Ṽλ,n) ≤ (1 + δ)Vλ,n + (1 + δ−1)3γlogn
||ϕλ||2∞
n2

.

So, finally for all δ > 0,

E(||f̃n,γ − f ||2ϕ̃) ≤ (1 + 2ε−1)

inf
m⊂Γn







(1 + 2ε−1)
∑

λ6∈m
β2
λ +

∑

λ∈m
[ε+ (1 + δ)22γlogn]Vλ,n + c(δ, γ)

∑

λ∈m

(

logn||ϕλ||∞
n

)2






+
C2(γ, ‖f‖1, c, c

′, ϕ)

n
, (7.6)

where c(δ, γ) is a positive constant. One needs the following lemma.

Lemma 4. We set
Sϕ = max{ sup

x∈supp(φ)
|φ(x)|, sup

x∈supp(ψ)
|ψ(x)|}
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and

Iϕ = min{ inf
x∈supp(φ)

|φ(x)|, inf
x∈supp(ψ)

|ψ(x)|}.

Using (3.2), we define Θϕ =
S2

ϕ

I2ϕ
. We have, for all λ ∈ Λ,

- if Fλ ≤ Θϕ
log(n)
n , then β2

λ ≤ Θ2
ϕσ

2
λ

log(n)
n ,

- if Fλ > Θϕ
log(n)
n , then ||ϕλ||∞ log(n)

n ≤ σλ

√

log(n)
n .

Proof. We note λ = (j, k) and assume that j ≥ 0 (arguments are similar for j = −1).

If Fλ ≤ Θϕ
log(n)
n , we have

|βλ| ≤ Sψ2j/2Fλ

≤ Sϕ2
j/2
√

Fλ
√

Θϕ

√

log(n)

n

≤ SϕI
−1
ϕ

√

Θϕσλ

√

log(n)

n

≤ Θϕσλ

√

log(n)

n
,

since

σ2
λ ≥ I2

ϕ2jFλ.

For the second point, observe that

σλ

√

log(n)

n
≥ 2j/2Iϕ

√

Θϕ
log(n)

n

and

||ψλ||∞
log(n)

n
≤ 2j/2Sϕ

log(n)

n
.

�

Now let us apply (7.6) for some fixed δ, ε to

m =

{

λ ∈ Γn : β2
λ > Θ2

ϕ

σ2
λ

n
logn

}

.
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This implies that for all λ ∈ m, Fλ > Θϕ
log(n)
n . So, since Θϕ ≥ 1,

E(||f̃n,γ − f ||2ϕ̃) ≤ C(γ)×




∑

λ∈Γn

β2
λ1
β2

λ≤Θ2
ϕ

σ2
λ

n
logn

+
∑

λ/∈Γn

β2
λ +

∑

λ∈Γn

[

logn

n
σ2
λ +

(

logn

n

)2

||ϕλ||2∞

]

1
β2

λ>Θ2
ϕ

σ2
λ

n
logn, Fλ>Θϕ

log(n)
n





+
C2(γ, ‖f‖1, c, c

′, ϕ)

n

≤ C(γ)





∑

λ∈Γn

(

β2
λ1β2

λ≤Θ2
ϕVλ,nlogn + 2lognVλ,n1β2

λ>Θ2
ϕVλ,nlogn

)

+
∑

λ/∈Γn

β2
λ



+

+
C2(γ, ‖f‖1, c, c

′, ϕ)

n

≤ C1(γ)





∑

λ∈Γn

min(β2
λ,Θ

2
ϕVλ,nlogn) +

∑

λ/∈Γn

β2
λ



+
C2(γ, ‖f‖1, c, c

′, ϕ)

n
,

where C(γ) and C1(γ) are positive quantities depending only on γ.

7.3 Proof of Theorem 3

Let us assume that f belongs to B
α

1+2α

2,Γ (R
1

1+2α ) ∩ Wα(R) ∩ L1(R) ∩ L2(R). Inequality (4.1) of
Theorem 2 implies for all n,

E(||f̃n,γ − f ||2ϕ̃) ≤ C1(γ, ϕ)





∑

λ∈Γn

(

β2
λ1|βλ|≤σλ

√

logn
n

+ Vλ,nlogn1
|βλ|>σλ

√

logn
n

)

+
∑

λ6∈Γn

β2
λ



+

+
C2(γ,R, c, c

′, ϕ)

n
.

But

∑

λ∈Γn

Vλ,nlogn1
|βλ|>σλ

√

logn
n

=
∑

λ∈Γn

σ2
λ

logn

n

+∞
∑

k=0

1
2−k−1β2

λ≤σ2
λ

logn
n
<2−kβ2

λ

≤
+∞
∑

k=0

2−k
∑

λ∈Λ

β2
λ1|βλ|≤2(k+1)/2σλ

√

logn
n

≤
+∞
∑

k=0

2−kR
2

1+2α

(

2(k+1)/2

√

logn

n

) 4α
1+2α

≤ R
2

1+2αρ2
n,α

+∞
∑

k=0

2−k+
2α(k+1)
1+2α

and
∑

λ6∈Γn

β2
λ ≤ R

2
1+2αρ2

n,α.
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So,

E(||f̃n,γ − f ||2ϕ̃) ≤ C(γ, ϕ, α)R
2

1+2αρ2
n,α +

C2(γ,R, c, c
′, ϕ)

n
,

where C(γ, ϕ, α) depends on γ, the basis and α. Hence,

E(||f̃n,γ − f ||2ϕ̃) ≤ C(γ, ϕ, α)R
2

1+2αρ2
n,α(1 + on(1))

and f belongs to MS(f̃γ , ρα)(R′) for R′ large enough.

Conversely, let us suppose that f belongs to MS(f̃γ , ρα)(R′) ∩ L1(R
′) ∩ L2(R

′). Then, for any
n,

E(||f̃n,γ − f ||2ϕ̃) ≤ R′2
(

logn

n

)
2α

1+2α

.

Consequently, for any n,
∑

λ6∈Γn

β2
λ ≤ R′2

(

logn

n

) 2α
1+2α

.

This implies that f belongs to B
α

1+2α

2,Γ (R′).
Now, we want to prove that f ∈Wα(R) for R > 0. We have

∑

λ∈Λ

β2
λ1|βλ|≤σλ

√

γlogn
2n

≤
∑

λ6∈Γn

β2
λ +

∑

λ∈Γn

β2
λ1|βλ|≤σλ

√

γlogn
2n

.

But β̃λ = β̂λ1|β̂λ|≥ηλ,γ
, so,

|βλ|1|βλ|≤
ηλ,γ

2

≤ |βλ − β̃λ|.

So, for any n,

∑

λ∈Λ

β2
λ1|βλ|≤σλ

√

γlogn
2n

≤
∑

λ6∈Γn

β2
λ + E







∑

λ∈Γn

β2
λ1|βλ|≤σλ

√

γlogn
2n

[1|βλ|≤
ηλ,γ

2

+ 1|βλ|>
ηλ,γ

2

]







≤
∑

λ6∈Γn

β2
λ +

∑

λ∈Γn

E[(β̃λ − βλ)
2] +

∑

λ∈Γn

β2
λ1|βλ|≤σλ

√

γlogn
2n

E(1|βλ|>
ηλ,γ

2

)

≤
∑

λ6∈Γn

β2
λ +

∑

λ∈Γn

E[(β̃λ − βλ)
2] +

∑

λ∈Γn

β2
λP

(

σλ

√

γlogn

2n
>
ηλ,γ
2

)

≤ E(||f̃n,γ − f ||2ϕ̃) +
∑

λ∈Γn

β2
λP

(

σλ

√

γlogn

2n
>
ηλ,γ
2

)

.

Using Lemma 1,

P

(

σλ

√

2γlogn

n
> ηλ,γ

)

≤ P(Ṽλ,n ≤ Vλ,n) ≤ n−γ

and

∑

λ∈Λ

β2
λ1|βλ|≤σλ

√

γlogn
2n

≤ (R′)2
(
√

logn

n

) 4α
1+2α

+ ‖f‖2
ϕ̃n

−γ .
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Since this is true for every n, we have for any t ≤ 1,

∑

λ∈Λ

β2
λ1|βλ|≤σλt ≤ R

2
1+2α

(
√

2

γ
t

)

4α
1+2α

, (7.7)

where R is a constant large enough depending on R′. Note that

sup
t≥1

t
−4α
1+2α

∑

λ∈Λ

β2
λ1|βλ|≤σλt ≤ ‖f‖2

ϕ̃.

We conclude that

f ∈ B
α

1+2α

2,Γ (R) ∩Wα(R)

for R large enough.

7.4 Proof of Proposition 1

Since β < 1/2, fβ ∈ L1 ∩ L2. If the Haar basis is considered, the wavelet coefficients βj,k of fβ can
be calculated and we obtain for any j ≥ 0, for any k 6∈

{

0, . . . , 2j − 1
}

, βj,k = 0 and for any j ≥ 0,
for any k ∈

{

0, . . . , 2j − 1
}

,

βj,k = (1 − β)−12−j(
1
2
−β)

(

2

(

k +
1

2

)1−β
− k1−β − (k + 1)1−β

)

and there exists a constant 0 < c1,β <∞ only depending on β such that

lim
k→∞

2j(
1
2
−β)k1+ββj,k = c1,β.

Moreover the βj,k’s are strictly positive. Consequently they can be bounded up and below, up to

a constant, by 2−j(
1
2
−β)k−(1+β). Similarly, for any j ≥ 0, for any k ∈

{

0, . . . , 2j − 1
}

,

σ2
j,k = (1 − β)−12jβ

(

(k + 1)1−β − k1−β
)

.

and there exists a constant 0 < c2,β <∞ only depending on β such that

lim
k→∞

2−jβkβσ2
j,k = c2,β .

There exist two constants κ(β) and κ′(β) only depending on β such that for any 0 < t < 1,

|βj,k| ≤ tσj,k ⇒ k ≥ κ(β)t
− 2

β+2 2
j
(

β−1
β+2

)

and

κ(β)t−
2

β+2 2
j
(

β−1
β+2

)

≥ 2j ⇐⇒ 2j ≤ κ′(β)t−
2
3 .

So, if 2j ≤ κ′(β)t−
2
3 , since βjk = 0 for k ≥ 2j ,

∑

k∈Z

β2
j,k1βj,k≤tσj,k

= 0.
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We obtain

∑

λ∈Λ

β2
λ1|βλ|≤tσλ

≤ C(β)

+∞
∑

j=−1

2−j(1−2β)1
2j>κ′(β)t−

2
3

2j−1
∑

k=1

k−2−2β ≤ C ′(β)t
2−4β

3 ,

where C(β) and C ′(β) denote two constants only depending on β. So, for any 0 < α < 1
4 , if we

take β ≤ 1−4α
2+4α , then, for any 0 < t < 1, t

2−4β
3 ≤ t

4α
1+2α . Finally, there exists c ≥ 1, such that for

any n,
∑

λ6∈Γn

β2
λ ≤ R2ρ2

n,α

where R > 0. And in this case,

fβ 6∈ L∞, fβ ∈ B
α

c(1+2α)

2,∞ ∩Wα := MS(f̃γ , ρα).

7.5 Proof of Theorem 4

Since
∀ λ = (j, k), σ2

λ ≤ min
[

max(2j ; 1)||ϕ||2∞Fj,k ; ||f ||∞||ϕ||22
]

, (7.8)

where ϕ ∈ {φ,ψ} according to the value of j, we have for any t > 0 and any J̃ ≥ 0

∑

λ

β2
λ1|βλ|≤σλt ≤

∑

j<J̃

∑

k

σ2
j,kt

2 +
∑

j≥J̃

∑

k

β2
j,k

(

σj,kt

|βj,k|

)2−p

≤ max(||φ||2∞, ||ψ||2∞)t2
∑

j<J̃

2j
∑

k

Fj,k +
∑

j≥J̃

∑

k

β2
j,k

(

t
√

||f ||∞||ψ||22
|βj,k|

)2−p

≤ c(ϕ,R′)



2J̃ t2 + t2−p
∑

j≥J̃

∑

k

|βj,k|p


 ,

where c(ϕ,R′) is a constant only depending on the basis and on R′. Now, let us assume that f
belongs to Bαp,∞(R) (that contains Bαp,q(R), see Section 3), with α+ 1

2 − 1
p > 0. Then,

∑

λ

β2
λ1|βλ|≤σλt ≤ c1(ϕ,α, p,R

′)
(

2J̃ t2 + t2−pRp2−J̃p(α+ 1
2
− 1

p
)
)

.

where c1(ϕ,α, p,R
′) depends on the basis, α, p and R′. With J̃ such that

2J̃ ≤ R
2

1+2α t
−2

1+2α < 2J̃+1,

∑

λ

β2
λ1|βλ|≤σλt ≤ c2(ϕ,α, p,R

′)R
2

1+2α t
4α

1+2α

where c2(ϕ,α, p,R
′) depends on the basis, α, p and R′. So, f belongs to Wα(R

′′) for R′′ large
enough.
Furthermore, using (3.3), if p ≤ 2 and

α

(

1 − 1

c(1 + 2α)

)

≥ 1

p
− 1

2
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Bαp,∞(R) ⊂ B
α

c(1+2α)

2,∞ (R).

Finally, for R′′ large enough,

Bαp,q(R) ⊂ Bαp,∞(R) ⊂ B
α

c(1+2α)

2,∞ (R′′) ∩Wα(R
′′).

We recall

MS(f̃γ , ρα) := B
α

c(1+2α)

2,∞ ∩Wα,

which proves (4.3).
Moreover

inf
f̂

sup
f∈Bα

p.q(R)∩L1,2,∞(R′)
E(||f̂ − f ||2) ≥ C(α,R,R′)n−

2α
2α+1 ,

where C(α,R,R′) is a constant. Indeed, using computations similar to those of Theorem 2 of [17],
it is easy to prove that if K is a compact interval and Bαp,q,K(R) is the set of functions supported by

K and belonging to Bαp,q(R) the minimax risk associated with Bαp,q,K(R) is larger than n−2α/(1+2α)

up to a constant.
But (4.4) implies that α > α∗ and p > p∗ satisfy (4.2). This proves the adaptive minimax properties
of f̃γ stated in the theorem.

7.6 Proof of Theorem 5

The proof is established for p <∞. Similar arguments lead to the same results for p = ∞. Let us
fix real numbers n∗ > 1 and f∗ > 1 and let us define the following increasing sequence

a0 = 0, a1 = 4 and ∀ l ≥ 1, al+1 = 2al + 2⌈n∗l⌉+1.

Let bl =
al+1

2 − 1. Let I+
j,k = [k2−j , (k + 1/2)2−j ] and I−j,k = [(k + 1/2)2−j , (k + 1)2−j ]. Set for all

x ∈ R,

fl(x) =

bl
∑

m=al

2(1−f∗)l+11I+l,m

and

f(x) =

+∞
∑

l=0

fl(x).

The fl’s have support in Sl = [al2
−l, al+12

−(l+1)[. All the Sl’s are disjoint and we can prove by
an easy induction that all the al2

−l’s are even positive integer numbers (indeed, al+12
−(l+1) =

2⌈n∗l⌉−l + al2
−l and ⌈n∗l⌉ − l > 0 if l 6= 0).

Now, let us compute the wavelet coefficients associated with f denoted βj,k for j ≥ 0 and for
any k ∈ Z and αk = β−1,k for any k ∈ Z. We are working with the Haar basis. Recall that the
spaces considered are viewed as sequence spaces.

For the βj,k’s, let us remark that supp(ϕj,k) is always included between two successive integers,
consequently there exists a unique lj,k such that supp(ϕj,k) ⊂ Slj,k

. So,

βj,k =

∫

flj,k
ϕj,k.
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Moreover, if j 6= lj,k, the coefficient is zero: either j > lj,k and ϕj,k sees only one flat line, or j < lj,k
and ϕj,k integrates the same number of flat pieces in I+

j,k and I−j,k ; since the pieces have all the
same level, this is also 0. Finally, for j = lj,k, the computation is easy and we find

βj,k = 2(1−f∗)j+1

∫

I+j,k

2j/2[1I+j,k
− 1I−j,k

] × 1aj≤k≤bj = 2−j(f∗−1/2)1aj≤k≤bj .

For the coefficients αk’s, there exists also a unique lk such that supp(ϕ−1,k) ⊂ Slk and

αk = 2(1−f∗)lk+1 1

2
=
∑

l

2(1−f∗)l1al2−l≤k<al+12−(l+1) .

Now, we want to compute σj,k when βj,k 6= 0. If j ≥ 0

Fj,k =

∫

supp(ψj,k)
f(x)dx = 2j(1−f∗)2−j = 2−jf∗ ,

σ2
j,k =

∫

ψ2
j,k(x)f(x)dx = 2j

∫

supp(ψj,k)
f(x)dx = 2jFj,k = 2j(1−f∗).

If j = −1

σj,k = Fj,k = αk.

Now, we fix the parameter n∗ and f∗ such that

1. ||f ||1 <∞, ||f ||2 <∞, ||f ||∞ <∞,

2. f ∈ Bαp,∞,

3. f /∈Wα.

Since f∗ > 1, then ||f ||∞ <∞. We have

||f ||1 =

+∞
∑

l=0

bl
∑

m=al

2(1−f∗)l+12−l−1 =

+∞
∑

l=0

2⌈n∗l⌉2−f∗l <∞ ⇐⇒ f∗ > n∗. (7.9)

We have for all j ≥ 0

∑

k

|βj,k|p =

bj
∑

k=aj

|2−j(f∗−1/2)|p

= 2⌈n∗j⌉2jp/22−jf∗p.

Then,

f ∈ Bαp,∞ ⇐⇒ ∃R > 0,∀j ≥ 0, 2j(n∗+p/2−f∗p) ≤ Rp2−jp(α+1/2−1/p)

⇐⇒ n∗ + p/2 − f∗p ≤ −pα− p/2 + 1

⇐⇒ n∗ ≤ pf∗ − p+ 1 − pα. (7.10)
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Indeed, note that we have

∑

k∈Z

|αk|p =
∑

l≥0

2⌈n∗l⌉−l
(

2(1−f∗)l
)p

<∞

if and only if n∗ − 1 + p− f∗p < 0, which is true as soon as f∗ > n∗. Note also that

||f ||2 <∞ ⇐⇒ 2f∗ > 1 + n∗,

which is also true as soon as f∗ > n∗.
Now, we would like to build f such that f does not belong to Wα. We have for any t < 1,

bj
∑

k=aj

β2
j,k1|βj,k|≤tσj,k

=

bj
∑

k=aj

2−2j(f∗−1/2)12−j(f∗−1/2)≤t2j(1−f∗)/2

= 2j(1−2f∗)2⌈n∗j⌉12−jf∗≤t2 .

So, with j = ⌈log2(t
−2/f∗)⌉,

sup
t<1

t−4α/(1+2α)
∑

j

bj
∑

k=aj

β2
j,k1|βj,k|≤tσj,k

= +∞ ⇐ sup
t<1

t−4α/(1+2α)t−2(1+n∗−2f∗)/f∗ = +∞

⇐⇒ −2(1 + n∗ − 2f∗)/f∗ < 4α/(1 + 2α)

⇐⇒ 2f∗ − n∗ − 1 <
2αf∗

1 + 2α

⇐⇒ n∗ > −1 +
2f∗(1 + α)

1 + 2α
, (7.11)

and in this case, f /∈Wα. Now, we choose n∗ > 1 and f∗ > 1 such that (7.9), (7.10) and (7.11) are
satisfied. For this purpose, we take

f∗ = 1 + 2α− δ ∈
]

(1 + 2α)
(pα+ p− 2)

2pα + p− 2α − 2
, 1 + 2α

[

for δ ∈]0, α[ and δ small enough. Note that p > 2 implies

(1 + 2α)
(pα+ p− 2)

2pα + p− 2α− 2
< 1 + 2α.

We also take
n∗ = min(f∗ − δ′, pf∗ − p+ 1 − pα) ∈]1, pf∗ − p+ 1 − pα]

for δ′ small enough. Note that

pf∗ − p+ 1 − pα = p(1 + 2α− δ) − p+ 1 − pα = pα+ 1 − pδ > 1.

With such a choice, we have n∗ < f∗ and n∗ ≤ pf∗ − p+ 1 − pα. So (7.9) and (7.10) are satisfied.
It remains to check (7.11). We have

pf∗ − p+ 1 − pα > −1 +
2f∗(1 + α)

1 + 2α
⇐⇒ f∗

[

2(1 + α)

1 + 2α
− p

]

< 2 − p− pα

⇐⇒ f∗(2 + 2α − p− 2pα) < (1 + 2α)(2 − p− pα)

⇐⇒ f∗ > (1 + 2α)
(pα+ p− 2)

2pα + p− 2α− 2
,
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and

f∗ − δ′ > −1 +
2f∗(1 + α)

1 + 2α
⇐⇒ f∗

[

2(1 + α)

1 + 2α
− 1

]

< 1 − δ′

⇐⇒ 2(1 + α)f∗ − f∗(1 + 2α) < (1 + 2α)(1 − δ′)

⇐⇒ f∗ < (1 + 2α)(1 − δ′),

which is true for δ′ small enough. So (7.11) is satisfied, which concludes the proof of the theorem.

7.7 Proof of Theorem 6

The proof is established for q = ∞ and p < ∞. Similar arguments lead to the same results for
p = ∞. In the sequel, C designates a constant depending on R′, γ, c, c′, on the parameters of the
Besov ball, on the basis and that may change at each line. We have for any 0 < t < 1 and any
j ≥ 0,

∑

k

β2
j,k1|βj,k|≤tσj,k

≤
(

∑

k

|βj,k|p
) 1

p
(

∑

k

|βj,k|r1|βj,k|≤tσj,k

) 1
r

(7.12)

with 1
p + 1

r = 1. So, using (7.8), we have if f ∈ L∞(R′) ∩ L1(R
′) ∩ Bαp,∞(R),

∑

k

β2
j,k1|βj,k|≤tσj,k

≤ C2
−j
(

α+ 1
2
− 1

p

)

(

∑

k

|βj,k|(tσj,k)r−1

)
1
r

≤ C2
−j
(

α+ 1
2
− 1

p

)

(

∑

k

|βj,k|tr−1

) 1
r

≤ C2
−j
(

α+ 1
2
− 1

p
− 1

2r

)

t1−
1
r .

Indeed,

f ∈ L1(R
′) ⇒

∑

k

|βj,k| ≤ C2
j
2 (7.13)

(see [24], p. 197). So, for α > 1/(2p), we have for any t > 0 and any J̃ ≥ 0

∑

λ

β2
λ1|βλ|≤σλt =

∑

j

∑

k

β2
j,k1|βj,k|≤σj,kt

≤ C



t2
∑

j<J̃

2j
∑

k

Fj,k +
∑

j≥J̃
2
−j
(

α+ 1
2
− 1

p
− 1

2r

)

t1−
1
r



 using (7.8) again

≤ C

[

t22J̃ + 2
−J̃
(

α− 1
2p

)

t1−
1
r

]

.

With

2J̃ ≤ t
− 1+ 1

r
α+ 1

2+ 1
2r < 2J̃+1
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we have
∑

λ

β2
λ1|βλ|≤σλt ≤ Ct

2α

α+1
2 + 1

2r .

We obtain
∑

λ

β2
λ1|βλ|≤σλt ≤ Ct

2α

α+1− 1
2p .

So, with t =
√

logn
n ,

∑

λ∈Γn

β2
λ1|βλ|≤σλ

√

logn
n

≤ C

(

logn

n

)
α

α+1− 1
2p .

Furthermore,

∑

λ∈Γn

Vλ,nlogn1
|βλ|>σλ

√

logn
n

=
∑

λ∈Γn

σ2
λ

logn

n

+∞
∑

k=0

1
2−k−1β2

λ≤σ2
λ

logn
n
<2−kβ2

λ

≤
+∞
∑

k=0

2−k
∑

λ∈Λ

β2
λ1|βλ|≤2(k+1)/2σλ

√

logn
n

≤ C

+∞
∑

k=0

2−k
(

2(k+1)/2

√

logn

n

) 2α

α+1− 1
2p

≤ C

(

logn

n

) α

α+1− 1
2p

+∞
∑

k=0

2
−k+ α(k+1)

1+α−
1
2p

≤ C

(

logn

n

)
α

α+1− 1
2p .

Now, using (7.12), (7.13) and (3.3) we have when λ = (j, k) 6∈ Γn,

∑

k

β2
j,k ≤ C2

−j
(

α+ 1
2
− 1

p

)

(

∑

k

|βj,k|(sup
k

|βj,k|)r−1

)1
r

≤ C2
−j
(

α+ 1
2
− 1

p

)

(

∑

k

|βj,k|2−
j(r−1)

2

) 1
r

≤ C2−jα.

and applying Theorem 2, we obtain for c ≥ 1,

∑

λ6∈Γn

β2
λ ≤ C

(

logn

n

) α

α+1− 1
2p

and

E(‖f̃n,γ − f‖2
ϕ̃) ≤ C

(

logn

n

) α

α+1− 1
2p .
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7.8 Proof of Theorem 7

Let us consider the Haar basis. For j ≥ 0 and D ∈ {0, 1, . . . , 2j}, we set

Cj,D = {fm = ρ1[0,1] + aj,D
∑

k∈m
ϕ̃j,k : |m| = D,m ⊂ Nj},

where

Nj = {k : ϕ̃j,k has support in [0, 1]}.

The parameters j,D, ρ, aj,D is chosen later to fulfill some requirements. Note that

Nj = card(Nj) = 2j .

We know that there exists a subset of Cj,D, denoted Mj,D, and some universal constants, denoted
θ′ and σ, such that for all m,m′ ∈ Mj,D,

card(m∆m′) ≥ θ′D, log(card(Mj,D)) ≥ σDlog

(

2j

D

)

(see Lemma 8 of [31]). Now, let us describe all the requirements necessary to obtain the lower
bound of the risk.

• To ensure fm ≥ 0 and the equivalence between the Kullback distance and the L2-norm (see
below), the fm’s have to be larger than ρ/2. Since the ϕ̃j,k’s have disjoint support, this means
that

ρ ≥ 21+j/2|aj,D|. (7.14)

• We need the fm’s to be in L1(R
′′) ∩ L∞(R′′). Since ||f ||1 = ρ and ||f ||∞ = ρ + 2j/2|aj,D|, we

need

ρ+ 2j/2|aj,D| ≤ R′′. (7.15)

• The fm’s have to belong to B
α

1+2α

2,∞ (R′) i.e.

ρ+ 2jα/(1+2α)
√
D|aj,D| ≤ R′. (7.16)

• The fm’s have to belong to Wα(R). We have σ2
λ = ρ. Hence for any t > 0

ρ21ρ≤√
ρt +Da2

j,D1|aj,D |≤√
ρt ≤ R2/(1+2α)t4α/(1+2α).

If |aj,D| ≤ ρ, then it is enough to have

ρ2 +Da2
j,D ≤ R2/(1+2α)ρ2α/(1+2α) (7.17)

and

Da2
j,D ≤ R2/(1+2α)

(

a2
j,D

ρ

)2α/(1+2α)

. (7.18)
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If the parameters satisfy these equations, then

R(Wα(R) ∩ B
α

1+2α

2,∞ (R′) ∩ L1,2,∞(R′′)) ≥ R(Mj,D).

Moreover if for any estimator f̂ , we define f̂ ′ = arg infg∈Mj,D
||g − f̂ ||ϕ̃, then for f ∈ Mj,D,

||f − f̂ ′||ϕ̃ ≤ ||f − f̂ ||ϕ̃ + ||f̂ − f̂ ′||ϕ̃ ≤ 2||f − f̂ ||ϕ̃.

Hence,

R(Mj,D) ≥ 1

4
inf

f̂∈Mj,D

sup
f∈Mj,D

E(||f − f̂ ||2ϕ̃).

But for every m 6= m′, ||fm − fm′ ||2ϕ̃ =
∑

k∈m∆m′ a2
j,D ≥ θ′Da2

j,D. Hence,

R(Mj,D) ≥ 1

4
θ′Da2

j,D inf
f̂∈Mj,D

(1 − inf
f∈Mj,D

P(f̂ = f)).

We now use Fano’s Lemma of [5], and to do so we need to provide an upper bound of the Kullback-
Leibler distance between two points of Mj,D. But for every m 6= m′,

K(Pf ′m,Pfm) = n

∫

R

fm′

(

exp

(

log
fm
fm′

)

− log
fm
fm′

− 1

)

= n

∫

R

(

fm − fm′ − fm′ log

(

1 +
fm − fm′

fm′

))

≤ n

∫

R

(fm − fm′)2

fm

≤ 2

ρ
n||fm − fm′ ||22

≤ 2

ρ
nDa2

j,D,

since log(1 + x) ≥ x/(1 + x). So finally, following similar arguments to those used by [31] (pages
148 and 149), Fano’s lemma implies that there exists an absolute constant c < 1 such that

R(Mj,D) ≥ (1 − c)θ′

4
Da2

j,D

as soon as the mean Kullback Leibler distance is small enough, which is implied by

2

ρ
nDa2

j,D ≤ cσDlog(2j/D). (7.19)

Let us take j such that 2j ≤ n/logn ≤ 2j+1 and with D ≤ 2j ,

a2
j,D =

ρ2

4n
log(2j/D).

First note that (7.19) is automatically fulfilled as soon as ρ ≤ 2cσ, that is true if ρ an absolute
constant small enough. Then

ρ+ 2j/2|aj,D| ≤ ρ+ 2j/2
√

ρ2logn

4n
≤ 1.5ρ.
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So, if ρ is an absolute constant small enough, (7.15) is satisfied. Moreover

21+j/2|aj,D| ≤ 21+j/2

√

ρ2logn

4n
≤ ρ.

This gives (7.14). Now, take an integer D = Dn such that

Dn ∼n→∞ R2/(1+2α)

(

n

logn

)1/(1+2α)

.

For n large enough, Dn ≤ 2j and Dn is feasible. We have for R fixed,

a2
j,Dn

∼n→∞ cαρ
2 logn

n
,

where cα is a constant only depending on α. Therefore,

ρ+ 2jα/(1+2α)
√

Dn|aj,Dn | = ρ+
√
cαρR

1/(1+2α) + on(1).

Since R1/(1+2α) ≤ R′ it is sufficient to take ρ small enough but constant depending only on α to
obtain (7.16). Moreover,

Dna
2
j,Dn

∼n→∞ cαρ
2R2/(1+2α)

(

logn

n

)2α/(1+2α)

.

Hence (7.17) is equivalent to ρ2 < R2/(1+2α)ρ2α/(1+2α). Since R ≥ 1, this is true as soon as ρ < 1.
Finally (7.18) is equivalent, when n tends to +∞, to

cαρ
2 ≤ (cαρ)

2α/(1+2α).

Once again this is true for ρ small enough depending on α. As we can choose ρ not depending on
R,R′, R′′, this concludes the proof.
Corollary 2 is completely straight forward once we notice that if R′ ≥ R then for every α, R′ ≥
R

1
1+2α .

7.9 Proof of Theorem 8

Let α > 1 and n be fixed. We set j a positive integer such that

n

(logn)α
≤ 2j <

2n

(logn)α
.

For all k ∈ {0, ..., 2j − 1}, we define

N+
j,k =

∫ (k+1/2)2−j

k2−j

dN, N−
j,k =

∫ (k+1)2−j

(k+1/2)2−j

dN.

All these variables are iid random Poisson variables of parameter µn,j = n2−j−1. Moreover,

β̂j,k =
2j/2

n
(N+

j,k −N−
j,k) and V̂(j,k),n =

2j

n2
(N+

j,k +N−
j,k).
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Hence,

E(||f̃n,γ − f ||2ϕ̃) ≥
2j−1
∑

k=0

2j

n2
E

(

(N+
j,k −N−

j,k)
21|N+

j,k−N
−

j,k|≥
√

2γlog(n)(N+
j,k+N−

j,k)+log(n)un

)

.

Denote by vn,j =
(√

4γlog(n)µn,j + log(n)un
)2
. Remark that if N+

j,k = µn,j +
√
vn,j

2 and N−
j,k =

µn,j −
√
vn,j

2 , then

|N+
j,k −N−

j,k| =
√

2γlog(n)(N+
j,k +N−

j,k) + log(n)un.

Let N+ and N− be two independent Poisson variables of parameter µn,j. Then,

E(||f̃n,γ − f ||2ϕ̃) ≥
22j

n2
vn,jP

(

N+ = µn,j +

√
vn,j

2
and N− = µn,j −

√
vn,j

2

)

.

Note that
1

4
(logn)α < µn,j ≤

1

2
(logn)α,

and

lim
n→+∞

√
vn,j

µn,j
= 0.

So, ln,j = µn,j +
√
vn,j

2 and mn,j = µn,j −
√
vn,j

2 go to +∞ with n. Hence by Stirling formula,

E(||f̃n,γ − f ||2ϕ̃) ≥ vn,j
(logn)2α

P

(

N+ = µn,j +

√
vn,j

2

)

P

(

N− = µn,j −
√
vn,j

2

)

≥ vn,j
(logn)2α

µ
ln,j

n,j

ln,j !
e−µn,j

µ
mn,j

n,j

mn,j!
e−µn,j

≥ 4γµn,j
(logn)2α−1

(

µn,j
ln,j

)ln,j

e−(µn,j−ln,j)

(

µn,j
mn,j

)mn,j

e−(µn,j−mn,j)
(1 + on(1))

2π
√

ln,jmn,j

≥ 2γ

π(logn)2α−1
e
−µn,j

[

h

(√
vn,j

2µn,j

)

+h

(

−
√

vn,j

2µn,j

)]

(1 + on(1))

where h(x) = (1 + x)log(1 + x) − x = x2/2 +O(x3). So,

E(||f̃n,γ − f ||2ϕ̃) ≥ 2γ

π(logn)2α−1
e
− vn,j

4µn,j
+On

(

v
3/2
n,j

µ2
n,j

)

(1 + on(1)).

Since

vn,j = 4γlog(n)µn,j(1 + on(1)),

we obtain

E(||f̃n,γ − f ||2ϕ̃) ≥ 2γ

π(logn)2α−1
e−γlog(n)+on(log(n))(1 + on(1)).

Finally, for every ε > 0,

E(||f̃n,γ − f ||2ϕ̃) ≥ 1

nγ+ε
(1 + on(1)).
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7.10 Proof of Theorem 9

We use notations of Lemma 4. Let f ∈ Fn. We apply (7.6) with ε = 1.4. Then, with γ = 1 +
√

2,
and δ > 0 such that (1 + δ)2 = 11.8/(2γ × (1 + 2/ε)) ≃ 1.006, (7.6) becomes

E(||f̃n,γ − f ||2ϕ̃) ≤

inf
m⊂Γn







6
∑

λ6∈m
β2
λ +

∑

λ∈m
[3.4 + 11.8logn]Vλ,n + c(δ, γ)(1 + 2ε−1)

∑

λ∈m

(

logn||ϕλ||∞
n

)2






+
C2(γ, ‖f‖1, c, c

′, ϕ)

n
.

Now, take

m = {λ ∈ Γn : β2
λ > Vλ,n}.

If m is empty, then β2
λ = min(β2

λ, Vλ,n) for every λ of Γn. Hence

E(||f̃n,γ − f ||2ϕ̃) ≤ 6
∑

λ∈Γn

β2
λ +

C2(γ, ‖f‖1, c, c
′, ϕ)

n
.

The result is true for n large enough even if the βλ’s are all zero and this explains the presence of
1/n in the oracle ratio.
If m is not empty, note λ = (j, k). Since Fλ ≤ 2−j ||f ||∞, if Fλ 6= 0, then 2j = O(n/logn) and
λ ∈ Γn. Since

|βλ| ≤ Sϕ2j/2Fλ,

this implies that Fλ is non zero for all λ ∈ m, and that if βλ 6= 0 then λ ∈ Γn. Now,

Vλ,n =
1

n
σ2
λ ≥ 1

n
2jI2

ϕFλ ≥ 1

nΘϕ
||ϕλ||2∞Fλ.

Hence, for all n, if λ ∈ m,

Vλ,nlogn ≥ (logn)2(loglogn)

Θϕn2
||ϕλ||2∞

and if n is large enough,

0.2logn
∑

λ∈m
Vλ,n ≥ c(δ, γ)(1 + 2ε−1)

∑

λ∈m

(

logn

n

)2

||ϕλ||2∞ + 3.4
∑

λ∈m
Vλ,n.

7.11 Proof of Theorem 10

Before proving Theorem 10, let us state the following result.

Proposition 2. Let γmin ∈ (1, γ) be fixed and let ηλ,γmin
be the threshold associated with γmin:

ηλ,γmin
=

√

2γminlognṼλ,n +
γminlogn

3n
||ϕλ||∞,

where

Ṽλ,n = V̂λ,n +

√

2γminlognV̂λ,n
||ϕλ||2∞
n2

+ 3γminlogn
||ϕλ||2∞
n2
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(see Theorem 1). Let u = (un)n be some sequence of positive numbers and

Λu = {λ such that P(ηλ,γ > |βλ| + ηλ,γmin
) ≥ 1 − un}.

Then

E(||f̃n,γ − f ||2ϕ̃) ≥





∑

λ∈Λu

β2
λ



 (1 − (3n−γmin + un)).

Proof.

E(||f̃n,γ − f ||2ϕ̃) ≥
∑

λ∈Λu

E

(

(β̂λ − βλ)
21|β̂λ|≥ηλ,γ

+ β2
λ1|β̂λ|<ηλ,γ

)

.

≥
∑

λ∈Λu

β2
λP(|β̂λ| < ηλ,γ)

≥
∑

λ∈Λu

β2
λP(|β̂λ − βλ| + |βλ| < ηλ,γ)

≥
∑

λ∈Λu

β2
λP(|β̂λ − βλ| < ηλ,γmin

and ηλ,γmin
+ |βλ| < ηλ,γ)

≥
∑

λ∈Λu

β2
λ

(

1 −
(

P(|β̂λ − βλ| ≥ ηλ,γmin
) + P(ηλ,γmin

+ |βλ| ≥ ηλ,γ)
))

≥





∑

λ∈Λu

β2
λ



 (1 − (3n−γmin + un)),

by applying Lemma 1. �

Using this proposition, we give the proof of Theorem 10. Let us consider

f = 1[0,1] +
∑

k∈Nj

√

2(
√
γ −√

γmin)2logn

n
ϕ̃j,k,

with
Nj = {0, 1, . . . , 2j − 1}

and
n

(logn)1+α
< 2j ≤ 2n

(logn)1+α
, α > 0.

Note that for any (j, k), if Fj,k 6= 0, then Fj,k = 2−j ≥ (logn)(loglogn)
n for n large enough and f

belongs to Fn. Furthermore, V(−1,0),n = 1
n and for any k ∈ Nj, V(j,k),n = 1

n . So, for n large enough,

∑

λ∈Γn

min(β2
λ, Vλ,n) = V(−1,0),n +

∑

k∈Nj

V(j,k),n =
1

n
+
∑

k∈Nj

1

n
.

Now, to apply Proposition 2, let us set for any n, un = n−γ and observe that for any ε > 0,

P(ηλ,γmin
+ |βλ| ≥ ηλ,γ) ≤ P((1 + ε)2γminlognṼλ,n(γmin) + (1 + ε−1)β2

λ > 2γlognṼλ,n(γ)),

since γmin < γ. With ε =
√

γ/γmin − 1 and θ =
√

γmin/γ,

P((1 + ε)2γminlognṼλ,n(γmin) + (1 + ε−1)β2
λ > 2γlognṼλ,n(γ)) =

P(θṼλ,n(γmin) + (1 − θ)Vλ,n > Ṽλ,n(γ)).



48 P. Reynaud-Bouret and V. Rivoirard

Since Ṽλ,n(γmin) < Ṽλ,n(γ),

P(ηλ,γmin
+ |βλ| ≥ ηλ,γ) ≤ P(Vλ,n > Ṽλ,n(γ)) ≤ un.

So,
{(j, k) : k ∈ Nj} ⊂ Λu,

and

E(||f̃n,γ − f ||2ϕ̃) ≥
∑

k∈Nj

β2
j,k(1 − (3n−γmin + n−γ))

≥ (
√
γ −√

γmin)
22logn

∑

k∈Nj

1

n
(1 − (3n−γmin + n−γ))

≥ (
√
γ −√

γmin)
22logn





∑

λ∈Γn

min(β2
λ, Vλ,n) −

1

n



 (1 − (3n−γmin + n−γ)).

Finally, since card(Nj) → +∞ when n→ +∞,

E(||f̃n,γ − f ||2ϕ̃)
∑

λ∈Γn
min(β2

λ, Vλ,n) + 1
n

≥ (
√
γ −√

γmin)
22logn(1 + on(1)).

�

Appendix
The following table gives the definition of the signals used in Section 6.

Haar1 Haar2 Blocks

1[0,1] 1.5 1[0,0.125] + 0.5 1[0.125,0.25] + 1[0.25,1]



2 +
∑

j

hj

2
(1 + sgn(x− pj))





1[0,1]

3.551

Comb Gauss1 Gauss2

32

+∞
∑

k=1

1

k2k
1[k2/32,(k2+k)/32]

1

0.25
√

2π
exp

(

(x− 0.5)2

2 × 0.252

)

1√
2π

exp

(

(x− 0.5)2

2 × 0.252

)

+
3√
2π

exp

(

(x− 5)2

2 × 0.252

)

Beta0.5 Beta4 Bumps

0.5x−0.5
1]0,1] 3x4

1[1,+∞[





∑

j

gj

(

1 +
|x− pj |
wj

)

−4




1[0,1]

0.284

where
p = [ 0.1 0.13 0.15 0.23 0.25 0.4 0.44 0.65 0.76 0.78 0.81 ]
h = [ 4 -5 3 -4 5 -4.2 2.1 4.3 -3.1 2.1 -4.2 ]
g = [ 4 5 3 4 5 4.2 2.1 4.3 3.1 5.1 4.2 ]
w = [ 0.005 0.005 0.006 0.01 0.01 0.03 0.01 0.01 0.005 0.008 0.005 ]
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[4] Baraud, Y., Birgé L. Estimating the intensity of a random measure by histogram type estima-
tors, 2006, manuscript.
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