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of the Euclid Algorithm.
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Abstract. We provide sharp estimates for the probabilistic behaviour
of the main parameters of the Euclid algorithm, and we study in par-
ticular the distribution of the bit-complexity which involves two main
parameters : digit–costs and length of continuants. We perform a “dy-
namical analysis” which heavily uses the dynamical system underlying
the Euclidean algorithm. Baladi and Vallée [2] have recently designed a
general framework for “distributional dynamical analysis”, where they
have exhibited asymptotic gaussian laws for a large class of digit–costs.
However, this family contains neither the bit–complexity cost nor the
length of continuants. We first show here that an asymptotic gaussian
law also holds for the length of continuants at a fraction of the execution.
There exist two gcd algorithms, the standard one which only computes
the gcd, and the extended one which also computes the Bezout pair,
and is widely used for computing modular inverses. The extended algo-
rithm is more regular than the standard one, and this explains that our
results are more precise for the extended algorithm. We prove that the
bit–complexity of the extended Euclid algorithm asymptotically follows
a gaussian law, and we exhibit the speed of convergence towards the
normal law. We describe also conjectures [quite plausible], under which
we can obtain an asymptotic gaussian law for the plain bit-complexity,
or a sharper estimate of the speed of convergence towards the gaussian
law.

1 Introduction

The Euclid algorithm computes the greatest common divisor (in short gcd) of u
and v, with Euclidean divisions of the form v = m ·u + r with 0 ≤ r < u. On an
input (u, v), with v0 := v, v1 := u, it performs a sequence of Euclidean divisions

v0 = m1 · v1 + v2, . . . vi = mi+1 · vi+1 + vi+2 . . . vp−1 = vp · mp + 0. (1)

It stops when the remainder vp+1 is zero, and the last non-zero remainder vp is
the greatest common divisor d of u and v.
We wish to study the bit–complexity of the Euclid algorithm, i.e., the total num-
ber of binary operations performed during the execution of the Euclid algorithm.
The (naive) bit–complexity of a Euclidean division v = m · u + r is ℓ(u) · ℓ(m),
where ℓ(v) is the binary length of the integer v; it equals ⌊lg v⌋+ 1, where lg de-
notes the logarithm in base 2. Then, the bit–complexity of the Euclid algorithm
on the input (u, v) is



B(u, v) =

p∑

i=1

ℓ(mi) · ℓ(vi), [ p := P (u, v) is the number of iterations] (2)

The extended Euclid algorithm ouputs, at the same time, the Bezout pair (r, s)
for which d = rv + su. It computes the sequence si defined by s0 = 0, s1 =
1, si = si−2 − si−1 · mi−1, 2 ≤ i < p. The last element sp is the Bezout
coefficient s. The bit–complexity D of this algorithm on (u, v) is

D(u, v) = ℓ(mp) · ℓ(vp) +

p−1∑

i=1

ℓ(mi) · [ℓ(vi) + ℓ(si)]. (3)

We introduce also a so–called “smoothed” version D̃, B̃ of costs D, B, where we
replace the size ℓ(si), ℓ(vi) of si, vi by their logarithms lg si, lg vi,

D̃(u, v) = ℓ(mp)·lg vp+

p−1∑

i=1

ℓ(mi)·[lg vi+lg si], B̃(u, v) =

p∑

i=1

ℓ(mi)·lg vi. (4)

We observe that all the costs of interest can be expressed as a sum of terms,
each of them being a product of two factors: the first one involves the (bit-)size
of digits, and the second one involves the size of the so-called continuants vi, si.

1.1. Distributional analysis. We are interested here in studying the prob-
abilistic behaviour of the gcd algorithm. The set Ω of inputs for the Euclid
algorithm is Ω := {(u, v) ∈ N2; 0 ≤ u < v}. For any (u, v) of Ω, the size of
pair (u, v), denoted by L(u, v), is just the binary length (or the size) of v, i.e.,
L(u, v) := ℓ(v). The subset Ωn of inputs (u, v) with a fixed size n,

Ωn := {(u, v) ∈ Ω; L(u, v) = n}, (5)

is endowed with the uniform probability Pn. For a random variable R defined on
Ω, its restriction to Ωn is denoted by Rn, and we wish to analyze the asymptotic
behaviour of R, i.e., the evolution of variables Rn when n becomes large.
The evolution of the mean values E[Rn] is of great interest and, more generally,
the study of all moments E[Rℓ

n] provides a first understanding of the probabilistic
behaviour of the algorithm: this is the average–case analysis. However, the dis-
tributional analysis, which describes the evolution of the distribution of variable
Rn, provides a much more precise analysis of the algorithm: this is the ultimate
purpose in analysis of algorithms. Very often, variables Rn have a distribution
which tends to the gaussian law: this phenomenon is easily proved as soon as
cost Rn is the sum of n elementary costs, which are independent, and possess
the same distribution. However, in the “Euclidean world”, the steps of (1) are
not independent, and the distribution of numbers may evolve with the evolution
of the algorithm. This is why asymptotic gaussian laws, even if they are widely
expected, are often difficult to prove in this context.

We provide here such a distributional analysis, for the most precise parameter of
the extended Euclid algorithm, its bit–complexity D. We are also interested in
describing the evolution of the size of remainders vi. There exist now many well-
known results about the probabilistic behaviour of the Euclid algorithm, even
if the last ones have been obtained recently. The first results on probabilistic



analysis of Euclid’s algorithm are due to Heilbronn and Dixon who have shown,
around 1970, that the average number of iterations is linear with respect to the
size. In 1994, Hensley [6] performed the first distributional analysis, and proved
that the number of steps has an asymptotic gaussian behaviour. However, his
proof is not easily extended to other parameters of the algorithm. During the
last ten years, the research team in Caen has designed a complete framework for
analyzing an entire class of Euclidean algorithms, with a large class of parameters
(see [10]). It is possible to obtain precise results on the average behaviour of the
main parameters of the algorithm : the digits mi, and the size of continuants
vi and si. Akhavi and Vallée have also analyzed the average bit–complexity [1].
These methods consider the underlying dynamical systems, and make a deep
use of dynamical tools, like the transfer operator. However, all the analyses were
“average–case analyses”. There was a breakthrough two years ago, when Baladi
and Vallée [2] extended the previous method for obtaining limit distributions,
for a large class of costs, the so-called additive costs of moderate growth; they
consider costs C defined on Ω and associated to an elementary cost c on digits,

C(u, v) :=

p∑

i=1

c(mi). (6)

When c(m) is O(log m), the cost c, and the cost C are said to be of moderate
growth. This class of costs contains quite natural parameters, as the number of
steps (for c = 1), the number of occurrences of a given digit m0 (for c(m) :=
[[m = m0]]), the total encoding length (when c equals the binary length ℓ), but
NOT the bit–complexity. These bit–complexity costs are more difficult to deal
with, because they involve both continuants and digits, in a multiplicative way.
Here, we aim to study the distribution of the bit–complexity, and we wish to
extend both the results of Akhavi and Vallée, about the average bit–complexity,
and the distributional methods of Baladi and Vallée. We wish also to study the
evolution of the size of remainders vi.

As in previous works [2,3], we make a deep use of the weighted transfer operator
relative to an elementary cost c and which depends on two parameters (s, w),

Gs,w,[c][f ](x) :=
∑

m≥1

1

(m + x)2s
· exp[wc(m)] · f

(
1

m + x

)
. (7)

When c is of moderate growth, the operator Gs,w,[c] admits (on a convenient
functional space) a unique dominant eigenvalue, for (s, w) near (1, 0). The loga-
rithm of the dominant eigenvalue, called the pressure, and denoted by Λ[c](s, w),
plays a central work in [2], and also in the present paper. The particular case
when c equals the binary length ℓ is crucial in study of bit–complexities.

1.2. Asymptotic gaussian laws. We prove here that many variables R defined
on Ω follow asymptotically a gaussian law. We first provide a precise definition:

Definition [Asymptotic gaussian law.] Consider a cost R defined on Ω and its
restriction Rn to Ωn. The cost R asymptotically follows a gaussian law if there
exist three sequences an, bn, rn, with rn → 0, for which

P

[
(u, v) ∈ Ωn

∣∣ Rn(u, v) − an√
bn

≤ y

]
=

1√
2π

∫ y

−∞

e−t2/2 dt + O(rn) .



The sequence rn defines the speed of convergence, denoted also by r[Rn]. The
expectation E[Rn] and the variance V[Rn] satisfy E[Rn] ∼ an, V[Rn] ∼ bn. We
say that the triple (an, bn, rn) is a characteristic triple for the gaussian law of R.

For instance, the result of Baladi and Vallée can be stated as follows.

Theorem 0. [Asymptotic gaussian Law for additive costs of moderate growth]
(Baladi and Vallée). Consider an additive cost C relative to an elementary cost
c of moderate growth [defined in (6)].
(i) On the set of integer inputs of size n, the cost C asymptotically follows a
gaussian law, with a characteristic triple given by: r[Cn] = O(n−1/2),

E[Cn] = µ(c) ·n + µ1(c) + O(2−nγ), V[Cn] = ρ(c) ·n + ρ1(c) + O(2−nγ),

Here γ is a strictly positive constant which does not depend on cost c.
(ii) The constants µ(c) and ρ(c) involve the first five derivatives of order 1 and
2 of the pressure function Λ(s, w) = Λ[c](s, w) of Gs,w,[c] at (s, w) = (1, 0).

In the case when c = ℓ, the constant ρ(ℓ) is (only) polynomial–time computable
(see [8]) while µ(ℓ) admits a closed form

µ(ℓ) =
12

π2
log

∞∏

i=0

(1 +
1

2i
).

1.3. Our main results. The “extended” cost D defined in (3) is easier to
analyze because it is, in a sense, more regular than cost B. We prove here that
the cost D follows asymptotically a gaussian law, with a characteristics triple
which involves constants µ(ℓ), ρ(ℓ) of Thm 0 relative to the binary–length ℓ.

Theorem 1. [Asymptotic gaussian law for the extended bit–complexity.] (i) On
the set of integer inputs of size n, the bit complexity D of the extended Euclid
algorithm follows asymptotically a gaussian law, with the characteristic triple

E[Dn] = µ(ℓ)·n2 [1+O

(
1

n

)
], V[Dn] = ρ(ℓ)·n3 [1+O

(
1

n

)
], r[Dn] = O(n−1/3).

The smoothed bit–complexity D̃ asymptotically follows a gaussian law with the
same characteristic triple [µ(ℓ) · n2, ρ(ℓ) · n3, O(n−1/3)].

(ii) Under conjecture (C1), the speed of convergence r[D̃n] is O(n−1/2).

Conjecture (C1) is described in 2.3. For the standard bit–cost B, defined in (2),
we exhibit a precise estimate for the variance, and propose a conjecture (C2),
described in 2.4, under which we prove an asymptotic gaussian law.

Theorem 2. [Standard integer bit–complexity.] (i) On the set of integer inputs
of size n, the mean and the variance of the bit-complexity B satisfy

E[Bn] =
1

2
µ(ℓ) · n2 [1 + O

(
1

n

)
], V[Bn] = τ · n3 [1 + O

(
1

n

)
]. (8)

Here τ is a strictly positive constant, which involves spectral objects of the
operator Gs,w,[c]. The same holds for the smoothed version B̃.

(ii) Under Conjecture (C2), the speed of convergence r[B̃n] is O(n−1/3), and the
equality 4τ = ρ(ℓ) holds.



We are also interested in describing the evolution of the size of remainders vi

during the execution of the algorithm, and we consider the size of the remainder
vi at “a fraction of the depth”. More precisely, for a real δ ∈]0, 1[, we denote by
ℓ[δ] the logarithm of vi when i equals ⌊δP ⌋, [P is the number of iterations of the
Euclid algorithm]. The following result shows that the remainders at a fraction of
the depth asymptotically follow a log-normal law, and that the evolution of the
sizes of continuants is very regular. This result constitutes a “discrete version”
of the well-known result of [9] (sharpened by Vallée in [11]) who shows that the
n-th continuant of a real x ∈ I asymptotically follows a gaussian law, when I is
endowed with any density of class C1.
This result also plays a central rôle in the analysis of the so–called Interrupted
Euclidean algorithm which stops as soon as the remainder vi is less than vδ

0 . An
average–case analysis of the Interrupted algorithm is provided in [4], and the
present results are a first [but crucial] step towards the distributional analysis of
the algorithm. And the Interrupted algorithm is itself a basic procedure of the
Lehmer Euclid algorithm [7], or the recursive Euclidean algorithms.

Theorem 3. [gaussian limit law for sizes of continuants at a fraction of the
depth.] Consider a rational δ of ]0, 1[. On the set of integer inputs of size n, the
length ℓ[δ] follows asymptotically a gaussian law, with mean, variance and speed

of convergence given by r[ℓ
[δ]
n ] = O(n−1/2),

E[ℓ[δ]
n ] = µ[δ] · n + µ1(δ) + O(2−nγ), V[ℓ[δ]

n ] = ρ[δ] · n + ρ1(δ) + O(2−nγ).

Here γ is a strictly positive constant which depends on δ, and the constants µ[δ]

and ρ[δ] are related to the derivatives of the pressure function Λ(s) at s = 1,

µ[δ] = (1 − δ), ρ[δ] = δ(1 − δ)
|Λ′′(1)|
|Λ′(1)| > 0 .

1.4. Plan of the paper. Section 2 provides a description of the main steps for
proving Theorems 1 and 2 and states Theorem 4, which will be a main tool in
these proofs. Section 3 presents the transfer operators and explains their gener-
ating rôle. Then, it describes the main principles of the analytical study which
provides a proof of Theorems 3 and 4. Finally, we describe the two conjectures
and provide some hints towards a possible proof.

2 Main steps for Theorems 1 and 2.

Here, we explain how to obtain asymptotic gaussian laws for the bit–complexities.
We prove Theorem 1, Assertion (i), describe conjectures (C1) and (C2) and ex-
plain how to prove Theorem 1 (ii) and Theorem 2 (ii) under these conjectures.

2.1. Expressions for continuants. Each division–step of the Euclid algorithm
v = m ·u+ r uses a digit m and changes the old pair (u, v) into a new pair (r, u).
Instead of integers, we consider rationals [the old rational x = u/v, and the
new rational y = r/u] which both belong to the unit interval, and we look for a
relation between y and x. One has



r

u
=

v − mu

u
=

v

u
− ⌊ v

u
⌋ so that y = T (x) with T (x) :=

1

x
− ⌊ 1

x
⌋.

With T (0) = 0, the map T : [0, 1] → [0, 1] is called the Gauss map and plays a
fundamental rôle in the study of the Euclid algorithm. When the quotient is m,
there exists also a linear fractional transformation (LFT) h[m] for which

x = h[m](y) with h[m](y) = 1/(m + y) .

Of course, the LFT’s h[m] are the inverse branches of T . On an input (u, v), the
execution (1) creates a continued fraction of the form

u

v
= h[m1] ◦ h[m2] ◦ . . . h[mp] = h(0). (9)

When the algorithm performs p iterations, it gives rise to a continued fraction
of depth p. Here, we show that the main parameters of the Euclid algorithm on
the input (u, v) (quotients mi, remainders vi and continuants si) can be read
on the continued fraction of the rational u/v. When the CFE of u/v is split at
depth i, the LFT h defines three LFT’s, the beginning LFT bi, the middle LFT
hi and the ending LFT ei, respectively defined as

bi := h[m1] ◦ h[m2] ◦ . . . ◦ h[mi−1], hi := h[mi] ei := h[mi+1] ◦ . . . ◦ h[mp].

Then, the i-th continuants admit expressions which involve LFT’s ei and bi,

s−2
i = |b′i(0)|, v−2

i = v−2
p · |e′i(0)|. (10)

2.2. Bit-complexity cost. This entails the following decompositions,

Proposition 1. The bit–complexity costs D, D̃ of the extended Euclidean
algorithm decompose as D̃ = (L − 1) · Z + Ỹ , D = (L + 1) · Z + Y,

with Ỹ = −Y (1) + O(Y (2)) + Y (3) + Y (4), Y = Ỹ + Y (5).

Here L is the size of the input, defined by L(u, v) = ℓ(v) = ℓ(v0) and

Z =

p−1∑

i=1

ℓ(mi), Y (1) =

p−1∑

i=1

ℓ(mi) · lg mi, Y (2) = (ℓ(mp) + lg vp)
2, (11)

Y (3) = f ·
p−1∑

i=1

ℓ(mi), Y (4) =

p−1∑

i=1

di · ℓ(mi) Y (5) =

p−1∑

i=1

fi · ℓ(mi), (12)

with di =: lg

∣∣∣∣
h′

i(0)

h′
i(ei(0))

∣∣∣∣+lg

∣∣∣∣
b′i(ei−1(0))

b′i(0)

∣∣∣∣ , f := {lg v0}, fi := −{lg vi}−{lg si}.

Moreover, the so-called distortions di admit uniform lower and upper bounds.

We have then “splitted” the extended cost D into two costs: the “main” cost
X := L ·Z which will be proven to be (asymptotically) gaussian, and a “remain-
der” cost Y , which will be proven to be (asymptotically) more concentrated that
the main cost. Then, the total cost X + Y will be (asymptotically) gaussian: .

Proposition 2. Consider two costs X and Y , defined on Ω and their restrictions
Xn, Yn to Ωn. Suppose that X admits a gaussian limit law with speed of con-
vergence r[Xn] and the variances of Xn and Yn satisfy V[Yn] = αn ·V[Xn], with



αn → 0. Then, the random variable X + Y follows asymptotically a gaussian

limit law with a characteristic triple given by: r[Xn + Yn] = r[Xn] + O(α
1/3
n ),

E[Xn + Yn] = En[X ] + En[Y ], V[Xn + Yn] = V[Xn] · [1 + O(αn)].

2.3. Proof of Theorem 1. Theorem 1 (i) is easily deduced from Propositions
1 and 2. The “main” cost is X := L · Z, where L(u, v) is the size of pair (u, v),
equal to ℓ(v). With results of Baladi and Vallée [Theorem 0], the cost Z follows
an asymptotic gaussian law. Since Xn = n · Zn, the cost X follows itself an
asymptotic gaussian law with the characteristic triple

E[Xn] = n · E[Zn] = O(n2), V[Xn] = n2 · V[Zn] = O(n3), r[Xn] = O(n−1/2).

In Proposition 1, there appear three different kinds of costs: – (i) cost Y (1) –
(ii) cost Y (2) which is an end-cost, [i.e., it depends only on variables used in the
last step ℓ(mp), ℓ(vp), and in a polynomial way.] – (iii) The other costs R [the
distortion cost Y (4) and the two fractional costs Y (3), Y (5)] deal with bounded
sequence fi, di. For these costs R, one has:

E[Rn] = O(E[Zn]) = O(n), V[Rn] ≤ E[R2
n] = O(E[Z2

n]) = O(n2).

In the following Theorem 4, we will prove that the cost Y = Y (1) fulfills the
concentration property, and that end-costs R are negligible i.e.,

E[Yn] = O(n), V[Yn] = O(n), E[Rn] = O(1), V[Rn] = O(1).

This leads to Theorem 1 [Assertion (i)], with a speed of convergence O(n−1/3).
If we wish to obtain a speed of convergence of order n−1/2, we must study more
carefully costs Y (i) for j = 3, 4, 5. The fractional cost Y (5) is clearly very difficult
to study: this is why we have introduced the smoothed cost D̃, which no longer
involves Y (5). It is possible to generate the distortion cost Y (4) and the fractional
cost Y (3) with some convenient transfer operator. However, we do not succeed
in proving that the concentration property holds for them.

Conjecture (C1): The costs Y (3) and Y (4) satisfy the concentration property.
Under this conjecture, Theorem 1 (ii) is proven.

2.4. An asymptotic gaussian law for B̃ ? For proving Theorem 2 (ii), we re-
late wi := vi/vp = (e′i(0))1/2 to the approximate continuant si := b′i(ei−1(0))−1/2

and we introduce two (new) costs

A(u, v) :=

p∑

i=1

ℓ(mi) · lg wi, A(u, v) :=

p∑

i=1

ℓ(mi) · lg si.

First, as in 2.3, the cost (A + A) will be asymptotically gaussian with the same

characteristic triple as D̃. Second, since the cost A is close to costs B̃, B, it is
sufficient for Theorem 2 (ii) to prove that the decomposition A = (1/2)(A +
A) − (1/2)(A−A) provides a new instance of application of Propositions 1 and
2. This is possible if the second cost (An − An) has a variance of order O(n2).
Since E[An − An] is of order O(n) [see Proposition 3, Section 3], we study

E[(An − An)2] = E[A2
n] + E[A

2

n] − 2E[An · An],



where each term is of order O(n4). Proposition 3 proves a cancellation between
the dominant terms, and entails for αn an order of O(1/n).

Conjecture (C2) : E[A2
n], E[A

2

n], E[An · An] have the same terms of order n3.

This conjecture is plausible since it is based on a property of “semi-commutativity”
which generalizes Proposition 3. Under (C2), it is easy to prove Theorem 2 (ii).

2.5. Various kinds of costs. We are then led to study various costs C, and
the behaviour of additive costs C heavily depends on the behaviour of cost c.
We then introduce the Dirichlet series Ac(s, w),

Ac(s, w) :=
∑

m∈M

1

m2s
exp[wc(m)],

closely related to the operator Gs,w,[c], which helps to define the behaviour of c.

Definition 1. (a) A cost R is an end–cost if it depends only on variables used
in the last step ℓ(mp), ℓ(vp), and in a polynomial way.
(b) An elementary cost c and its associated additive cost C are of moderate
growth if –(b1) the bivariate generating function Ac(s, w) is convergent for ℜs >
σ0 and ℜw < ν0 with σ0 < 1 and ν0 > 0 – (b2) it is analytic at (1, 0),
(c) An elementary cost c and its associated additive cost C are of intermediate
growth if –(c1) its generating function Ac(s, w) is convergent for ℜs > σ0 with
σ0 < 1 and ℜw ≤ 0, – (c2) it is not analytic at (s, w) = (1, 0), but, as a function
of the real variable w, it admits derivatives of any order wrt w, at w = 0−.

Remark. The size cost c = ℓ is of moderate growth, while any power of the
size of the form c = ℓα (with α > 1) defines a cost of intermediate growth.

The following theorem is one of the basic results of our paper. Note that Assertion
(b) is already proven by Baladi and Vallée [2].

Theorem 4. The following holds:
(a) An end cost R is negligible, i.e., the expectation E[Rn] and the variance

V[Rn] are O(1).
(b) An additive cost C of moderate growth is asymptotically gaussian with

a characteristic triple of the form [O(n), O(n), O(n−1/2)].
(c) An additive cost C of intermediate growth satisfies the concentration

property, i.e., the expectation E[Cn] and the variance V[Cn] are O(n).

3 Dynamical Systems and Generating operators.

We explain here how dynamical systems allow to derive alternative forms for
generating functions. This will be done via various extensions of the transfer
operator, which plays here the rôle of a “generating operator”.

3.1. Dynamical systems and transfer operators. A continuous extension
of one step of the Euclid algorithm to real numbers x of I := [0, 1] is provided
by the Gauss map T : I → I, together with the set H := {h[m]; m ∈ N} of the

branches of T−1. The pair (I, T ) defines a dynamical system. The set Hk is the



set of the inverse branches of the iterate T k, and the set H⋆ := ∪kHk is the
semi-group generated by H.

If I is endowed with some initial density f = f0, the time evolution governed
by the map T modifies the density. The successive densities f1, f2, . . . , fn, . . .
describe the global evolution of the system, and there exists an operator, the
density transformer G which transforms f0 into f1. The weighted transfer oper-
ator Gs,w,[c] relative to some digit cost c,

Gs,w,[c][f ](x) =
∑

h∈H

exp[wc(h)] · |h′(x)|s · f ◦ h(x),

is a perturbation of the density transformer G [obtained for (s, w) = (1, 0)].
When w = 0, we omit the variable w and the cost c, so that Gs := Gs,0,[c]. Now,
if we extend cost c on H⋆ by additivity, the quasi–inverse is of the form

(I − Gs,w,[c])
−1[f ](x) =

∑

h∈H⋆

exp[wc(h)] · |h′(x)|s · f ◦ h(x) .

3.2. Generating functions. We consider a general parameter R defined on
Ω, and we wish to study its distribution on Ωn, when endowed with the uni-
form probability. Our final probabilistic tool [for distributional analyses] is the
sequence of moment generating functions E[exp(wRn)],

E[exp(wRn)] =
R(n, w)

R(n, 0)
, with R(n, w) :=

∑

(u,v)∈Ωn

exp[wR(u, v)]. (13)

We first consider the whole set Ω of inputs and our strategy consists in encap-
sulating all the moment generating functions E[exp(wRn)] in a Dirichlet series

SR(s, w) :=
∑

(u,v)∈Ω

1

v2s
exp[wR(u, v)] =

∑

m≥1

1

m2s
rm(w) , (14)

where rm(w) is the cumulative value of exp[wR] on inputs (u, v) for which v = m.
The series SR(s, w) is a bivariate generating function which depends on two
parameters, s “marks” the input size, and w “marks” the cost of interest. This
is a Dirichlet series with respect to s. The study of moments of order k,

E[Rk
n] =

R(n)[k]

R(n)[0]
, with R(n)[k] :=

∑

(u,v)∈Ωn

Rk(u, v), (15)

deals with a Dirichlet Series S
[k]
R (s)

S
[k]
R (s) :=

∂k

∂wk
SR(s, w)|w=0 =

∑

(u,v)∈Ω

1

v2s
Rk(u, v) =

∑

m≥1

1

m2s
r[k]
m , (16)

where r
[k]
m is the cumulative value of Rk on inputs (u, v) for which v = m.

In both cases, the plain moment generating function, , and the plain moment of

order k of Rn can be recovered from series SR(s, w) or S
[k]
R (s) with (13,15), and

relations

R(n, w) =

2n−1∑

m=2n−1

rm(w), R(n)[k] =

2n−1∑

m=2n−1

r[k]
m . (17)



We first look for an alternative expression for series SR(s, w) [defined in (14)]
from which the position and the nature of its dominant singularity become
apparent. With taking derivatives, we also obtain alternative expressions for

S
[k]
R (s) [defined in (16)]. Then, we transfer these informations on the asymp-

totic behaviour of coefficients of SR(s, w) or S
[k]
R (s), which are closely related

via (13,15,17) to our prime objects of interest E[exp(wRn)], E[Rk
n].

3.3. Alternative expressions for bivariate Dirichlet series. We will use
transfer operators Gs,Gs,w,[c] (or some of their extensions) as “generating” op-
erators: Bivariate generating functions SR(s, w) can be expressed via quasi–
inverses of these operators.

Additive costs. If C is the total cost relative to c, the quasi-inverse (I−Gs,w,[c])
−1

“generates” the bivariate generating function of cost C (relative to coprime in-
puts). Furthermore, the Zeta function defined as ζ(2s) :=

∑
d≥1 d−2s allows to

deal with general inputs [not only coprime inputs]. Finally,
SC(s, w) = ζ(2s) · (I − Gs,w,[c])

−1[1](0). (18)

Continuant at a fraction of the depth. We study the parameter ℓ[δ] which equals
the logarithm of remainder vi for i = ⌊δP ⌋. For an input (u, v) of Ω on which
the algorithm performs p iterations, there exists LFT h of depth p such that
u/v = h(0). One decomposes h in two LFT’s g and r of depth ⌊δp⌋ and p−⌊δp⌋
such that h = g ◦ r, and if δ is a rational of the form δ = c/(c + d), then

Sℓ[δ](s, w) = ζ(2s − 2w) ·
c+d−1∑

j=0

G
j−⌊δj⌋
s−w ◦ (

∑

k≥0

Gdk
s−w ◦ Gck

s ) ◦ G⌊δj⌋
s [1](0). (19)

The operator Gs,w :=
∑

k≥0 Gdk
s−w ◦ Gck

s is called a pseudo–quasi-inverse; of
course, since Gs and Gs,w do not commute, this is not a “true” quasi-inverse.
However, we study this operator when w is near to 0, and we can hope that the
properties of Gs,w will be close to properties of a true quasi-inverse.

3.4. Alternative expressions for Dirichlet series S
[j]
R (s). In other cases of

cost R, we look for alternative expressions for the series S
[i]
R (s) for i = 1, 2. We

denote by W[c] the derivation wrt w (at w = 0), and by ∆ the derivation wrt s,

W[c]Gs =
∂

∂w
Gs,w,[c]|w=0, ∆ :=

1

log 2

d

ds
Gs.

Then, the operators W[c] or ∆ operate themselves on transfer operators. Our
Dirichlet series of interest can be written as a sequence of occurrences of the
quasi–inverse (I − Gs)

−1, separated by occurrences of the form AGs where A
is a monomial of the (commutative) algebra A generated by {∆, W[c]}. Then,
we adopt shorthand notations where we omit the quasi-inverses, the zeta func-
tion, the function 1, and the point 0: we only take into account the operators
“between” the quasi inverses.

Additive costs C of intermediate growth. In this case, it is not possible to deal

directly with the transfer operator Gs,w,[c]. However, the univariate series S
[j]
C (s)

admit alternative expressions of the form

S
[1]
C = [W[c]] S

[2]
C = [W 2

[c]] + 2[W[c], W[c]]. (20)



Bit-Complexity Costs A, A. Here, we omit also the index [ℓ] in W[ℓ] and we

obtain, in the same vein S
[1]
A = [∆, W ], S

[1]

A
= [W, ∆],

(1/2)S
[2]
A ≈ 2[∆, ∆, W, W ]+[∆, W, ∆, W ]+[∆2, W, W ]+[∆, ∆W, W ]+[∆, ∆, W 2],

(1/2)S
[2]

A
≈ 2[W, W, ∆, ∆]+[W, ∆, W, ∆]+[W, W, ∆2]+[W, ∆W, ∆]+[W 2, ∆, ∆],

S
[1]

AA
≈ 2[W, ∆, ∆, W ]+2[∆, W, W, ∆]+[W, ∆, W, ∆]+[∆, W, ∆, W ]+

+[W, ∆2, W ]+[∆, W, ∆W ]+[W, ∆, ∆W ]+[∆W, ∆, W ]+[∆W, W, ∆]+[∆, W 2, ∆].

3.5. Analysis of Costs. With alternative expressions of Dirichlet series pro-
vided in Sections 3.3 and 3.4 at hand, we now perform the second step: we find
the dominant singularities of these Dirichlet series and their nature, and then
transfer these informations towards coefficients and obtain asymptotic expres-
sions for their coefficients. We use, as a main tool, convenient “extractors” which
express coefficients of series as a function of the series itself. There are two main
“extractors” for Dirichlet series: Tauberian Theorems [which do not provide re-
mainder terms] are well-adapted for the average–case analysis or the study of
all the (non centered) moments [Thm 4 (a)] — the Perron Formula [which may
provide remainder terms] constitutes an essential step, both in the studies of the
variance [Thms 1, 2, 4(c)] and in distributional analyses [Thm 3].

Both extractors need informations on the quasi-inverse (QI), closely related to
the dominant spectral properties of the transfer operator on the Banach space
C1(I). However, Tauberian Theorems “only” need informations on the QI on
the domain ℜs ≥ 1. For using with some success the Perron Formula, we need
a more precise knowledge of the QI on vertical strips on the left of the vertical
line ℜs = 1. Properties of the same vein are very often difficult to prove and
intervene for instance in the proof of the Prime Number Theorem. The US
Property [Uniformity on Strips] describes a convenient behaviour of the QI and
informally says: “there exists a vertical strip |ℜ(s)− 1| < α which contains only
one pole of the QI; moreover, on the left line ℜ(s) = 1 − α, an adequate norm
of the QI is bounded by M · |ℑs|ξ (with ξ > 0 small). Baladi and Vallée [2] have
generalized ideas due to Dolgopyat [5] and prove that the US(s) Property holds
for (I − Gs)

−1, and that a uniform US(s, w) Property (uniform wrt w) holds
for (I − Gs,w,[c])

−1 (when c is of moderate growth). Here, for Thm 3, we prove
that a uniform US(s, w) Property also holds for the “pseudo quasi–inverse”.

For (s, w) = (1, 0), and for any cost c, the operator Gs,w,[c] is just the density
transformer G, which possesses a unique dominant eigenvalue equal to 1 and
an invariant function Ψ(x) = (1/log 2)(1/1 + x). Then, each occurrence of the
quasi–inverse (I − Gs)

−1 brings a pole at s = 1, with an explicit residue:

Proposition 3. Any Dirichlet series denoted by an expression [A1, A2, . . . Ak]
[see Section 3.4], where each Ai is a monomial of the algebra generated by
{∆, W[c]}, has a pôle of order k + 1 at s = 1, with an expansion of the form

[A1, A2, . . . , Ak](s) =
1

log 2

∑

i≥0

ai · (|λ′(1)|(s − 1))i−k−1,



with a0 =
∏k

i=1 I[AiG], I[H] :=
∫

I
H[Ψ ](t)dt, Ψ(x) := (1/log 2)(1/1 + x).

Since the dominant constant a0 depends only on the subset {A1, A2, . . . Ak}, this
proves that, for additive costs R = C or bit-complexities R = A, A, there exists

a relation of the form b0 = 2a2
0 between the dominant constant a0 of S

[1]
R and

the dominant constant b0 of S
[2]
R , which entails a cancellation in the variance.

Conjecture (C2). It is based on a similar property which involves the Porter
operator Q defined as the constant term in the expansion of (I − Gs)

−1 near
s = 1. Conjecture (C2) says: The following equality holds:

∑

X,Y,X′,Y ′∈{∆,W}

X′ 6=X,Y ′ 6=Y

(−1)[[X=Y ]] · I[XG] · I[Y G] · (I[X ′G ◦ Q ◦ Y ′G] − I[X ′Y ′G]) = 0.

Conjecture (C1). It deals with two families of costs.

Costs R = f ·C. To prove that VRn is O(n), we use generating functions relative
to moments of R := lg v0 ·C. They can be expressed with [·, . . . ·, ·], and we have
to prove cancellations between the constants, as in Conjecture (C2).
Distortion costs. Generating functions for the distortion costs involve generalized
transfer operators acting on functions with two variables as in [11]. The US prop-
erties are not yet proven to hold for such operators, and proving cancellations
between constants needs to deal with their dominant spectral objects.

References

1. A. Akhavi, B. Vallée. Average bit–complexity of Euclidean Algorithms, Proceed-
ings of ICALP’2000, Lecture Notes in Computer Science 1853, pp 373–387, Springer.

2. V. Baladi, B. Vallée. Euclidean Algorithms are Gaussian, Journal of Number
Theory, Volume 110, Issue 2 (2005) pp 331–386

3. E. Cesaratto, B. Vallée. Reals with bounded digit averages, Proceedings of the
Colloquium on Mathematics and Computer Science: Algorithms, Trees, Combina-
torics and Probability, pp 473–490, M. Drmota et al., ed., Birkhauser Verlag, Trends
in Mathematics, 2004.

4. B. Daireaux, B. Vallée. Dynamical analysis of the parameterized Lehmer-Euclid
Algorithm, Combinatorics, Probability, Computing, pp 499–536 (2004).

5. D. Dolgopyat. On decay of correlations in Anosov flows, Ann. of Math. 147 (1998)
357–390.

6. D. Hensley. The number of steps in the Euclidean algorithm, Journal of Number
Theory, 49, 2 (1994), 142-182

7. D.H. Lehmer. Euclid’s algorithm for large numbers. Am. Math. Mon. (1938) 45
pp 227–233.

8. L. Lhote. Computation of a Class of Continued Fraction Constants Proceedings of
Alenex–ANALCO04, pp 199–210

9. W. Philipp. Some metrical theorems in number theory II, Duke Math. J. 37 (1970)
pp 447–488. Errata, ibid, 788.

10. B. Vallée. Euclidean Dynamics, to appear in Discrete and Continuous Dynamical
Systems, 2005, web page: www.info.unicaen.fr/ebrigitte
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