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Abstract. In pattern matching algorithms, two characteristic parame-
ters play an important rôle : the number of occurrences of a given pattern,
and the number of positions where a pattern occurrence ends. Since there
may exist many occurrences which end at the same position, these two
parameters may differ in a significant way. Here, we consider a general
framework where the text is produced by a probabilistic source, which
can be built by a dynamical system. Such “dynamical sources” encom-
pass the classical sources –memoryless sources, and Markov chains–, and
may possess a high degree of correlations. We are mainly interested in
two situations : the pattern is a general word of a regular expression, and
we study the number of occurrence positions – the pattern is a finite set
of strings, and we study the number of occurrences. In both cases, we de-
termine the mean and the variance of the parameter, and prove that its
distribution is asymptotically Gaussian. In this way, we extend methods
and results which have been already obtained for classical sources [for
instance in [9] and in [6]] to this general “dynamical” framework. Our
methods use various techniques: formal languages, and generating func-
tions, as in previous works. However, in this correlated model, it is not
possible to use a direct transfer into generating functions, and we mainly
deal with generating operators which generate... generating functions.

1 Introduction

The problem of searching for a particular pattern in a text is an important
problem in information theory. It is crucial to study precisely the number of
occurrences of a given pattern in a typical text. Here, “typical” essentially means
that the text is a random text produced by a probabilistic model that follows
as far as possible the real complexity of the studied sequences. It is also very
interesting to consider positions of occurrence, i.e., positions (in a text) where
an occurrence of the pattern can terminate.
The two parameters – the number of occurrences, denoted in the following by
Ω, and the number of occurrence positions, denoted by C – may differ in a
significant way, since the number of occurrence positions is always bounded by
the text length, whereas this is not true for the number of occurrences. [There
may exist many occurrences which end at the same occurrence position].



With a precise probabilistic study of these two parameters, one obtains sharp
statistical heuristics (like Z-scores) which permit to describe the related algo-
rithms, and perhaps improve them.

Various pattern matching problems. There are also different pattern match-
ing problems, which differ according to the nature of the pattern.
String matching. This is the basic pattern matching problem. Here, a string w
is a block of (consecutive) symbols w = w1w2 . . . ws (of length s).
Set of strings. Previously, the string w should appear exactly in the text, while,
in the approximate case, a few mismatches are considered acceptable. The ap-
proximate string matching is then expressed as a matching against a set L of
words which contains all the valid approximations of the string.
Sequence of patterns. Here, the symbols no longer need to be consecutive in the
text: we are interested in occurrences of the string w as a subsequence of the
text T . The problem is different, and it is called the hidden word problem.
Regular expressions. Searching words from a regular language is surely the most
general pattern matching problem, since all the three previous pattern matching
problems all consist in finding words of a given regular language.

Motivations. Molecular biology [12,17,18] provides an important source of
applications. As a rule, there, one searches for subsequences, not consecutive
strings. There are plenty of examples: split genes where exons are interrupted
by introns, starting and stopping signal in genes, etc. . . . In general, for gene
searching [8], regular expressions are used as a general pattern model (such as
the prosite format used to scan in protein databases).
In this general context, it is of obvious interest to discern what constitutes mean-
ingful information from what is statistically unavoidable phenomenon. This leads
to a probabilistic study. In information theory context, a source is a mechanism
which emits symbols from an alphabet Σ. A text of length n is just an ele-
ment of Σn, and the various models of sources are related to the choice of a
probabilistic model on Σn. When the probabilistic model has been chosen, the
main variables of interest — the number of occurrences Ω, and the number of
occurrence positions C— become random variables, and it is crucial to study
their distribution, in order to set thresholds from which appearance of a pattern
becomes meaningful.

Previous results. The two classical models of sources are the memoryless
sources (where each symbol m is always emitted with the same probability,
and independently of the previous history) and Markov chains (where the prob-
ability of emitting m only depends on the unique symbol emitted before m). In
both cases, these sources have a “bounded” memory and only provide idealized
models, while real-life sources are often complex objects. Most of the results are
obtained only for such idealized sources.
Number of occurrences Ω. The number of string occurrences in a random text
has been intensively studied over the last two decades. Guibas and Odlyzko have
revealed in 1981 the fundamental rôle played by autocorrelation. Régnier and
Szpankowski [10,11] established that the number of occurrences of a string is
asymptotically normal under a diversity of models that include Markov chains.



The number of occurrences of finite sets of (finite) strings also obeys the “Guibas
and Odlyzko” principle, which now deals with correlation matrices.
In the case of the hidden word problems, Flajolet, Szpankowski and Vallée show
that the distribution of Ω is asymptotically Gaussian for memoryless sources [6].
Number of occurrence positions C. Nicodème, Salvy, and Flajolet [9] showed
that, for a simple3 regular expression E , the variable Cn(E) is asymptotically
normally distributed, both for memoryless sources and Markov chains.

Our results. We use here a general framework of sources related to dynamical
systems theory which goes beyond the cases of memoryless and Markov sources
[16,4]. This model can describe non-Markovian processes, where the dependency
on past history is unbounded, and as such, they attain a high level of generality.
A probabilistic dynamical source is defined by two objects: a symbolic mecha-
nism and a density. The mechanism, related to symbolic dynamics, associates
an infinite word M(x) to a real number x ∈ [0, 1], and generalizes numeration
systems. Once the mechanism has been fixed, the density f on the [0, 1] interval
can vary. This induces different probabilistic behaviors for sources of words.
In this context, string matching problems have been already considered: In [1],
the authors study the parameter Ω(L) when L is a particular regular expression
(namely, a generalized pattern), which provides a generalization for the hidden
word problem. The mean and the variance of Ωn are shown to be polynomial in
n, and the exponent r depends on the number of freedom degrees of L. However,
the asymptotic distribution – expected to be Gaussian– is not obtained.

Here, we obtain two new results in this correlated model of dynamical sources.
We prove here that many variablesR defined on some set R follow asymptotically
a gaussian law. We first provide a precise definition:

Definition [Asymptotic gaussian law.] Consider a cost R defined on a set R and
its restriction Rn to the subset Rn of size n. The cost R asymptotically follows
a gaussian law if there exist three sequences an, bn, rn, with rn → 0, for which

Pr

[

(u, v) ∈ Rn

∣

∣

Rn(u, v) − an√
bn

≤ y

]

=
1√
2π

∫ y

−∞

e−t2/2 dt+O(rn) .

The sequence rn defines the speed of convergence, denoted also by r[Rn]. The
expectation E[Rn] and the variance V[Rn] satisfy E[Rn] ∼ an, V[Rn] ∼ bn.
The triple (E[Rn],V[Rn], rn) is a characteristic triple for the gaussian law of R.

We now state our main result:4

Theorem. Let S be a nice dynamical source.
(i) Consider a simple regular expression E whose useful part of the automaton is
primitive. The number of occurrence positions of E in a word of length n built by
S, denoted by Cn(E), follows an asymptotic gaussian law with a characteristic
triple given by r[Cn(E)] = O(1/

√
n),

E[Cn(E)] = γE · n+ γ′E +O(µn
E ), V[Cn(E)] = νE · n+ ν′E + O(µn

E ),

3 See Section 2.4 for a definition
4 The word “nice” is defined in Def. 4, Section 3.3, the words “simple” and “useful”

are defined in Def. 1, Section 2.4, the word “primitive” in Section 3.3



The constants γE and νE are expressible with the pression Λ(t) of the operator
R(et) defined in (8), namely γE = Λ′(0), νE = Λ′′(0), while µE < 1 is any real
number strictly larger than the subdominant eigenvalue of R.
(ii) Consider a finite set of words W ⊂ Σ⋆. The number of occurrences of W in
a text of length n built by S, denoted by Ωn(W), follows an asymptotic gaussian
law with a characteristic triple given by r[Ωn(W)] = O(1/

√
n),

E[Ωn(W)] = αW · n+ α′
W +O(ηn

W ), V[Ωn(W)] = βW · n+ β′
W +O(ηn

W ).

The constants αW et βW are expressible with the pression Λ(t) of the operator
B(et) defined in (9), namely αW = Λ′(0), βW = Λ′′(0), while ηW < 1 is any real
number strictly larger than the subdominant eigenvalue of B.

Methodology. For studying the parameter C(E), Nicodème, Salvy and Flajolet
describe in [9] a general method which directly translates a regular expression
into rational generating functions. They use, as a main tool, the transition matrix
of the automaton which recognizes the regular languageΣ⋆·E , and the occurrence
positions are related to the final states of the automaton. In [6], the authors also
use similar methods, namely the de Bruijn graph, to study the parameter Ω(W).
These two previous works, based on the “generating function methodology”, as
in the main books of the area [14,13], operate a systematic translation of each
language into its generating function. Due to correlations of a dynamical source,
such a direct approach is no longer possible here. Instead, we perform what
we call a “dynamical analysis” and we first operate a systematic translation
into generating operators. In dynamical systems theory, an important tool is
the density transformer; here, we give it the role of a “generating operator”.
Now, there are many instances of this methodology, applied in two main areas:
text algorithms as in [2,5,16], or arithmetical algorithms as in [15]. Here, we
deal with a mixed structure, where we insert generating operators inside the
transition matrix of the automaton. We obtain an operator matrix which takes
into account both the complexity of the source and the algebraic structure of
the problem (namely an automaton).

2 Various tools.

We first introduce the languages and the related generating functions that inter-
vene in the analysis of the characteristic parameters C and Ω. Next, we precise
the probabilistic model. We define dynamical sources and introduce the gener-
ating operators that are a basic ingredient associated to our correlated sources.

2.1. Probabilistic model and generating functions. As regards the prob-
abilistic model, we consider a source that creates the text by emitting symbols
from a finite alphabet Σ. For a given length n, a random text, denoted by Tn is
an element of Σn which is drawn according to the induced probability on Σn,
and, for any word w of length n, we denote by pw the probability that the source
emits a prefix equal to w. A language L is then a set of words. For any language,
we denote by Ln the language formed with all the words w of L with length n.

We aim at studying the random variables Y = C (the number of occurrence
positions) and Y = Ω (the number of occurrences). In both cases, we consider



the restriction of Y to Σn, denoted by Yn, and analyze its probabilistic behavior
for n→ ∞. Our main tool is the moment generating function of Yn, defined as

E[exp(tYn)] :=
∑

w∈Σn

pw · exp[tY (w)], (1)

and the main challenge is to show that it behaves as a “quasi-power”. Then, it
will be possible to obtain an asymptotic Gaussian law:

Theorem 0. [Hwang] Let Yn be a sequence of variables whose moment generat-
ing functions satisfies E[exp(tYn)] = [exp(nU(t)+V (t))]·[1+O(Wn)], Wn → ∞,
with a uniform error term on the complex closed disk |t| ≤ t0, t0 > 0. Suppose
that U(t) and V (t) are analytic in |t| ≤ t0 and U(t) satisfies U ′′(0) 6= 0. Then,
Yn follows an asymptotic gaussian law, with a characteristic triple given by

E[Yn] = U ′(0) · n+ V ′(0) +O(Wn), V[Yn] = U ′′(0) · n+ V ′′(0) + O(Wn),

r[Yn] = O (max(1/
√
n,Wn)) .

2.2. Bivariate generating functions. The so–called probability generating
function FY (z, u) relative to parameter Y is defined as

FY (z, u) =
∑

w∈Σ⋆

pw · uY (w) · z|w|,

where |w| denotes the length of w, the variables z and u respectively mark the
length of the word and the parameter Y (w). Remark that the moment generating
function of parameter Yn is closely related to FY (z, u) via the relation

E[exp(tYn)] = [zn]FY (z, et) (2)

where the notation [zn]G(z) denotes the coefficient of zn inG(z). Previous works,
which deal with non correlated sources, directly work with the generating func-
tions. Here, we cannot operate a direct translation from the problem into gen-
erating functions, and we mainly use generating operators.

2.3. Language vs automaton. Let us first recall that an automaton is defined
by (Σ,Q,F , s, δ), where Σ is an alphabet, Q is the (finite) set of states, F ⊂ Q
corresponds to the final states, s ∈ Q is the initial state and δ : Q × Σ → Q
is the transition function of the automaton. In the following, the set Q will be
always {0, . . . , r − 1}, and the state 0 will be the initial state.
The automaton recognizes a language L if, for all word w := m1 . . .mn of L,
there exists a path q1, q2, . . . , qn−1 of states and a final state f such that

δ(s,m1) = q1, δ(qi,mi+1) = qi+1, [for 1 ≤ i ≤ n− 2], δ(qn−1,mn) = f.

In this case, the language L is said to be a regular language. Every regular lan-
guage can be described by a regular expression, composed of singletons and a
finite number of unions, Cartesian products and star operations on those sin-
gletons. Conversely, it is possible to operate a direct translation from a regular
expression to a deterministic finite automaton.
The transition matrix T := (Ti,j) is the r × r matrix whose element of index
(i, j) is the set of symbols m ∈ Σ for which there exists an edge from state i to
state j labeled by m, namely Ti,j := {m ∈ Σ; δ(i,m) = j}.



This matrix plays a fundamental rôle in the sequel. Thus, the component (i, j)
of the matrix T n is the language formed by all the words which allow to reach
state j from state i in n steps. And, the component (i, j) of the matrix T ⋆ is the
language formed by all the words which allow to reach state j from state i in an
arbitrary number of steps. Finally, Ln = S · T n · F, L = S · T ⋆ · F, where
F :=t (f1, . . . , fr) is a {0, 1} column vector such that fi equals 1 iff i ∈ F , called
the final vector and S is a row vector equal to ( 1 0 · · · 0 ).

2.4. Automata of interest. To each parameter [C(E) or Ω(W)], we associate
an automaton which will be central in the study of this parameter.

Case C(E)- Automaton for the language L = Σ⋆ · E associated to a

regular expression E . We consider the minimal automaton A which recognizes
Σ⋆ · E , and its decomposition into the acyclic graph of its strongly connected
components (SCC):

Definition 1. The expression E is simple if the minimal automaton A which
recognizes Σ⋆ · E possesses a unique SCC which contains all the final states.

Generally speaking, it is possible that all final states do not belong to the same
SCC. Here, we mainly consider the case when E is simple5. However, we explain
(in the conclusion) how our method extends to the general case.

Proposition 1. Let E be a simple regular expression and A be the minimal
automaton which recognizes Σ⋆ · E . Then, there exists a partition of its set
of states Q into two sets X and Y for which the transition matrix T of this
automaton can be written as

T =

(

M U
0 R

)

;

Here, M is the matrix restricted to X , R is the matrix restricted to Y, and U
is the matrix from X to Y. If X is non empty, it contains the initial state, while
the graph (Y,R) is the SCC of the automaton, which contains all the final states
and is called the useful part of the automaton.

Remarks. Then, the language L decomposes as L = SX ·M⋆ ·U ·R⋆ ·FY , where
SX is the initial row vector restricted to X , and FY is the final column vector
restricted to Y. Note that the language L+ of the words which contain at least
one occurrence of the regular expression E satisfies L+ ⊂ SX ·M⋆ · U · R⋆ · 1Y ,
where 1Y is a column vector, indexed with Y, whose all components equal 1.

Example. See Figure 1 (at the end) for E := (ba|c)+a+.

Case Ω(W)- The de Bruijn automaton relative to an alphabet Σ and

a length ℓ. In the sequel, ℓ will be the maximum length of a word of W , minus
1. We consider a “sliding window” of length ℓ that scans a text of Σ⋆ and, at
each stage, keeps in its (finite) memory the last ℓ letters read from the text.
Formally, the de Bruijn graph is a finite automaton with state space Q = Σℓ;
when the symbol m is read, in a state b ∈ Σℓ, one erases the left symbol of b,
which provides a word denoted by τ(b), and m is added on the right of τ(b), so

5 This is also the only case which is considered in [9]



that the new state is δ(b,m) = τ(b) ·m. A text of length n ≥ ℓ is then associated
to a path of length n − ℓ that begins at the state b formed with the first ℓ
symbols of the text. This transition matrix is denoted by B. Let us define the
initial vector S as a row vector whose components are all the words of Σℓ, and
the final vector as a column vector whose components are all equal to 1. Then

Σn = S · Bn−ℓ · F, Σ≥ℓ = S · B⋆ · F.
Example. See Fig. 2 (at the end) for the de Bruijn graph with Σ := {a, b}, ℓ = 2.

We now present the probabilistic model for symbol generation. This model is
based on dynamical systems. Here, probabilities are “generated” by operators,
and the main generating functions of interest can be generated themselves by
operators. Furthermore, unions and Cartesian products of sets translate into
sums and compositions of the associated operators. This allows us to define a
matrix generating operator related to a regular language.

2.5. Dynamical sources. We first recall the definition of a dynamical system
(of the interval). We refer to [16,4] for more details. See Fig. 3 for an example.

Definition 2. A dynamical system (I,S) is defined by four elements:
(a) a finite alphabet Σ,
(b) a topological partition of I :=]0, 1[ with disjoint open intervals Im,m ∈ Σ,
(c) an encoding mapping σ which is constant and equal to m on each Im,
(d) a shift mapping S whose restriction to Im is a bijection of class C2 from

Im to Jm := S(Im). The local inverse of S|Im
is denoted by hm.

Such a dynamical system can be viewed as a “dynamical source”, since, on an
input x of I, it outputs the word M(x) formed with the sequence of symbols
σSj(x), i.e., M(x) := (σx, σSx, σS2x, . . .).
The branches of Sk, and also its inverse branches, are then indexed by Σk, and,
for any w = m1 . . .mk ∈ Σk, the mapping hw := hm1

◦ hm2
◦ · · · ◦ hmk

is a C2

bijection from Jw onto Iw. It is possible that the word w cannot be produced
by the source: this means that Jw is empty, and the inverse branch hw does
not exist. All the words that begin with the same prefix w correspond to real
numbers x that belong to the same interval Iw.

Such sources may possess a high degree of correlations, due to the geometry
of the branches [i.e., the respective positions of intervals Im and Jℓ := S(Iℓ)]
and also to the shape of branches. [See [4] for more details]. For instance, the
classical sources correspond to dynamical systems with affine branches, for which
the derivatives are constant. Generally speaking, the probability of emitting a
symbol m is closely related to the shape of branches, as we now see.

2.6. Probabilities and generating operators. When the interval I is en-
dowed with some density g, this induces a probabilistic model on ΣN, and the
probability pw that a word begins with prefix w is the measure of the interval
Iw. Such a probability pw is easily generated by an operator G[w], defined as

G[w][f ](x) = |h′w(x)| f ◦ hw(x)1IJw
(x), (3)



since one has pw =

∫

Iw

g(x)dx =

∫

Jw

|h′w(x)|g ◦ hw(x)dx =

∫ 1

0

G[w][g](x)dx.

Then, the operator G[w] is called the generating operator of the prefix w. The
generating operator L relative to a collection L of words is defined as the sum of
all the generating operators relative to the words of L, namely L :=

∑

w∈L G[w],
and the generating operator G of the alphabet Σ

G :=
∑

m∈Σ

G[m]. (4)

plays a fundamental rôle here, since it is the density transformer of the dynamical
system; it describes the evolution of densities on I under iterations of S: if X is
a random variable with density g, then SX has density G[g].
For two prefixes w,w′, the relation pw.w′ = pwpw′ is no longer true when the
source has some memory, and is replaced by the following composition property

G[w.w′] = G[w′] ◦ G[w], (5)

so that unions and Cartesian products of collections of words translate into sums
and compositions of the associated generating operators. Remark just that, due
to (5), the generating operator of L ×M is M ◦ L.

2.7. Matrix generating operators. Here, we transform the transition matrix
of an automaton into a matrix generating operator that combines both infor-
mation from the dynamical source and the automaton. We associate to each
element Tj,i of the matrix T , its generating operator Ti,j

Ti,j :=
∑

w∈Tj,i

G[w]. (6)

Then, T is a matrix generating operator which is related to tT , due to (5).

Examples. In the case when L is Σ⋆ ·E , there are three matrix operators, M,U,R,
respectively associated to matrices M,U ,R [See Prop. 1]. For the de Bruijn
graph, the generating operator is denoted by B. See Figures 1 and 2 for examples.

2.8. The mixed source. We now build a source ST that combines both a
transition matrix T of an automaton A, and the original source S. The set of
states of A is Q and the matrix T has order r. The initial source S is defined
by an interval I, an alphabet Σ, a topological partition (Im)m∈Σ and a shift S
whose each local inverse hm := (S

Im

)−1 maps Jm :=]cm, dm[ on Im :=]am, bm[.

The source ST [see Fig. 3 (at the end) for an example] is defined with the interval
I [r] = [0, r], the alphabet Γ := Σ ×Q, a topological partition (Im,i)(m,i)∈Γ and

a shift function that maps I [r] on I [r]. Each local inverse hm,i maps Jm,i on
Im,i. More precisely, Im,i = Im + i :=]am + i, bm + i[, Jm,i = Jm + δ(i,m) :=
]cm + δ(i,m), dm + δ(i,m)[, and hm,i(x) = hm(x − δ(i,m)) + i. The density
transformer G of the source ST defined, as in (4), by

G[f ](x) :=
∑

(m,i)∈Σ×Q

|h′m,i(x)| · f ◦ hm,i(x) · 1IJm,i
(x), (7)

is conjugated to the matrix operator T defined in (6) via a mapping Ψ [namely
G = Ψ−1 ◦ T ◦ Ψ ] which associates to g (defined on I [r]) the vector t[g1, . . . , gr]
where each gi is defined on I by gi(x) := g

[i−1,1]
(x+ i).



3 Probabilistic behavior of parameters C and Ω.

Now, we come back to the two situations of interest. The next step consists in
weighting operator matrices T in order to study our parameters C(E) and Ω(W).

3.1. Case of C(E). We consider here the language L := Σ⋆E and the three
matrix operators M,U,R. We now mark the transitions which arrive at final
states and define three new operators R(u), U(u),X(u) by the relations.

R(u)j,i = u[[j∈F ]] · Rj,i, U(u)j,i = u[[j∈F ]] · Uj,i, ([[·]]is Iverson’s bracket) (8)

X(z, u) := z · U(u) ◦ (I − zM)−1.SX ,

where the vector SX is a column vector (of length |X |) equal to t(1, 0, . . . , 0).

Example. Figure 1 describes the marked matrix operators for E = (ba|c)+a+.

3.2. Case of Ω(W). We consider here a set of finite words W , and we choose
the length ℓ of the de Bruijn graph to be equal to the maximal length of a word
of W , minus 1. this de Bruijn automaton is weighted with a counter that gets
incremented each time a transition is effected, so that the value of the counter will
contain at the end of the text the number Ω(W). A transition of the automaton,
of the form c = δ(b,m) requires b ·m ∈ Σ ·c. When this transition is effected, one
can “cash in” all the “new” occurrences of W which arise when reading the last
letterm, i.e., all the occurrences of the pattern that end at the letterm. Precisely,
for a transition c = δ(b,m) of the automaton, the number of occurrences of the
pattern W contained in b ·m and ending at the letter m is determined by either
the pair (b,m) or the pair (b, c); we denote this number by φ(b,m) or ψ(b, c),
depending on context, so that φ(b,m) = ψ(b, c) whenever c = δ(b,m). Since the
length of word b ·m exactly equals ℓ+ 1 that is the maximum length of a word
of W , all the occurrences of W that end at m are contained in a text of the form
b ·m with b ∈ Σℓ so that the relation φ(b,m) = Ω(b ·m)−Ω(b) holds. We build
a operator matrix B(u) indexed by Q×Q as follows

B(u)c,b := uφ(b,m) · [[ bm ∈ Σc ]] · G[m] = uΩ(bm)−Ω(b) · [[ bm ∈ Σc ]] ·G[m], (9)

and the initial vector X(z, u) is a column vector defined by

(X(z, u))b = zℓ · uΩ(b) · G[b] . (10)

Example. Figure 2 describes the matrix B(u) relative to W := {ab, aab, aba}
In both cases, the operator FY (z, u) := (I−zT(u))−1◦X(z, u), with T(u) = R(u)
or T(u) = B(u) itself generates, with (3), the generating function FY (z, u), and
we obtain, with (1):

Proposition 2. The probability generating functions of parameters Y = C and
Y = Ω are expressible with the quasi-inverse of a matrix operator T(u),

E[uYn ] = [zn] ·
(

∫ 1

0

(

1X · (I − zT(u))−1 ◦ X(z, u)
)

[g](t)dt

)

.

In the case Y = C, the operator T(u) equals R(u), and R(u),X(z, u) involve
the decomposition of Proposition 1 [see (8)]. In case Y = Ω, the operator T(u)
equals B(u) and B(u),X(z, u) involve the de Bruijn graph [see (9,10)].



In the sequel, we prove that, provided that the source S and the transition matrix
T possesses good properties, it is the same for the source ST .

3.3. Nice sources and convenient sources. Under quite general hypotheses,
and on a convenient functional space, the density transformer admits λ = 1 as
an eigenvalue of largest modulus. But, generally speaking, this is not a unique
dominant eigenvalue isolated from the remainder of the spectrum.

Definition 3. A dynamical source is said to be decomposable if, when acting on
a convenient Banach space F , the density transformer G [defined in (4)] possesses
a unique dominant eigenvalue (equal to 1) separated from the remainder of the
spectrum by a spectral gap, i.e., ρ := sup{|λ| ; λ ∈ SpG, λ 6= 1} < 1.

Remarks. Let us explain the terminology: Consider the dominant eigenfunc-
tion ϕ which is an invariant function for G. Under the normalization condition
∫ 1

0 ϕ(t)dt = 1, this last object is unique too, and it is also the (unique) stationary
density. Due to the existence of the spectral gap, the operator G decomposes
into two parts, namely G = λP + N, where P is the projection of G onto the
dominant eigenspace generated by ϕ, and N, relative to the remainder of the
spectrum, has a spectral radius equal to ρ, which is strictly less than 1. The
operator N describes the correlations of the source. A decomposable dynamical
source is ergodic and mixing with an exponential rate equal to ρ.

Most of the classical sources –memoryless sources, or primitive Markov chains–
are easily proven to be decomposable. We now present sufficient conditions under
which a general dynamical source will be proven to be decomposable, together
with all its associated mixed sources ST [the proofs are omitted here].

Definition 4. A dynamical source (on a finite alphabet) is said to be “nice” if
it satisfies the two conditions
(i) [Expansiveness] There exist two constants C,D with D > 1 for which one
has, for any m ∈ Σ, for any x ∈ Im, D < |S′(x)] < C.
(ii) [Topologically mixing] For any pair of two nonempty open sets (V,W ), there
exists n0 ≥ 1 such that S−nV ∩W 6= ∅ for all n ≥ n0.

Proposition 3. A nice dynamical system is decomposable, with respect to
the space BV (I) of functions with bounded variation, endowed with the norm
||f || := sup |f | + V (f) [Here, V (f) is the total variation of f on I].

We consider now the mixed source ST . Recall that a transition matrix T is
primitive if there exists a power of the matrix T whose coefficients are never the
empty language. A strongly connected graph gives rise to a matrix T which is
primitive if and only if the gcd of the lengths of its cycles equals 1. If it is not
primitive, the gcd d of its cycle lengths is called the period, and T d is primitive.

Proposition 4. If S is a nice dynamical source, then the following holds:
(i) the mixed source ST relative to any primitive graph T is nice too.
(ii) The mixed source SB relative to a de Bruijn graph B is always nice.
(iii) Define the period of a regular expression E to be equal to the period

of the useful part of R of its automaton. Then, for any regular language E of
period d, the source Sd

R (whose shift equals T d
R) is nice.



3.4. Our main result. We are now ready for the proof of our main result.

Proof. We consider two graphs of interest: (i) in the case when we study Y =
C(E), the useful part R of the automaton A which recognizes the language Σ⋆ ·E
– (ii) in the case when we study Y = Ω(W), where ℓ+ 1 is the maximal length
of the words of W , the de Bruijn graph B of length ℓ.
With hypotheses of the present theorem, Propositions 3 and 4, and Definition 3,
the density transformer G has dominant spectral properties, and, by conjugation
and perturbation theory, this transmits to the quasi-inverses of marked operators
R(u) or B(u), when u is near 1, which admit a spectral decomposition too.
Then, with Proposition 2, the moment generating functions of cost Yn behave
as approximate n-th powers. We end with Theorem 0 [7] (See 2.1).

Conclusions. In this paper, as in [9], we restrict ourselves to the case when the ex-
pression E is simple. In the case when there does not exist a unique FSCC [see Section
2.4], all these FSCC’s may play a rôle in the asymptotics, via their dominant eigen-
values. Our theorem extends to the general case by dealing with the super-dominant
eigenvalues (which dominate the others).
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Fig. 2. The De Bruijn automaton, with its transition matrix, the operator, with its
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