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Abstract

A frequency-domain numerical model of brass instrument sound pro-

duction is proposed as a tool to predict their brassiness, defined as

the rate of spectral enrichment with increasing dynamic level. It is

based on generalized Burger’s equations dedicated to weakly nonlinear

wave propagation in non uniform ducts, and is an extension of previous

work by Menguy and Gilbert (2000), initially limited to short cylindri-

cal tubes. The relevance of the present tool is evaluated by carrying

out simulations over distances longer than typical shock formation dis-

tances, and by doing preliminary simulations of periodic regimes in a

typical brass trombone bore geometry.

PACS numbers: 43.75.Fg and 43.25.Gf
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I. INTRODUCTION

At high dynamic levels brass instruments generate sounds having strong high frequency

components; these sounds are called “brassy” or “cuivrés”. They are due to the essential

nonlinearity of the wave propagation in the pipe (Hirschberg et al, 1996). The brassiness

of the instruments defined as the rate of spectral enrichment with increasing dynamic level,

can be very different due to the variety of their bore geometry. For example a conical bore

implies a faster decay of the wave than a cylindrical bore, which reduces the nonlinear wave

steepening. Recently Gilbert (2006), Myers et al (2007), and Gilbert et al (2007) have sug-

gested classifying brass instruments from the brassiness point of view. A numerical model

would be a useful tool to investigate the brassiness behavior of brass instruments charac-

terized by their bore geometry. Numerical models have been developed in the time domain

(Msallam et al, 2000; Vergez and Rodet, 2000), or in the frequency domain (Thompson and

Strong, 2001) by making some restrictive assumptions like modeling the wave steepening

only on a part of the bore or ignoring backward nonlinear wave propagation.

In this letter we present a simulation tool in the frequency domain extending the work of

Menguy and Gilbert (2000), which was limited to short cylindrical tubes. Brass instruments

are characterized by non uniform ducts which can be significantly longer than typical shock

formation distances. It is shown (section II) that the tool is relevant first, by exploring

the weakly nonlinear wave propagation at long distances, and second, by doing preliminary

simulations of periodic regimes in a typical brass trombone bore geometry (section III).

II. WEAKLY NONLINEAR ACOUSTIC SIMULATIONS IN DUCTS

A. Theoretical background

The study of weakly nonlinear propagation in a dissipative viscothermal homogeneous

fluid assuming a one-dimensional flow in a nonuniform duct leads to first-order nonlinear

a)Electronic address: Joel.Gilbert@univ-lemans.fr
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differential twin equations using the dimensionless variables σ (a slow geometric scale equal

to (γ + 1)/2.M.x where γ is the specific heat ratio, M a Mach number, x a dimensionless

geometric scale), θ+ and θ− (dimensionless delayed time scales), q+ and q− (forward and

backward variables). They are the ”generalized Burgers equation” for the forward-traveling

wave (equation 1), and for the backward-traveling wave (equation 2):
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where Γ, the Gold’berg number, is a measure of the importance of effects of volume

dissipation compared to those of nonlinearity. A plane wave that propagates in a duct with

rigid walls experiences dispersion and attenuation as a result of the viscothermal boundary

layer along the walls. As a consequence, the right hand side of equations 1 and 2 contains

a second term controlled by the dimensionless number T/ε (Menguy and Gilbert, 2000)

which is a measure of the strength of nonlinearity relative to that of wall dissipation. If

the volume viscothermal effects - controlled by Γ - are frequency squared dependent, the

classical dependence of the viscothermal boundary-layer losses - controlled by T/ε - is on

the square root of the frequency. The left hand of equations 1 and 2 exhibit a term which

is function of the interior diameter D(x) of the nonuniform duct, characterizing its slowly

varying cross section. This term is linear in q. It is assumed that the duct diameter D

is small enough (kD < 1, k being the wave number), and that the area varies sufficiently

slowly on the scale of a wavelength, (1/kD).(dD/dx) << 1, to justify a one-dimensional

propagation model.

The two waves are assumed to propagate in opposite directions, independently in the

linear limit. They are non integrable, and there is almost no chance of general analytical

progress (Hamilton and Blackstock, 1998). That is why numerical methods such as the one

described in the following section should be used.
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B. Simulations in uniform and nonuniform ducts

Generalized Burger’s equations 1 and 2 have no known analytical solutions. Numerical

solutions are performed in the frequency domain, the method described in Menguy and

Gilbert (2000) is summarized hereafter.

The following simple wave q+(σ, θ) is considered:

q+(σ, θ) =
∞

∑

n=1

[an(σ) sin nθ + bn(σ) cos nθ] . (3)

Equalizing each term of the Fourier series coming from equation 1 leads, for each harmonic

component n, to:
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These equations are solved numerically using a spatial finite difference method, with the

boundary condition q+(0, θ), which is a time periodic function. At first order, the classical

Euler method is used, and correction is performed using the Adams Moulton second-order

method.

Although the simulation method has been verified for small propagation distances in

Menguy and Gilbert (2000), it has to be tested for distances greater than the shock formation

distance σc, in order to be used in brass instrument simulations. Tests have therefore been

carried out for weakly dissipative fluids without any viscothermal wall effects (T/ε = 0)

for which weakly nonlinear propagation can be described by the Burgers equation. One of

them, defined by a Gold’berg number Γ equal to 100 (Γ >> 1), is discussed now.
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The harmonic components, Pn =
√

a2
n + b2

n, as a function of σ/σc varying from 0 to 10

for a wave generated by a mono frequency source are displayed in Figure 1. The behavior of

the harmonic components simulated from equation 4 is close to the so-called Fay-Blackstock

solutions available for σ > 3. These analytic Fourier coefficients Qn are written as follows:

q+(σ, θ) =
∞

∑

n=1

sin(nθ)Qn(σ) =
2

Γ

∞
∑

n=1

sin(nθ)

sinh [n(1 + σ)/Γ]
. (5)

Moreover simulations of a plane wave propagating in a uniform duct, defined by T/ε =

10, are carried out from equation 4. The harmonic components as a function of σ varying

from 0 to 10 for a wave generated by a mono frequency source are displayed in Figure 1.

The wave deformation along the propagation, from sine wave to a decreasing amplitude

sawtooth wave, is obtained. The waveforms are typical of those reported in literature for

high intensity sound in ducts (Hamilton and Blackstock, 1998): the boundary-layer losses are

predominant, their dispersion effects are visible on the waveforms, and the Fay-Blackstock

solutions are not a good approximation anymore. The spectral enrichment can be globally

estimated from the following dimensionless parameter, called the spectral centroid SC:

SC =

∑

n nQn
∑

n Qn

. (6)

Figure 2 shows the rapidly increasing and then slowly decreasing evolution of SC, re-

spectively before one and after three shock formation distance values corresponding to the

results displayed in Figure 1, the shock formation distance σc being still defined from the

cylindrical tube.

Simulations of a plane wave propagating in a nonuniform duct, a cone, are also carried

out from equation 1. The expanding bore of the cone implies a faster decay of the wave

which reduces the nonlinear wave steepening; the spectral enrichment SC increases more

slowly than in a cylindrical tube having the same input radius (see Figure 2).
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III. BRASSINESS SIMULATIONS

A. Numerical method summary

The brassiness of the sound, in other words its spectral enrichment, generated by brass

instruments at high dynamic level is mainly due to the essential nonlinearity of wave prop-

agation in the pipe, resulting in wave steepening and generation of shock waves (Hirschberg

et al, 1996). The spectral enrichment can be evaluated from the radiated pressure spectral

centroid SC estimation during a crescendo. In expanding bores, a faster decay of the wave

amplitude reduces the nonlinear steepening effect: this provides a hypothesis to explain

the fact that “conical” instruments are not as brassy as “cylindrical” instruments. More

precisely, the brassiness of two brass instruments, or of two fingerings or positions of a

given instrument, can be compared from their spectral centroid values for a given crescendo

(Gilbert, 2006). The comparison can also be made by simulation, the input data being the

internal geometry of the instrument, its bore, and typical acoustical pressures at the input

end of the instrument.

The frequency model simulation method is based on the previous publications of Menguy

and Gilbert (2000) and Gilbert et al (2005) dedicated to uniform ducts and clarinet-like

instruments, and here adapted to non uniform ducts and brass instruments. The simulation

can be summarized as follows: postulating the pressure spectrum Pin at the input end, a

radiated impedance boundary condition at the output end (radiation impedance formula

from Caussé et al (1984), extended by the iterative impedance when k.R is greater than

4.84), and the bore geometry of the instrument, the pressure and velocity acoustic field are

first calculated everywhere inside the bore using the weakly nonlinear approximation. Indeed

the simple waves propagating in each direction are supposed not to interact in the body of

the fluid as in the linear approximation, and they are solutions of the nonlinear differential

equations 1 and 2. The numerical solving of equation 4 and its twin has been presented in

the previous section, the detail of the numerical method and a harmonic balance convergence

method is detailed in Menguy and Gilbert (2000). The volume velocity spectrum Qout at
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the output end of the instrument is estimated by multiplying the output area by the output

acoustic velocity spectrum. By using the low-frequency approximation for a monopole having

a volume strength equal to Qout, a radiated pressure spectrum Prad and its spectral centroid

SCrad are estimated at a distance d from the open end of the pipe from:

Prad =
̺

4πd
jωQout. (7)

B. Testing the model

Simulations were done using the bore geometries of a bass trombone (Courtois model,

2000) corresponding to three slide positions in which F4 can be played: 1st, 4th and 6th

positions (see Figure 3). From the 1st to the 4th (6th), there is an added cylindrical tube

of 2 x 0.27 m (2 x 0.46 m). Pressures spectra Pin at the input end have been measured to

provide input data for simulations. They come from experimental data collected in the side

of the mouthpiece backbore during playing performance of a F4 using the bass trombone.

One corresponding to loud playing having a SCin value equal to 1.6 is displayed in Figure

4. The simulated radiated pressure is displayed too.

Several tests were performed to determine the reliability of the simulation method. Two

kinds of crescendo have been chosen for simulations. One is created by the input pressure

Pin being a sine wave (spectral centroid SCin constant equal to 1), and having an increasing

RMS value from 500 to 3000 Pa. The second is created by the input pressure Pin increasing

with a RMS value from 500 to 3000 Pa, its spectral centroid varying linearly from 1.22 to

1.62 (see Figure 5). The fundamental frequency is 350 Hz in both cases and the wave forms

are defined by their first ten harmonics. The two simulated crescendos have been carried

out using the three bore profiles displayed in Figure 3. The resulting values of the spectral

centroid SCrad of the radiated sound are displayed in Figure 5. All the simulated spectral

centroid values are increasing with the RMS pressure Pin at the entrance of the instruments,

showing the spectral enrichment of the radiated sound. As expected the spectral enrichment

is greater and greater from the 1st to the 6th slide position because of the increasing length of
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the cylindrical part of the instrument. These predictions are qualitatively comparable with

experimental results shown in Gilbert (2006). Note that the values of SCrad are depending

on the input data Pin: results obtained using a variable SCin are greater than the one

obtained from SCin constant equal to one.

IV. CONCLUDING REMARKS

A frequency domain simulation tool has been developed to predict the brassiness behav-

ior of brass instruments. It is based on the generalized Burger’s equations 1 and 2 applied to

weakly nonlinear acoustic propagation in non uniform ducts. First, numerical simulations

of traveling waves in uniform ducts have been carried out over large distances to check their

reliability far from the shock formation distance. The results have been successfully com-

pared with known theoretical predictions. Secondly, in the weakly nonlinear propagation

approximation, waves in ducts of finite length propagate in both directions, independently

as in the linear limit, except for coupling at the ends. Then the internal sound field can be

described by the superposition of two simple waves propagating in opposite directions which

do not interact in the body of the fluid. This is the major hypothesis of the simulation

tool already described in Menguy and Gilbert (2000), applied to cylindrical tubes of short

length. In the present paper it has been extended to non uniform ducts, having lengths

greater than realistic shock formation distances, and has been used with a bass trombone

bore. The spectral enrichment of the radiated sound during crescendos has been simulated,

and the results are comparable with experimental results already presented in conference

(Gilbert, 2006; Gilbert et al, 2007).

While the numerical tool presented in the present paper is promising, it must be borne

in mind that many simulations have to be carried out and compared with experimental

results, in order to establish the reliability of the tool as a predictor of the brassiness of

brass instruments defined by their bore (Myers et al, 2007).
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