
The stationary Navier-Stokes equations in 3D exterior

domains. An approach in anisotropic weighted Lq spaces

Ulrich Razafison
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Abstract

We consider the three-dimensional exterior problem for stationary Navier-Stokes equa-

tions. We prove, under assumptions of smallness of the data, existence and uniqueness

of solutions. By setting the problem in weighted spaces where the weights reflect the

anisotropic decay properties of the fundamental solution of Oseen, we show the better

decay of the solutions outside the wake region. Moreover, the solutions we obtained

have a finite Dirichlet integral and under additional assumptions on the weights they

are also PR-solutions in the sense of Finn [10]. The study relies on a Lq-theory for

1 < q < ∞.
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1 Introduction and Notation

Let Ω′ be a simply-connected bounded domain in R
3 assumed to have at least a Lipschitz-

continuous boundary ∂Ω and let Ω denotes the complement of Ω′, in other words, the

exterior of Ω′. In this paper, we consider the stationary Navier-Stokes equations

−ν∆u + ρu · ∇u + ∇p = ρ f in Ω,

div u = 0 in Ω,

u = u∗ on ∂Ω,

lim
|x|→∞

u(x) = u∞,

(1.1)
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describing the flow past the obstacle Ω′ of a viscous incompressible fluid with viscosity

ν > 0, density ρ, velocity u and pressure p. Furthermore, the prescribed quantities f, u∗

and u∞ denote the external force field acting on the fluid, the velocity of the fluid at the

boundary ∂Ω and its velocity at large distances from ∂Ω, respectively. In a coordinate

frame attached to Ω′, we assume that u∞ = he1, where e1 = (1, 0, 0)t and h > 0. From

a physical point of view, such flow is expected to have some properties which are closely

connected with the behavior at large distances. The flow must indeed exhibit an infinite

wake extending, in this case, in the direction x1 > 0. Inside the wake region, the flow

gets turbulent and the rate of convergence of the velocity u to u∞ outside the wake is

faster than inside it. To our knowledge, the first studies of (1.1) are due to Leray [19],

who proved the existence of weak solutions with finite Dirichlet integral
∫
Ω |∇u|2dx, so-

called D-solutions (see also [11], [14] and [18]). Then the investigation of the asymptotic

behaviour of D-solutions is first due to Finn [9, 10], who introduced the class of physically

reasonable solutions, so called PR-solutions, i.e.,

|u(x) − u∞| = O(|x|−1/2−ε), if u∞ 6= 0, (1.2)

where ε > 0 may be arbitrary small. Further investigations on the asymptotic behavior of

solutions to (1.1) are due for instance to Clark [4], Babenko [3], Galdi [12, 13, 14], Farwig

[5] (see also [7]), Farwig and Sohr [8] and references quoted there.

An important tool for the investigation of (1.1) is the study of linearized problems. We

linearize u at u = u∞ and get the Oseen system ([20, 21]):

−∆v + λ
∂v

∂x1
+ ∇p = f, in Ω,

div v = 0, in Ω,

v = u∗ − u∞ on ∂Ω,

lim
|x|→∞

v(x) = 0,

(1.3)

for v = u−u∞ and λ = ρh > 0. The fundamental solution (O,P) of Oseen can be written

in the form (see for instance [13]):

Oij(x) =

(
δij∆ −

∂

∂xi

∂

∂xj

)
Φ(x), Pi(x) =

1

4π

xi

|x|3
,

where

Φ(x) =
1

4πλ

∫ λs(x)/2ν

0

1 − e−t

t
dt, s(x) = |x| − x1.
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It is well known that as |x| tends to infinity, we have the following behaviors,

O(x) = O(|x|−1(1 + s(x))−1),

∇O(x) = O(|x|−3/2(1 + s(x))−3/2),

∂2O(x)

∂xi∂xj
= O(|x|−2(1 + s(x))−2),

∂O(x)

∂x1
= O(|x|−2(1 + s(x))−1).

(1.4)

The term s(x) shows the existence of the wake region behind the obstacle. Indeed in

the set W = {x ∈ R
3, s(x) ≤ 1} which is rotationally symmetric with respect to the

x1-axis and which has a paraboloidal shape opening for x1 > 0, the fundamental solution

O decays as |x|−1. But in the set S = {x ∈ R
3, s(x) ≥ |x|/2}, O decays as |x|−2 showing

the faster decay of O outside the wake.

The purpose of this paper is to prove, under suitable smallness assumptions, existence and

uniqueness of solutions to (1.1) that have better decay properties outside the wake region.

Since the flow domain is unbounded, the study is based on a Lq-theory for 1 < q < ∞.

Next, in our approach, we choose to include the wake behavior of the solutions in the

definition of the function spaces. We therefore study the Navier-Stokes equations (1.1)

in weighted Sobolev spaces where the weights reflect the behaviour of the fundamental

solution of Oseen. In view of (1.4), weights of the type

ηα
β (x) = (1 + |x|)α(1 + s(x))β , α, β ∈ R,

are used.

The study here is possible due to the investigation of the exterior Oseen problem in such

anisotropic weighted Lq spaces (see [23]). Note that this paper extends the existence and

uniqueness result proved by Farwig [5] where the study relies on a L2-theory.

This paper is organized as follow. In the next section, we introduce the anisotropic

weighted spaces and we recall some of their basic properties. In Section 3, we recall

the main result on the Oseen equations proved in [23] that we will use for the investi-

gation of the Navier-Stokes equations. In order to estimate the nonlinear term u · ∇u,

in Section 4 we first prove imbedding theorems in weighted spaces. Here, we follow the

ideas developed by Farwig [5] where integral representations involving the fundamental

solution of a scalar model of the Oseen equations are used. We next prove pointwise decay

estimates of functions that belong to the anisotropic weighted spaces considered. Finally

Section 5 is devoted to the Navier-Stokes equations. After proving anisotropic weighted

estimates for the nonlinear term, we prove our main existence and uniqueness result using

the Banach’s fixed point theorem for sufficiently small data f and u∗ −u∞. The solutions
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we obtained are D-solutions, i.e
∫
Ω |∇u|qdx < ∞. Furthermore, under additional assump-

tions on the weight ηα
β (x), they are also PR-solutions in the sense of Finn [10] (see (1.2)).

We end this section with the Notations used throughout this paper. We denote by N

the set of all positive integer and q is a real number in the interval ]1,+∞[. The dual

exponent of q denoted by q′ is defined by the relation 1
q + 1

q′ = 1. Vector or matrix fields

will be denoted with boldface characters. A point in R
3 is denoted by x = (x1, x2, x3) and

its norm by |x| = (x2
1 + x2

2 + x2
3)

1/2. For any multi-index m ∈ N
3, we denote by ∂m the

differential operator of order m,

∂m =
∂|m|

∂xm1

1 ∂xm2

2 ∂xm3

3

, |m| = m1 + m2 + m3.

By the same way, we denote by ∂1 the differential operator ∂1 = ∂/∂x1. For any real

number k, we denote by [k] the integer part of k. We denote by D(Ω) the space of C∞

functions with compact support in Ω. We recall that D′(Ω) is the well-known space of

distributions defined on Ω and Lq(Ω) is the usual Lebesgue space on Ω. For m ∈ N,

we recall the well-known Sobolev space W m,q(Ω). We shall write u ∈ W m,q
loc (Ω) to mean

u ∈ W m,q(Ω̃), for any bounded domain Ω̃, with Ω̃ ⊂ Ω. We introduce the trace space

W 1+1/q′,q(∂Ω) of functions which belong to W 2,q(Ω). For R > 0, we denote by BR(x) the

open ball of radius R centered at x and B′
R(x) the complement of BR(x). To simplify

the notations, we denote by BR the open ball centered at the origin. Finally, C, C0, C1

denote generic constants the values of which may change from line to line. Sometimes we

indicate some parameters such as δ these constants will depend on.

2 Anisotropic weighted spaces

Let us recall that s(x) = |x| − x1 and

ηα
β (x) = (1 + |x|)α(1 + s(x))β , α, β ∈ R.

Observe that we have

∇s(x) =
x

|x|
− e1, ∂1s(x) = −

s(x)

|x|
, |∇s(x)|2 =

2s(x)

|x|
(2.5)

and as |x| tends to infinity,

|∇ηα
β (x)| ≤ Cη

α−1/2
β−1/2(x), |∂1η

α
β (x)| ≤ Cηα−1

β (x) and |∂2ηα
β (x)| ≤ Cηα−1

β−1(x). (2.6)

Let Ω be an exterior domain of R
3. Given α, β ∈ R, we consider the following anisotropic

weighted spaces
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Lq
α,β(Ω) = {v ∈ D′(Ω), ηα

β v ∈ Lq(Ω)},

X1,q
α,β(Ω) = {v ∈ Lq

α− 1

2
,β− 1

2

(Ω),∇v ∈ Lq
α,β(Ω)},

W 2,q
α,β(Ω) = {v ∈ Lq

α−1,β(Ω), ∇v ∈ Lq

α− 1

2
,β

(Ω), ∂2v ∈ Lq
α,β(Ω)},

W̃ 2,q
α,β(Ω) = {v ∈ W 2,q

α,β(Ω), ∂1v ∈ Lq
α,β(Ω)},

These are Banach spaces when endowed with their respective norms

‖v‖Lq
α,β(Ω) = ‖ηα

β v‖Lq(Ω),

‖v‖X1,q
α,β(Ω) = ‖v‖Lq

α−
1
2

,β−
1
2

(Ω) + ‖∇v‖Lq
α,β(Ω),

‖v‖W 2,q
α,β(Ω) = ‖v‖Lq

α−1,β(Ω) + ‖∇v‖Lq

α−
1
2

,β
(Ω) + ‖∂2v‖Lq

α,β(Ω).

‖v‖fW 2,q
α,β(Ω)

= ‖v‖
W 2,q

α,β(Ω)
+ ‖∂1v‖Lq

α,β(Ω).

The space D(Ω) is dense in Lq
α,β(Ω) and, proceeding as in [16], we can prove that the

space D(Ω) is dense in X1,q
α,β(Ω), W 2,q

α,β(Ω) and W̃ 2,q
α,β(Ω). We have Lq

α,β(Ω) ⊂ Lq
loc(Ω) and,

by the same way, all the local properties of the spaces X1,q
α,β(Ω), W 2,q

α,β(Ω) and W̃ 2,q
α,β(Ω)

coincide with those of the Sobolev spaces W 1,q(Ω) and W 2,q(Ω) respectively. Hence, they

also satisfy the usual trace theorems on ∂Ω. Observe that the operator defined by

u ∈ Lq
α,β(Ω) 7→ ηa

b u ∈ Lq
α−a,β−b(Ω) (2.7)

is an isomorphism. For further properties of the anisotropic weighted Sobolev spaces

considered, the reader can refer to [6], [2] and [1].

3 The linear problem: the stationary Oseen equations

Now that the functional framework is introduced and before going any further, we recall

the existence and uniqueness result for the linearized problem proved in [23] that we will

use in the sequel. We consider the stationary Oseen equations in an exterior domain Ω

−ν∆u + λ∂1u + ∇p = f in Ω,

div u = 0 in Ω,

u = u∗ on ∂Ω.

(3.8)

Theorem 3.1. Let Ω be an exterior domain of R
3 and suppose that ∂Ω is of class C2. Let

α, β ∈ R satisfy

max

(
0,

1

2
−

1

q

)
< β ≤ 1 −

1

q
and

1

2
−

1

q
≤ α <

1

2
−

1

q
− β. (3.9)
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Then for any f ∈ Lq

α+ 1

2
,β

(Ω) and u∗ ∈ W 1+1/q′,q(∂Ω), problem (3.8) has a unique solution

(u, p) ∈ W̃ 2,q

α+ 1

2
,β

(Ω) × X1,q

α+ 1

2
,β

(Ω). Moreover, we have the estimate

‖u‖fW 2,q

α+ 1
2

,β
(Ω)

+ ‖p‖
X1,q

α+ 1
2

,β
(Ω)

≤ C

(
‖f ‖Lq

α+ 1
2

,β
(Ω) + ‖u∗‖W 1+1/q′,q(∂Ω)

)
.

4 Imbedding and asymptotic behavior results

In this section, we first prove two imbedding theorems which will allow to estimate the

nonlinear term u · ∇u in anisotropic weighted spaces. We introduce

O(x) =
1

4π

e−s(x)/2

|x|
,

the fundamental solution of the following model equation

−∆u + ∂1u = f in R
3.

Observe that we have

|O(x)| ≤
C

|x|(1 + s(x))d
, ∀ d ∈ R (4.10)

and, using (2.5) ,

|∇O(x)| ≤
C

(1 + s(x))d

(
1

|x|3/2
+

1

|x|2

)
, ∀ d ∈ R. (4.11)

Next, let u ∈ D(R3). Then we have the following integral representation

u(x) =
1

4π

∫

R3

O(x − y)(−∆u(y) + ∂1u(y))dy. (4.12)

Besides, we need a technical lemma which is a version of a more general result proved by

Farwig (see [5], Section 3):

Lemma 4.1. Let a, b, c, d be real numbers satisfying:

a < b + 1, 0 ≤ b < 1, 0 < c < 2, d > 1, a + b + c − 2 > 0,

a + b 6= 1, c + d 6= 1, 2b + c + d 6= 3.
(4.13)

Then we have

∫

R3

η−a
−b (y) |x − y|−c(1 + s(x− y))−d dy ≤ Cη

−(a+c−2)
−b (x). (4.14)

Inequality (4.14) still holds if |x − y|−c is replaced by |x − y|−c−γ for any γ such that

c + γ < 3.
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Remark 4.2. (i) Let us mention that in [5], Farwig has given conditions on a, b, c, d, e, f

such that, ∫

R3

η−a
−b (y) η−c

−d(x− y)dy ≤ Cη−e
−f (x). (4.15)

The whole space R
3 is divided into 16 subdomains Ωi, i = 0, ..., 15 and in each Ωi, i =

0, ..., 15, the inequalities
∫

Ωi

η−a
−b (y) η−c

−d(x − y)dy ≤ Cη−ei
−fi

(x), (4.16)

are proved where ei = ei(a, b, c, d) and fi = fi(a, b, c, d). From these results and under the

assumptions (4.14), it is straightforward to verify that in each Ωi, i = 0, ..., 15, we have

η−ei
−fi

(x) ≤ Cη
−(a+c+2)
−b (x).

(ii) A generalization of (4.15) to R
n, with n ≥ 2 can be found in [17] (see also [22]).

(iii) Assume now that inequality (4.14) holds. First we write
∫

R3

η−a
−b (y) |x − y|−c−γ(1 + s(x− y))−d dy = I1(x) + I2(x),

where

I1(x) =

∫

B1(x)
η−a
−b (y) |x − y|−c−γ(1 + s(x− y))−d dy

and

I2(x) =

∫

B′

1
(x)

η−a
−b (y) |x − y|−c−γ(1 + s(x− y))−d dy.

Clearly we have

I2(x) ≤

∫

R3

η−a
−b (y) |x − y|−c(1 + s(x− y))−d dy.

Next, we have

I1(x) ≤ max
y∈B1(x)

η
−(a+c−2)
−b (y)

∫

B1(x)
ηc−2
0 (y) |x − y|−c−γ(1 + s(x− y))−d dy

≤ Cη
−(a+c−2)
−b (x)

∫

B1(x)
ηc−2
0 (y) |x − y|−c−γ(1 + s(x− y))−d dy.

Since c + γ < 3, we easily get
∫

B1(x)
ηc−2
0 (y) |x − y|−c−γ(1 + s(x− y))−d dy ≤ C.

This proves that inequality (4.14) still holds if |x− y|−c is replaced by |x− y|−c−γ for any

γ such that c + γ < 3.

The next results prove imbedding theorems in anisotropic weighted spaces.

Theorem 4.3. Let α, β, q, r be real numbers such that 1
q − 1

2 < 1
r < 1

q . Then for any

u ∈ W̃ 2,q

α+ 1

2
,β

(R3), we have

‖u‖Lr

α−
1
2
+2

q −
2
r ,β

(R3) ≤ C‖u‖fW 2,q

α+ 1
2

,β
(R3)

.
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Proof. It is enough to consider a function u ∈ D(R3). We split the proof into two parts.

1) In this first part, we assume

0 < β < 1 −
1

q
and

1

2
−

2

q
+

1

r
− β < α < β +

1

2
−

1

q
. (4.17)

Now, for any y ∈ R
3, let g(y) = −∆u(y) + ∂1u(y). Then from (4.12), we have

u(x) =
1

4π

∫

R3

e−s(x−y)/2

|x − y|
g(y) dy.

Introducing two positive real numbers t and δ, with 0 < t < 1, we can write

u(x) =
1

4π

∫

R3

(
|g(y)|qη

(α+ 1

2
)q

βq (y)

) r−q
qr

×

× |g(y)|q/r e−s(x−y)t/2

|x− y|t
η
−(α+ 1

2
) r−q

r
+δ

βq/r (y)
e−s(x−y)(1−t)/2

|x − y|1−t
η−δ
−β(y) dy.

It follows from the Hölder’s inequality with the exponents qr
r−q , r and q′, that

|u(x)| ≤ C‖g‖
(r−q)/r

Lq

α+ 1
2

,β
(R3)

(∫

R3

|g(y)|q
e−s(x−y)rt/2

|x − y|rt
η
−(α+ 1

2
)(r−q)+δr

βq (y) dy

)1/r

×

×

(∫

R3

e−s(x−y)(1−t)q′/2

|x− y|(1−t)q′
η−δq′

−βq′(y) dy

)1/q′

.

(4.18)

We set

J1(x) =

∫

R3

e−s(x−y)(1−t)q′/2

|x− y|(1−t)q′
η−δq′

−βq′(y) dy.

From (4.10), we have

J1(x) ≤ C

∫

R3

η−δq′

−βq′(y) |x − y|−(1−t)q′(1 + s(x− y))−d dy, ∀d > 1.

We set a = δq′, b = βq′ and c = (1 − t)q′. Choosing

2

q′
− 1 + t − β < δ < β +

1

q′
, δ 6=

1

q′
− β and t > 1 −

2

q′
, (4.19)

then all the assumptions (4.13) of Lemma 4.1 are satisfied and we get

J1(x) ≤ Cη
−δq′−(1−t)q′+2
−βq′ (x).

From (4.18) we deduce that

∫

R3

|u(x)|rη
(α− 1

2
+ 2

q
)r−2

βr (x) dx ≤ C‖g‖r−q
Lq

α+ 1
2

,β
(R3)

∫

R3

|g(y)|qη
−(α+ 1

2
)(r−q)+δr

βq (y)×

×

(∫

R3

e−s(x−y)rt/2

|x− y|rt
η
−δr+(α+ 1

2
)r+rt−2

0 (x) dx

)
dy.

(4.20)
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We set now

J2(y) =

∫

R3

e−s(x−y)rt/2

|x − y|rt
η
−δr+(α+ 1

2
)r+rt−2

0 (x) dx.

Using again (4.10), we have

J2(y) ≤ C

∫

R3

η
−δr+(α+ 1

2
)r+rt−2

0 (x)|x− y|−rt(1 + s(x− y))−d dx, ∀d > 1.

Setting a = δr − (α + 1
2)r − rt + 2, b = 0, c = rt and choosing

α +
1

2
< δ < −

1

r
+ t + α +

1

2
and t <

2

r
, (4.21)

then the assumptions (4.13) are satisfied and we get

J2(y) ≤ Cη
−δr+(α+ 1

2
)r

0 (y).

Inserting this last inequality in (4.20), we easily obtain

‖u‖Lr

α−
1
2
+ 2

q −
2
r ,β

(R3) ≤ C‖g‖Lq

α+ 1
2

,β
(R3) (4.22)

which proves the statement of the theorem. Observe now that to get (4.22), we need to

choose δ and t satisfying both (4.19) and (4.21). In other words, we need to choose δ and

t such that

max

(
−1 +

2

q
,
1

r

)
< t < min

(
1, 2β +

1

q
,
2

r

)
, δ 6= 1 −

1

q
− β

and

max

(
1 −

2

q
+ t − β, α +

1

2

)
< δ < min

(
−

1

r
+ t + α +

1

2
, β + 1 −

1

q

)
.

The assumptions 1
q − 1

2 < 1
r < 1

q and (4.17) ensure that such t and δ exist.

2) In this second part, let α and β be two arbitrary real numbers and consider v = η−τ
−ε u,

where ε, τ ∈ R. We can write
∫

R3

|u(x)|r η
(α− 1

2
+ 2

q
)r−2

βr (x) dx =

∫

R3

|v(x)|rη
(α+τ− 1

2
+ 2

q
)r−2

(β+ε)r (x) dx.

Setting now α′ = α + τ , β′ = β + ε, choosing ε and τ such that 0 < β′ < 1 − 1
q and

1
2 − 2

q + 1
r − β′ < α′ < β′ + 1

2 − 1
q and using the first part, we easily get

‖v‖Lr

α′−
1
2
+2

q −
2
r ,β′

(R3) ≤ C‖ − ∆v + ∂1v‖Lq

α′+ 1
2

,β′
(R3).

Thanks to (2.6) we arrive at

‖v‖Lr

α′−
1
2
+2

q −
2
r ,β′

(R3) ≤ C‖u‖fW 2,q

α+1
2

,β
(R3)

which ends the proof. �
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Theorem 4.4. Let α, β, q and r be real numbers such that 1
q − 1

4 < 1
r < 1

q . Then for any

u ∈ W̃ 2,q

α+ 1

2
,β

(R3), we have

‖∇u‖Lr

α+ 2
q −

2
r ,β

(R3) ≤ C‖u‖fW 2,q

α+1
2

,β
(R3)

.

Proof. As for the proof of Theorem 4.3, it is enough to consider a function u ∈ D(R3)

and we split the proof in two parts.

1) In this first part, we assume

0 < β < 1 −
1

q
and −

2

q
+

1

r
− β < α < β +

1

2
−

1

q
. (4.23)

For any y ∈ R, we set g(y) = −∆u(y) + ∂1u(y) and we can write

∇u(x) =
1

4π

∫

R3

∇

(
e−s(x−y)/2

|x− y|

)
g(y) dy.

Using (4.11), for any d > 1, we have

|∇u(x)| ≤ C

(∫

R3

(1 + s(x− y))−d|x − y|−3/2g(y)dy +

∫

R3

(1 + s(x− y))−d|x− y|−2g(y)dy

)

≡ C(I1(x) + I2(x)).

Introducing two positive real numbers t and δ with 0 < t < 1 and since d is any real

number greater than 1, we can write

I1(x) =

∫

R3

(
|g(y)|qη

(α+ 1

2
)q

βq (y)

) r−q
qr

|g(y)|q/r(1 + s(x− y))−d/r |x − y|−
3t
2 η

−(α+ 1

2
)( r−q

r
)+δ

βq/r (y)×

× (1 + s(x− y))−d/q′ |x− y|−
3

2
(1−t) η−δ

−β(y) dy.

From the Hölder’s inequality with the exponents qr
r−q , r and q′, we have

I1(x) ≤ C

(∫

R3

|g(y)|qη
(α+ 1

2
)q

βq (y)dy

) r−q
qr

×

×

(∫

R3

|g(y)|q(1 + s(x− y))−d |x− y|−
3rt
2 η

−(α+ 1

2
)(r−q)+δr

βq (y) dy

)1/r

×

×

(∫

R3

(1 + s(x− y))−d |x− y|−
3

2
(1−t)q′ η−δq′

−βq′(y) dy

)1/q′

.

Let

I11(x) =

∫

R3

η−δq′

−βq′(y)|x − y|−
3

2
(1−t)q′(1 + s(x− y))−d dy.

We set a = δq′, b = βq′, c = 3
2(1 − t)q′ and we choose

2

q′
−

3

2
(1 − t) − β < δ < β +

1

q′
, δ 6=

1

q′
− β, t > 1 −

4

3q′
. (4.24)
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Then all the assumptions (4.13) are satisfied and Lemma 4.1 yields

I11(x) ≤ Cη
−δq′− 3

2
(1−t)q′+2

−βq′ (x). (4.25)

Proceeding by the same way for I2(x), we will have the term

I21(x) =

∫

R3

η−δq′

−βq′(y)|x − y|−2(1−t)q′(1 + s(x− y))−d dy

=

∫

R3

η−δq′

−βq′(y)|x − y|−
3

2
(1−t)q′− 1

2
(1−t)q′(1 + s(x− y))−d dy.

Setting γ = 1
2(1− t)q′, then from Lemma 4.1, the condition c+γ < 3 yields the additional

assumption t > 1 − 3
2q′ which is already satisfied by (4.24). Hence inequality (4.25) holds

if we replace I11(x) by I21(x). Thus we deduce that

∫

R3

|∇u(x)|rη
(α+ 2

q
)r−2

βr (x) dx ≤ C‖g‖r−q
Lq

α+ 1
2

,β
(R3)

∫

R3

|g(y)|qη
−(α+ 1

2
)(r−q)+δr

βq (y)×

×

(∫

R3

(1 + s(x− y))−d |x − y|−
3rt
2 (1 + |x − y|−

rt
2 )η

−δr+ 3rt
2

+(α+ 1

2
)r−2

0 (x) dx

)
dy.

(4.26)

Let

I12(y) =

∫

R3

(1 + s(x− y))−d |x − y|−
3rt
2 η

−δq+ 3rt
2

+(α+ 1

2
)r−2

0 (x) dx.

Setting a = δr − 3rt
2 − (α + 1

2)r + 2, b = 0, c = 3rt
2 and choosing

α +
1

2
< δ < −

1

r
+

3t

2
+ α +

1

2
, t <

4

3r
, (4.27)

then all the assumptions (4.13) are satisfied and we get

I12(y) ≤ Cη
−δr+(α+ 1

2
)r

0 (y). (4.28)

Let

I22(y) =

∫

R3

(1 + s(x− y))−d |x− y|−2rt η
−δr+ 3rt

2
+(α+ 1

2
)r−2

0 (x) dx.

Then, again from Lemma 4.1, we have

I22(y) ≤ Cη
−δr+(α+ 1

2
)r

0 (y) (4.29)

if 2rt < 3 which implies that t < 3
2r . But this condition is already satisfied by (4.27).

From (4.26), (4.28) and (4.29), it follows that

∫

R3

|∇u(x)|rη
(α+ 2

q
)r−2

βr (x) dx ≤ C‖g‖r
Lq

α+ 1
2

,β
(R3).

To get this last inequality, δ and t must be chosen such that

max

(
−

1

3
+

4

3q
,

2

3r

)
< t < min

(
1,

4

3r

)
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and

max

(
1

2
−

2

q
+

3t

2
− β, α +

1

2

)
< δ < min

(
β + 1 −

1

q
,−

1

r
+

3t

2
+ α +

1

2

)
,

which summarize the assumptions (4.24) and (4.27). Since 1
q − 1

4 < 1
r < 1

q and under the

assumptions (4.23), such δ and t exist.

2) For arbitrary α, β ∈ R, we proceed as in the proof of Theorem 4.3. �

Remark 4.5. The imbedding results proved previously are still valid if R
3 is replaced by

Ω. Indeed let u ∈ W 1,q

α+ 1

2
,β

(Ω). Then the trace γ0u ∈ W 1+1/q′,q(∂Ω). Hence, recalling that

Ω′ is the bounded domain complement of Ω, there exists a unique ũ ∈ W 2,q(Ω′) such that

(see for instance [15])

∆ũ = 0 in Ω′, ũ = γ0u on ∂Ω.

Moreover, we have the estimates

‖ũ‖W 2,q(Ω′) ≤ C‖γ0u‖W 1+1/q′,q(∂Ω) ≤ C‖u‖fW 2,q

α+1
2

,β
(Ω)

. (4.30)

Consider the extension of u:

u = u in Ω and u = ũ in Ω′.

Then, u ∈ W̃ 2,q

α+ 1

2
,β

(R3) and, thanks to (4.30),

‖u‖fW 2,q

α+1
2

,β
(R3)

≤ C‖u‖fW 2,q

α+1
2

,β
(Ω)

.

From this last inequality, it is straightforward to prove that Theorems 4.3 and 4.4 are still

valid if R
3 is replaced by Ω.

For the last result of this section, we study the asymptotic behavior of functions that

belong to anisotropic weighted Sobolev spaces.

Theorem 4.6. Assume 3
2 < q < ∞ and let θ = 2 − 3

q − [2 − 3
q ]. If u ∈ W 2,q

α,β(R3), then

there exists C > 0 such that

∀x ∈ R
3, |u(x)| ≤ Cηθ−α

−β (x) ‖u‖
W 2,q

α,β(R3)
.

Proof. 1) We assume first α = β = 0. Let R > 0 be a real number. Using the following

partition of unity

ϕ1, ϕ2 ∈ C∞(R3), 0 ≤ ϕ1, ϕ2 ≤ 1, ϕ1 + ϕ2 = 1 in R
3

ϕ1 = 1 in BR, supp ϕ1 ⊂ BR+1.

12



we split u into u = uϕ1 + uϕ2 = u1 + u2. Since 3
2 < q < ∞, the Sobolev’s imbedding

theorems yield

‖u1‖L∞(BR+1) ≤ C‖∂2u1‖Lq(BR+1)

and

∀x ∈ R
3, |u2(x) − u2(0)| ≤ C‖∂2u2‖Lq(R3)|x|

θ.

By the definitions of ϕ1, ϕ2 and since 0 < θ < 1, we have

∀x ∈ R
3, |u(x)| ≤ Cηθ

0(x) ‖u‖W 2,q
0,0 (R3).

2) Let now α, β be two arbitrary real numbers and u ∈ W 2,q
α,β(R3). Then thanks to (2.6)

and (2.7), ηα
β u ∈ W 2,q

0,0 (R3) and we have

∀x ∈ R
3, ηα

β |u(x)| ≤ Cηθ
0(x) ‖ηα

β u‖W 2,q
0,0 (R3),

which implies that

∀x ∈ R
3, |u(x)| ≤ Cηθ−α

−β (x) ‖u‖W 2,q
α,β(R3). �

5 The stationary Navier-Stokes equations

Let Ω be an exterior domain with boundary ∂Ω of class C2. For any w ∈ W̃ 2,q

α+ 1

2
,β

(Ω), we

introduce the nonlinear operator T such that v = Tw satisfies the problem

−ν∆v + k∂1v + ∇p = ρf− ρw · ∇w in Ω,

div v = 0 in Ω,

v = u∗ − u∞ on ∂Ω,

lim
|x|→∞

v(x) = 0.

(5.31)

Our aim is to prove that the operator T has a fixed point. Using Section 4, we estimate

the nonlinear term in anisotropic weighted spaces.

Lemma 5.1. We assume 4
3 < q ≤ 2.

(i) Let v ∈ W̃ 2,q

α+ 1

2
,β

(Ω), then v · ∇v ∈ Lq

2α+ 1

2
,2β

(Ω) and satisfies

‖v · ∇v‖Lq

2α+ 1
2

,2β
(Ω) ≤ C‖v‖2

fW 2,q

α+ 1
2

,β
(Ω)

. (5.32)

(ii) Let v1, v2 ∈ W̃ 2,q

α+ 1

2
,β

(Ω), then we have the estimate

‖v1 · ∇v1 − v2 · ∇v2‖Lq

2α+ 1
2

,2β
(Ω)

≤ C‖v1 − v2‖fW 2,q

α+ 1
2

,β
(Ω)

(
‖v1‖fW 2,q

α+ 1
2

,β
(Ω)

+ ‖v2‖fW 2,q

α+ 1
2

,β
(Ω)

)
.

(5.33)
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Proof. (i) We have
∫

Ω
|v · ∇v|qη

(2α+ 1

2
)q

2βq dx ≤ C

∫

Ω
|v|q|∇v|qη

(2α+ 1

2
)q

2βq dx.

Introducing a real number t > 1, we can write
∫

Ω
|v|q|∇v|qη

(2α+ 1

2
)q

2βq dx ≤ C

∫

Ω
|v|qη

(α− 1

2
+ 2

q
)q− 2

t

βq |∇v|q η
(α+1)q−2+ 2

t
βq dx.

From the Höder’s inequality and since q ≤ 2, we have
∫

Ω
|v|q|∇v|qη

(2α+ 1

2
)q

2βq dx

≤ C

(∫

Ω
|v|qt η

(α− 1

2
+ 2

q
)qt−2

βqt dx

)1/t (∫

Ω
|∇v|qt′ η

(α+1)qt′−2t′+ 2t′

t
)

βqt′ dx

)1/t′

≤ C

(∫

Ω
|v|qt η

(α− 1

2
+ 2

q
)qt−2

βqt dx

)1/t (∫

Ω
|∇v|qt′ η

(α+ 2

q
)qt′−2

βqt′ dx

)1/t′

.

Since q > 4
3 , we can choose t such that 1− q

2 < 1
t < q

4 . Thus, the assumptions of Theorem

4.3 and Theorem 4.4 are both satisfied and we obtain
∫

Ω
|v|q|∇v|qη

(2α+ 1

2
)q

2βq dx ≤ C‖v‖2
fW 2,q

α+1
2

,β
(Ω)

which ends the proof of (i).

(ii) Using the following identity,

v1 · ∇v1 − v2 · ∇v2 = (v1 − v2) · ∇(v1 − v2) + v2 · ∇(v1 − v2) + (v1 − v2) · ∇v2

and the inequality (5.32), the proof of (5.33) is straightforward. �

We are now in a position to prove our main result.

Theorem 5.2. Let Ω be an exterior domain of R
3 with boundary ∂Ω of class C2 and

4
3 < q ≤ 2. Let α and β be two real numbers satisfying

max

(
0,

1

2
−

1

q

)
< β ≤ 1 −

1

q
, and 0 ≤ α <

1

2
−

1

q
+ β. (5.34)

Then there are δ, ε > 0 such that for any external forces f ∈ Lq

α+ 1

2
,β

(Ω) and boundary

velocity u∗ ∈ W 1+1/q′,q(∂Ω) satisfying

‖f ‖Lq

α+ 1
2

,β
(Ω) ≤ ε and ‖u∞ − u∗‖W 1+1/q′,q(∂Ω) ≤ ε,

the stationary Navier-Stokes equations (1.1) have a unique solution (u, p) ∈ W 2,q
loc (Ω) ×

W 1,q
loc (Ω) such that (u− u∞, p) ∈ W̃ 2,q

α+ 1

2
,β

(Ω) × X1,q

α+ 1

2
,β

(Ω) and

‖u− u∞‖fW 2,q

α+ 1
2

,β
(Ω)

≤ δ.
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Moreover, there exists C(δ) > 0 such that

‖u− u∞‖fW 2,q

α+ 1
2

,β
(Ω)

+ ‖p‖
X1,q

α+ 1
2

,β
(Ω)

≤ C(δ)

(
‖f ‖Lq

α+ 1
2

,β
(Ω) + ‖u∗ − u∞‖W 1+1/q′,q(∂Ω)

)
.

Assume in addition that 3
2 < q < 2. Then we have the following pointwise decay estimate

|u(x) − u∞| = O

(
η

3

2
− 3

q
−α

−β (x)

)
. (5.35)

Proof. We apply the Banach’s fixed point theorem. Let δ > 0 be a real number and

K(δ) =

{
w ∈ W̃ 2,q

α+ 1

2
,β

(Ω), ‖w‖fW 2,q

α+ 1
2

,β
(Ω)

≤ δ

}
.

1) The set K(δ) is clearly a closed subset of W̃ 2,q

α+ 1

2
,β

(Ω).

2) Let us prove that T (K(δ)) ⊂ K(δ). Let w ∈ K(δ), f ∈ Lq

α+ 1

2
,β

(Ω), u∗ ∈ W 1+1/q′,q(∂Ω)

satisfy

‖f ‖Lq

α+ 1
2

,β
(Ω) ≤ ε and ‖u∞ − u∗‖W 1+1/q′,q(∂Ω) ≤ ε.

Since α ≥ 0 and β > 0, from Lemma 5.1, w · ∇w ∈ Lq

α+ 1

2
,β

(Ω) and we have

‖w · ∇w‖Lq

α+ 1
2

,β
(Ω) ≤ C‖w‖2

fW 2,q

α+ 1
2

,β
(Ω)

.

Hence thanks to Theorem 3.1, problem (5.31) has a unique solution (v = Tw, p) ∈

W̃ 2,q

α+ 1

2
,β

(Ω) × X1,q

α+ 1

2
,β

(Ω). Moreover the following estimate holds

‖Tw‖fW 2,q

α+ 1
2

,β
(Ω)

+ ‖p‖
X1,q

α+ 1
2

,β
(Ω)

≤ C0

(
‖f ‖Lq

α+ 1
2

,β
(Ω) + ‖u∗ − u∞‖W 1+1/q′,q(∂Ω) + ‖w‖2

fW 2,q

α+1
2

,β
(Ω)

)

≤ C0

(
2ε + δ2

)
.

Choosing now ε ≤ δ
4C0

and δ ≤ 1
2C0

, we have C0(2ε+δ2) ≤ δ which proves that T (K(δ)) ⊂

K(δ).

3) Let us prove that T is a contraction. Let w1, w2 ∈ K(δ) and v1 = Tw1, v2 = Tw2. We

can write

‖v1 − v2‖fW 2,q

α+ 1
2

,β
(Ω)

= ‖Tw1 − Tw2‖fW 2,q

α+ 1
2

,β
(Ω)

≤ C0‖ρ(w1 · ∇w1 −w2 · ∇w2)‖Lq

α+ 1
2

,β
(Ω)

≤ C1‖w1 −w2‖fW 2,q

α+ 1
2

,β
(Ω)

(‖w1‖fW 2,q

α+1
2

,β
(Ω)

+ ‖w2‖fW 2,q

α+ 1
2

,β
(Ω)

)

≤ 2δC1‖w1 −w2‖fW 2,q

α+ 1
2

,β
(Ω)

,
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where the second inequality is obtained thanks to Lemma 5.1 (ii). Choosing additionally

δ < 1
2C1

, then the operator T : K(δ) 7→ K(δ) is a contraction. Hence from the Banach’s

fixed point theorem, the statement of the theorem is proved. If 3
2 < q < 2, then Theorem

4.6 yields the pointwise decay (5.35). �

Remark 5.3. (i) We recall the wake W = {x ∈ R
3, s(x) ≤ 1} and the set S = {x ∈

R
3, s(x) ≥ |x|/2}. For |x| → ∞, the velocity u given by Theorem 5.2 satisfies |u(x) −

u∞| = O(|x|
3

2
− 3

q
−α

) in W and |u(x) − u∞| = O(|x|
3

2
− 3

q
−(α+β)

) in S. Since β > 0, this

shows the better decay of the velocity outside the wake.

(ii) The decay properties of the velocity u for the case q = 2 is proved in [5].

(iii) Observe that the velocity u given by Theorem 5.2 satisfies ∇u ∈ Lq
α,β(Ω), with α ≥ 0

and β > 0. Then u is a D-solution, i.e.
∫

R3 |∇u|qdx < ∞. Additionally, if we assume

β > 3
2 − 2

q and α > 2 − 3
q , then u is also a physically reasonable solution in the sense of

Finn [10] (see (1.2)).

Combining Lemma 5.1 and Theorem 5.2, we easily get the following stability result.

Corollary 5.4. We assume the assumptions of Theorem 5.2 to be satisfied. Let f1,

f2 ∈ Lq

α+ 1

2
,β

(Ω) and u1
∗, u2

∗ ∈ W 1+1/q′,q(∂Ω), (u1, p1), (u2, p2) ∈ W 2,q
loc (Ω) × W 1,q

loc (Ω) be

solutions of (1.1), such that (u1 −u∞, p1) ∈ W̃ 2,q

α+ 1

2
,β

(Ω)×X1,q

α+ 1

2
,β

(Ω) and (u2 −u∞, p2) ∈

W̃ 2,q

α+ 1

2
,β

(Ω) × X1,q

α+ 1

2
,β

(Ω), with

‖u1 − u∞‖fW 2,q

α+ 1
2

,β
(Ω)

≤ δ and ‖u2 − u∞‖fW 2,q

α+ 1
2

,β
(Ω)

≤ δ.

Then we have the estimate

‖u1−u2‖fW 2,q

α+ 1
2

,β
(Ω)

+‖p1−p2‖X1,q

α+ 1
2

,β
(Ω) ≤ C(δ)

(
‖f1 − f2‖Lq

α+ 1
2

,β
(Ω) + ‖u1

∗ − u2
∗‖W 1+1/q′,q(∂Ω)

)
.
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