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MOULD CALCULUS FOR HAMILTONIAN VECTOR FIELDS

by

Jacky Cresson & Guillaume Morin

Abstract. — We present the general framework of Écalle’s moulds in the case of lineariza-

tion of a formal vector field without and within resonances. We enlighten the power of

moulds by their universality, and calculability. We modify then Écalle’s technique to fit in

the seek of a formal normal form of a Hamiltonian vector field in cartesian coordinates. We

prove that mould calculus can also produce successive canonical transformations to bring a

Hamiltonian vector field into a normal form.

We then prove a Kolmogorov theorem on Hamiltonian vector fields near a diophantine

torus in action-angle coordinates using moulds techniques.
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1. Introduction

We deal in this text with formal normal forms for formal vector fields on Cν. We use the

mould formalism by Jean Écalle to obtain those. The idea in this formalism is to consider

vector fields as derivations on the algebra of formal power series C[[x]] and work in the

general free Lie algebras framework associated to the algebra build on these derivations.

It was developed by Écalle (see [5, 6, 7]) but didn’t get the success it deserved yet. This

text comes back on Écalle’s idea with some precise calculus we didn’t find in his works,

although it was said to be right. The Hamiltonian parts (sections 7 and 8) were also
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Key words and phrases. — normal form, continuous prenormal form, mould, mould calculus, Hamilto-

nian systems, Kolmogorov theorem.
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evoked by Écalle in [9] but still not written: we hope to give here a little contribution to

his work and an educational aspect.

In order to make the reader familiar with moulds and mould calculus in the search

for formal normal forms, we recall in sections 2 to 6 some of Écalle’s work, and set a

global framework for moulds, which is the general free Lie algebras framework. Then, in

sections 7 and 8 we present already known results, with the new techniques of moulds.

The search for formal normal forms of vector fields has a great first theorem from a great

mathematician: the linearization theorem by Poincaré. We give here a ”moulds proof”

of this theorem, which obviously make the small divisors appear, and moreover, arouses

a universal character of moulds: the linearization mould only depend on the graduation

(i.e. the decomposition) of the vector field X. This is of great interest, because when the

vector field is modified, the linearization mould is stil the same, as long as the graduation

of the vector field is the same.

The plan of this text is the following: sections 2 to 6 are of pedagogical interest, and

summarize the main definitions, results and techniques of Écalle’s moulds we need. Most

of it can be found in [3, 4, 5, 6, 7, 8]. The original work we did can be found in the last

two sections. More precisely:

Section 2 recalls some basic definitions and results about mould formalism. In section 3

we define the main object of our concern: a prenormal form. That is, a vector field X

being given with a fixed diagonal linear part Xlin, we look for a change of variables which

brings X into Xnor, such that [Xlin,Xnor] = 0.

Section 3 deals with continuous prenormal forms, following Écalle’s terminology; that is,

how does a prenormal form Xnor behave when the vector field X is modified, its linear part

being untouched? We give here a first application of the power of the mould formalism,

calculating a direct transform of linearization of X, according to Poincaré’s linearization

theorem.

The case of resonant vector fields rises in the next section 4: we obtain an analogous

result of the classical Poincaré-Dulac theorem; nevertheless the prenormal form calculated

here is not the Poincaré-Dulac normal form; Écalle calls it the trimmed form.

The last two sections focus on Hamiltonian vector fields, which was the original goal of

this text: we make here a slightly modification in Écalle’s formalism: where homogeneous

differential operators were used, we need another graduation (i.e. decomposition) of the

vector field X to prove that it is possible to make successive canonical transformations

to bring a formal Hamiltonian with a resonant linear part in cartesian coordinates into a

trimmed form, preserving the Hamiltonian character at each step.

Then, in section 7, following [11] we prove a formal Kolmogorov theorem on a formal

Hamiltonian near a diophantine torus using techniques shown in section 6. We study

here perturbations in action-angle coordinates as trigonometric polynomials for technical

reasons.

2. Reminder about moulds

All proofs and details about this section can be found in [4]. We denote by A an

alphabet, finite or not, which is a semigroup for a law ⋆. In this section, a letter of A

is denoted by a. A∗ denotes the set of all words a build on A i.e. the totally ordered

sequences a1 · · · ar, r > 0, with ai in A and r = ℓ (a) the length of the word a. We set the
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convention that a word of length 0 is the empty word ∅. Moreover, A∗
r denotes the set of

words of exact length r.

The natural operation on A∗ is the usual concatenation of two words a and b of A∗,

which glues the word a to the word b, i.e. a • b, or often simply ab when there is no

ambiguity. Moreover, as A is a semigroup, we define ‖a‖⋆ as the letter a1 ⋆ · · · ⋆ ar of A,

if r = ℓ (a). Now here is the main ”new” object we focus on:

Definition 2.1. — Let K be a ring, or a field, and A an alphabet. A K-valued mould

M• on A is a map from A∗ to K; the evaluation of the mould M• on a word a is denoted

by Ma.

The first important thing, is the natural one-to-one correspondence between moulds

and non-commutative formal power series.

2.1. Moulds and formal power series. — For r > 0, remember that A∗
r is the set

of words of length r, with the convention that A∗
0 = {∅}. We denote by K〈A〉 the set of

finite K-linear combinations of elements of A∗, i.e. non-commutative polynomials on A

with coefficients in K, and by Kr〈A〉 the set of K-linear combinations of elements of A∗
r,

i.e. the set of non-commutative homogeneous polynomials of degree r. We have a natural

graduation on K〈A〉 by the length of words:

K〈A〉 =

∞⊕

r=0

Kr〈A〉.

The completion of K〈A〉 with respect to the graduation by length denoted by K〈〈A〉〉 is the

set of non-commutative formal power series with coefficients in K. An element of K〈〈A〉〉

is denoted by ∑

a∈A∗

Ma
a, Ma ∈ K,

where this sum must be understood as

∑

r>0



∑

a∈A∗

r

Ma
a


 .

Let M• be a K-valued mould on A; its generating series denoted by ΦM belongs to K〈〈A〉〉

and is defined by

ΦM =
∑

a∈A∗

Ma
a,

or in a condensed way as
∑

•

M••. This correspondence provides a one-to-one mapping

from the set of K-valued moulds on A, denoted by MK(A), and K〈〈A〉〉.

2.1.1. Moulds algebra. — The set of moulds MK(A) inherits a structure of algebra from

K〈〈A〉〉. The sum and product of two moulds M• and N• are denoted by M• + N• and

M• ·N• or M• ×N• respectively and defined by

(M• +N•)a = Ma +Na,

(M• ×N•)a = (M• ·N•)a =
∑

a1a2=a

Ma1

Na2

,

for all a ∈ A∗ where this latter sum corresponds to all the partitions of a in two words a
1

and a
2 of A∗. The product operation is associative.
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The neutral element for the mould product is denoted by 1• and defined by

1• =

{
1 if • = ∅,

0 otherwise.

Let M• be a mould. We denote by (M•)−1 the inverse of M• for the mould product when

it exists, i.e. the solution of the mould equation:

M• · (M•)−1 = (M•)−1 ·M• = 1•.

The inverse of a mould M• exists if and only if M∅ 6= 0.

2.1.2. Composition of moulds. — Assuming that A possesses a semi-group structure, we

can define a non-commutative version of the classical operation of substitution of formal

power series.

We denote by ⋆ an internal law on A, such that (A, ⋆) is a semi-group. We denote by

‖ ‖⋆ the mapping from A∗ to A defined by

‖ ‖⋆ : A∗ −→ A,

a = a1 . . . ar 7−→ a1 ⋆ · · · ⋆ ar.

The ⋆ will be omitted when clear from the context.

The set K〈〈A〉〉 is graded by ‖ ‖⋆. A homogeneous component of degree a′ of A, of a

non-commutative serie ΦM =
∑

a∈A∗

Ma
a is the quantity

Φa′

M =
∑

a∈A∗

‖a‖⋆=a′

Ma
a.

We have by definition

ΦM =
∑

a∈A

Φa
M .

Definition 2.2 (Composition). — Let (A, ⋆) be a semi-group structure. Let M• and

N• be two moulds on MK(A) and ΦM , ΦN their associated generating series. The sub-

stitution of ΦN in ΦM , denoted by ΦM ◦ ΦN is defined by

ΦM ◦ ΦN =
∑

a∈A∗

MaΦa
N , (2.1)

where Φa
N is given by Φa1

N . . .Φar

N for a = a1 . . . ar.

We denote by M• ◦N• the mould of MK(A) such that

ΦM ◦ ΦN =
∑

a∈A∗

(M• ◦N•)aa. (2.2)

Equation (2.2) defines a natural operation on moulds denoted by ◦ and called composi-

tion. Using ‖ ‖⋆ we can give a closed formula for the composition of two moulds.

Lemma 2.3. — Let (A, ⋆) be a semi-group and M•, N• be two moulds of MK(A).

For the empty word, (M• ◦N•)∅ = M∅, and for all a ∈ A∗ of length at least 1:

(M• ◦N•)a =

ℓ(a)∑

k=1

∑

a1...ak ∗

=a

M‖a1‖⋆···‖ak‖⋆Na1

· · ·Nak

, (2.3)

where a
1 · · ·ak ∗

= a denotes all the partitions of a such that a
i 6= ∅, i = 1, . . . , k.
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Definition 2.4. — The neutral element for the mould composition is denoted by I• and

defined by:

I• =

{
1 if ℓ (•) = 1,

0 otherwise,

where ℓ (•) denotes the length of a word of A∗.

2.1.3. Exponential and logarithm of moulds. — We denote by (K〈〈A〉〉)∗ the set of non-

-commutative formal power series without a constant term. We define the exponential of

an element x ∈ K〈〈A〉〉 , denoted by exp(x) using the classical formula:

exp(x) =
∑

n>0

xn

n!
.

The logarithm of an element 1+x ∈ 1+(K〈〈A〉〉)∗ is denoted by log(1+x) and defined by

log(1 + x) =
∑

n>0

(−1)n+1x
n

n
.

These two applications have their natural counterpart in MK(A).

Definition 2.5. — Let M• be a mould of MK(A) and ΦM the associated generating

series. Assume that exp(ΦM ) is defined. We denote by ExpM• the mould satisfying the

equality

exp

(
∑

•

M••

)
=
∑

•

ExpM• • .

Simple computations lead to the following direct definition of Exp on moulds:

ExpM• =
∑

n>0

[M•](×n)

n!
,

where [M•](×n), for n in N∗, stands for

[M•](×n) = M• × · · · ×M•
︸ ︷︷ ︸

n times

and [M•](×0) = 1•. The same procedure can be applied to define the logarithm of a mould.

Definition 2.6. — Let M• be a mould of MK(A) and ΦM the associated generating

series. Assume that log(1 + ΦM) is defined. We denote by LogM• the mould satisfying

the equality

log

(
1 +

∑

•

M••

)
=
∑

•

LogM• • .

A direct definition of Log is then given by

LogM• =
∑

n>0

(−1)n+1
[M•](×n)

n!
.

As exp and log satisfy exp ◦ log = log ◦ exp = Id, we have

Exp (LogM•) = Log (ExpM•) = 1•.
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2.2. Algebraic aspects of moulds. — Let A be a set, we recall the concept of free

Lie algebra denoted by LK(A) generated by A, see [15],[16]. Its elements are formal

expressions in Lie brackets [., .] of A subject only to the Jacobi identity. We have

LK(A) ⊂ K
〈〈
A
〉〉

, the enveloping algebra of LK(A). We denote by GK(A) the set of

automorphisms of A, i.e. the Lie group associated to LK(A).

Let ∆ : K
〈〈
A
〉〉

→ K
〈〈
A
〉〉

⊗K
〈〈
A
〉〉

be the algebra morphism defined for all a ∈ A by

∆(a) = a⊗ 1 + 1 ⊗ a and extended to K
〈〈
A
〉〉

by linearity. Using ∆ we can characterize

the element of K
〈〈
A
〉〉

belonging to LK(A).

Definition 2.7. — An element P ∈ K
〈〈
A
〉〉

is called primitive if ∆(P ) = P ⊗ 1 + 1⊗P ,

and group-like if ∆(P ) = P ⊗ P .

An important result on free Lie algebras is:

Lemma 2.8. — An element P ∈ LK(A) if and only if P is primitive and P ∈ GK(A) if

and only if P is group-like.

This result can be formulated directly on coefficients leading to two symmetries for

moulds on A. In order to state the result, we define the combinatorial notion of shuffle

product on A∗:

Definition 2.9. — The shuffle product denoted by x : A∗ × A∗ → P (A∗) is defined

inductively on A∗ by axe = exa = a and xaxyb = x(axyb)
⋃
y(xaxb) for all x, y ∈ A,

a, b ∈ A∗.

As an example, if a = (x1, x2) and b = (x3), we have

axb = {(x1, x2, x3), (x1, x3, x2), (x3, x1, x2)}.

According to [15], we have

∆

(
∑

a∈A∗

Ma
a

)
=

∑

a,b∈A∗

(
∑

c∈axb

Mc

)
a ⊗ b.

Lemma 2.8 can be formulated as follow:

Lemma 2.10. — An element P ∈ K
〈〈
A
〉〉

, P =
∑

a∈A∗

Pa
a is primitive (resp. group-like)

if and only if ∑

c∈axb

Mc = 0 ∀a, b ∈ A∗ \ {e}, (⋆).

(
∑

c∈axb

Mc = MaMb ∀a, b ∈ A∗, resp.

)
(⋆⋆).

We now introduce Ecalle’s terminology for moulds corresponding to primitive or group-

like elements in K
〈〈
A
〉〉

Definition 2.11. — A mould M• ∈ MK(A) is called alternal (resp. symetral) if M•

satisfies (⋆) (resp. (⋆⋆)).
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A primitive element of K
〈〈
A
〉〉

being given, we can easily obtain the corresponding

element of LK(A). We denote by I the ideal of K〈A〉 generated by all polynomials without

a constant term. We denote by ψ : I → LK(A) the mapping defined for all a ∈ A∗,

a = (a1, . . . , ar) by

ψ(a) =
1

r
[[. . . [[a1, a2], a3], . . . ], ar],

and extended by linearity to I.

According to [16], we have the following result called the projection lemma by Ecalle:

Lemma 2.12. — We have ψ |LK(A)= IdLK(A).

As a consequence, for an alternal mould M• ∈ MK(A), we have

∑

a∈A∗

Ma
a =

∑

a∈A∗

Maψ(a) =
∑

r>1

1

r

∑

a∈A∗

r

Ma[[. . . [[a1, a2], a3], . . . ], ar].

3. Continuous prenormal forms of a vector field

From now on, ν will be an integer, and X a vector field on Cν such that X(0) =

0. We want to obtain some particular form of X within a change of variable. If m =

(m1, . . . ,mν) ∈ Zν , we use the notation xm for xm1

1 · · · xmν
ν and ∂xi

for
∂

∂xi

.

Definition 3.1. — A differential operator is an element of C[[x]][[∂x1
, . . . , ∂xν ]] i.e. a

formal power series in the ∂xi
whose coefficients are (commutative) formal power series in

x.

The order of a differential operator is the degree of the corresponding polynomial in the

variables ∂x1
, . . . , ∂xν .

If n is in Zν , a homogeneous differential operator of degree n is a differential operator

Bn such that for all m in Nν, there exists a βn,m in C, such that:

Bn(xm) = βn,mx
n+m.

We usually omit the composition operator ◦ when composing homogeneous differential

operators: we write Bn1 · · ·Bnr for Bn1 ◦· · ·◦Bnr . Moreover, we denote Bn for Bn1 · · ·Bnr

where n is the word n = n1 · · ·nr.

Remark 3.2. — Finally, remark that if Bn is a differential homogeneous operator of order

1 and degree n, Bn =

ν∑

i=1

Bn(xi)∂xi
. When there is no ambiguity, we denote

∑

•

M•B•

for
∑

n∈A(X)∗

MnBn.

3.1. Resonant normal form. — Now consider a vector field X =

ν∑

i=1

Xi(x)∂xi
on Cν

(with X(0) = 0); it is always possible to write this vector field as

X = Xlin +
∑

n∈A(X)

Bn,
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where the Bn are homogeneous differential operators of degree n and order 1, A(X) is an

appropriate part of Zν (that will be the alphabet) and Xlin the linear part. As an example,

for the following vector field on C2 :

X = λ1x∂x + λ2y∂y + (a20x
2 + a11xy + a02y

2)∂x + (b20x
2 + b11xy + b02y

2)∂y, (3.1)

we have Xlin = λ1x∂x + λ2y∂y and the homogeneous differential operators are:

B(1,0) = x(a20x∂x + b11y∂y),

B(0,1) = y(a11x∂x + b02y∂y),

B(−1,2) = a02y
2∂x,

B(2,−1) = b20x
2∂y.

The alphabet here is A(X) = {(1, 0), (0, 1), (−1, 2), (2,−1)}. The linear part of X is always

supposed to be of a diagonal form (see [13] for instance); we have then:

Xlin =

ν∑

i=1

λixi∂xi
,

where λ = (λ1, . . . , λν) ∈ Cν is the spectrum of Xlin.

Remark 3.3. — We use here the graduation by degree for the operators Bn but it is not

unique; for instance, let us set Ω = {λ · n, n ∈ A(X)} and Bω =
∑

n∈A(X)
λ·n=ω

Bn; we still have

X = Xlin +
∑

ω∈Ω

Bω. This graduation is used by Ecalle in [8] but the operators Bω are not

homogeneous. We also use this graduation in section 7.

Definition 3.4. — When the field X is written as follows:

X =

ν∑

i=1

λixi∂xi
+

∑

n∈A(X)

Bn,

it is said to be in prepared form.

3.2. An algebraic point of view. — Starting from this writing, we look for a change

of variables h in C[[x]], from Cν to Cν , which is tangent to identity (i.e. h(x) = x+ · · · ),

to simplify X. We define moreover the substitution morphism Θh as:

Θh : C[[x]] → C[[x]]

ϕ 7→ ϕ ◦ h

It will be denoted as Θ when no ambiguity. Remark that h is a change of variables, and

is then one-to-one. Hence Θ is an automorphism of C[[x]].

The natural action of the vector field on formal power series ϕ of C[[x]] is the derivation

ϕ 7→ X · ϕ where X · ϕ =
ν∑

j=1

Xj(x)
∂ϕ

∂xj

(x). Hence the change of variables h must let the

following diagram be commutative:

ϕ
X

−−−−→ X · ϕ

h

y
yh

ϕ ◦ h −−−−→
Xnor

Xnor · (ϕ ◦ h)
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Hence, for all ϕ ∈ C[[x]] we must have Xnor ·(ϕ◦h) = (X ·ϕ)◦h, that isXnor(Θϕ) = Θ(Xϕ),

i.e. XnorΘ = ΘX, or Xnor = ΘXΘ−1. Now, the object we are looking for is the ”new”

field, Xnor, defined by:

Xnor = ΘXΘ−1.

Definition 3.5. — We say that a fieldXnor is a prenormal form ofX ifXnor is conjugated

to X and
[
Xnor,Xlin

]
= 0 where [ , ] are the usual Lie brackets.

We recall also the following definitions from Arnold [1], § 22, p.175 and p.178:

Definition 3.6. — The spectrum λ = (λ1, . . . , λν) is resonant if there is at least one s

in {1, . . . , ν} such that there exists m in Nν , |m| > 2 such that:

λs = m · λ =
ν∑

i=1

miλi.

Moreover, a vectorial monomial xm∂xs is resonant if λs = m · λ, |m| > 2.

For a monomial xm∂xi
, with m in Nν and i in {1, . . . , ν}, we have

[xm∂xi
,Xlin] = xm

(
λi −

ν∑

j=1

mjλj

)
∂xi

;

thus a prenormal form is only made of resonant monomials, i.e.

Xnor = Xlin +

ν∑

i=1

∑

m∈Ri(X)

amx
m∂xi

with am ∈ C and Ri(X) = {m ∈ Zν − {0}, |m| > 2, λi = m · λ}.

3.3. Non-unicity of prenormal forms. — For an integer k greater than 2 we denote

by Ek the set of all homogeneous vector fields on Cν of degree k, that is vector fields on

Cν whose each component is a homogeneous polynomial in x1, . . . , xν of degree k. Now,

let E be defined by:

E =
⊕

k>2

Ek.

Any vector field Y of E writes then Y =
∑

k>2

Yk where Yk is in Ek.

The part Xlin being fixed, we denote by adXlin
the application defined by Y 7→

[
Y,Xlin

]
.

Remark that adXlin
(Ek) ⊂ Ek for any k > 2, and therefore that adXlin

may be defined on

E.

Proposition 3.7. — Let Xlin =
ν∑

i=1

λixi∂xi
and

{
adXlin

: E → E

Y 7→ [Y,Xlin]
. Then, ker(adXlin

) =

{0} if and only if λ is non-resonant.

Proof. — By linearity, it is sufficient to prove it for a homogeneous polynomial of de-

gree k, and even for a monomial xm∂xi
. From definition 3.6, if λ is non-resonant, then

(
λi −

ν∑

j=1

mjλj

)
6= 0 hence ker adXlin

= {0}. Conversely, if ker adXlin
= {0} then

(
λi −

ν∑

j=1

mjλj

)
6= 0. Hence λ is non-resonant.
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Corollary 3.8. — If the spectrum λ of Xlin is non-resonant, then Xnor = Xlin.

Proof. — Indeed, a prenormal form is a sum of Xlin and only resonant monomials.

In the case where the spectrum λ is resonant, have the following proposition:

Proposition 3.9. — If the spectrum λ of Xlin is resonant, a prenormal form of Xlin is

not unique.

Proof. — Indeed, a prenormal form is defined up to a vector field Y in the kernel of adXlin
,

which is not trivial, after proposition 3.7.

There is thus a choice to make, which could simplify the transformation. Baider [2] and

Gaeta [10] have two interesting approaches of that.

We denote by Res(E) the kernel of adXlin
. If X is in E, when looking for a prenormal

form of X, we want to write:

X = Xlin +Xres, where Xres is in Res(E).

This writing infers the direct sum decomposition:

E = Res(E)
⊕

S,

where S is a supplementary which can be chosen in many ways. A convenient way to chose

S is to provide E with a scalar product such that

E =

⊥⊕
Ek,

where Ek is the homogeneous component of degree k of E.

3.4. Continuous prenormal forms. — We denote by C
〈〈

B
〉〉

for the algebra

C
〈〈(

Bn

)
n∈A(X)

〉〉
of non commutative formal series build on the Bn operators.

Proposition 3.10. — There is a one-to-one correspondence between C
〈〈

B
〉〉

and

C
〈〈
A(X)

〉〉
given by:

∑

n∈A(X)∗

MnBn 7→
∑

n∈A(X)∗

Mn
n.

As there is also a one-to-one correspondence between C
〈〈
A(X)

〉〉
and MC

(
A(X)

)
, we

have the following writing:

X = Xlin +
∑

•

I•B•.

If k = (k1, . . . , kν) is a ν-uplet, we denote by

ω(k) = λ · k =
ν∑

i=1

λiki

where λ is the (fixed) spectrum of Xlin. Remember also that if a = (a1, . . . , ar) is in A∗,

we write ‖a‖ = ‖a‖+ = a1 + · · · + ar. We have the following result:

Lemma 3.11. — For any word n of A∗, we have
[
Xlin, Bn

]
= ω(‖n‖)Bn.
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Proof. — We prove the result by induction on the length r of the word. Remember that

for a word n of length r = 1, Bn =

ν∑

j=1

Bn(xj)∂xj
. Hence

[
Xlin, Bn

]
= XlinBn −BnXlin

=

ν∑

j=1

( ν∑

i=1

λixi∂xi

[
Bn(xj)

]
−Bn(xj)λj

)
∂xj

.

By definition of Bn, homogeneous differential operator of degree n, we can write Bn(xj) =

βjx
ňj where βj is a complex and ňj = (n1, . . . , nj + 1, . . . , nν). Then for any (i, j) in

{1, . . . , ν}2, xi∂xi

[
Bn(xj)

]
= βj(ni + δij)x

ňj . Hence

[
Xlin, Bn

]
=

ν∑

j=1

βjx
ňj
( ν∑

i=1

λi(ni + δij) − λj

)

=
ν∑

j=1

βjx
ňjω(n) = ω(n)Bn.

Now let be r > 2 fixed; we set the assumption that for every word m of length less than

r − 1, then
[
Xlin, Bm

]
= ω(‖m‖)Bm. For a word n of length r we write n = mp where

ℓ (m) = r − 1 and ℓ (p) = 1. Then:
[
Xlin, Bn

]
=
[
Xlin, BmBp

]

= XlinBmBp −BmBpXlin

= XlinBmBp −BmXlinBp +BmXlinBp −BmBpXlin

=
[
Xlin, Bm

]
Bp +Bm

[
Xlin, Bp

]

= ω(‖m‖)Bn +Bmω(p)Bp

= ω(‖n‖)Bn.

Notation 1. — For a letter n in A(X), ω(n) stands for λ · n. This notation extends to

words n in A(X)∗, by ω(‖n‖). We set the convention that ω(∅) = 0.

Definition 3.12. — Let n be in A(X)∗; n is resonant if

ω
(
‖n‖

)
= λ · ‖n‖ = 0.

We can now define the particular forms we are looking for:

Definition 3.13. — The vector field X is said to be in continuous prenormal form with

respect to the alphabet A if there is a change of variable that conjugates X to Xnor so that

Xnor = Xlin +
∑

n∈A(X)∗

PrannBn, with Prann = 0 if ω(‖n‖) 6= 0.

Remark 3.14. — Notice that this definition implies that the mould Pran• must be an

alternal mould, as Xnor − Xlin is a vector field, hence a primitive element of C
〈〈

B
〉〉

.

Therefore, after lemma 2.12, Xnor −Xlin is an element of the Lie algebra spanned by the

{Bn, n ∈ A(X)}. We are thus trying to write elements of ker adXlin
in the Lie algebra

spanned by the Bn. There is nevertheless no reason why all elements of that kernel should
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be writing that way. However this condition is justified as Xnor would then be intrinsic to

X. It is therefore Ecalle’s choice to look for elements of ker adXlin
in that Lie algebra.

Remark 3.15. — A second remark, is that this definition of a continuous prenormal

form depends on the writing of X as a decomposition in the operators Bn, hence on the

alphabet A(X). We will see in section 7 that some choices of decomposition may be better

than others.

We have then the following result:

Theorem 3.16. — A continuous prenormal form is a prenormal form.

Proof. — The result is obtained by applying lemma 3.11 with the definition of a resonant

word.

4. Effective aspects of continuous prenormal forms

We are looking for Xnor − Xlin to be in the free Lie algebra of C
〈〈

B
〉〉

, hence the

automorphism Θ must be in the corresponding Lie group. That is the reason why we

work in the universal enveloping algebra C
〈〈

B
〉〉

. Hence:

Θ =
∑

•

Θ•B•,

with the mould Θ• being symetral as Θ must be an automorphism of C[[x]], i.e. a group-like

element of LC(A).

4.1. The conjugation equation. — The conjugation equation also writes:

Θ−1XnorΘ = X,

where Xnor is the prenormal form looked for, with

Xnor = Xlin +
∑

•

Pran•B•.

The mould expansion gives:

Xlin +
∑

•

I•B• =

(∑

•

(Θ•)−1B•

)(
Xlin +

∑

•

Pran•B•

)(∑

•

Θ•B•

)

i.e.

Xlin+
∑

•

I•B• =

(∑

•

(Θ•)−1B•

)
Xlin

(∑

•

Θ•B•

)
+
∑

•

(
(Θ•)−1×Pran•×Θ•

)
B•. (4.1)

As we can see on this latter equation, the quantity XlinB• must be investigated.

Lemma 4.1. — Let M• be a mould in MC

(
A(X)

)
. Then:

Xlin

(∑

•

M•B•

)
=
∑

•

∇M•B• +
(∑

•

M•B•

)
Xlin,

where ∇Mn = ω(‖n‖)Mn for all n in A(X)∗.

Proof. — By linearity, it is sufficient to calculate XlinBn for a word n = (n1, . . . , nr) in

A(X)∗ of length r. After lemma 3.11, XlinBn = ω(‖n‖)Bn +BnXlin.
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Proposition 4.2. — The conjugation equation has the following mould form:

Θ• × I• = ∇Θ• + Pran• × Θ•. (4.2)

Proof. — Using lemma 4.1, equation (4.1) rewrites:

I• = (Θ•)−1 ×∇Θ• + (Θ•)−1 × Pran• × Θ•,

and, after left-multiplicating by Θ•:

Θ• × I• = ∇Θ• + Pran• × Θ•.

This equation gives us a relation between the normalisator Θ and the desired prenormal

form.

4.2. The non-resonant case. — In the case where λ is non-resonant, we must have

Pran• = 0 for all •, i.e. Xnor = Xlin (linearization of X), after corollary 3.8. We have then

to solve an induction relation on the Θ• to prove its existence

Equation (4.2) rewrites indeed:

Θ• × I• = ∇Θ•.

Remember definition 2.4 of I• on page 5.

Hence for a word of length 0, B∅ = Id and Θ is tangent to identity, so Θ∅ = 1.

For a word n of length 1, equation (4.2) rewrites 1 = ω(n)Θn; λ is non-resonant therefore

ω(n) 6= 0, thus Θn =
1

ω(n)
.

For a word n = (n1, . . . , nr) of length r at least 2, equation (4.2) rewrites then:

Θn1,...,nr−1

= ω(‖n‖)Θn;

as λ is non-resonant, we have still that ω(‖n‖) 6= 0, hence the induction formula:

Θn =
Θn1,...,nr−1

ω(‖n‖)
,

hence, by induction:

Θn =
1

ω1(ω1 + ω2) · · · (ω1 + · · · + ωr)
,

where ωi stands for ω(ni) for i in {1, . . . , r}. We must then be sure that Θ is an automor-

phism of C[[x]], i.e. that Θ• is symetral. This is indeed true, see [3] for a proof.

4.3. The resonant case. — In the case where λ is resonant, we set Prann = 0 if

ω(‖n‖) 6= 0, to obtain a continuous prenormal form of X. However, equations on Θn

cannot be solved directly this time: we take equation (4.2) and try to solve it, by induction

on the length of words.

Remember first that Θ∅ = 1, for Θ has to be tangent to identity; moreover, In = 1 if

ℓ (n) = 1 and 0 otherwise; finally we set Prann = 0 if ω(‖n‖) 6= 0.

For the empty word ∅, equation (4.2) rewrites Θ∅I∅ = ∇Θ∅ + Pran∅Θ∅ i.e. Pran∅ = 0.

For a word n of length 1, equation (4.2) rewrites:

ΘnI∅ + InΘ∅ = ∇Θn + PrannΘ∅ + Pran∅Θn

⇐⇒ 1 = ω(n)Θn + Prann.
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Thus, if ω(n) 6= 0, Prann = 0 so we can solve this equation and Θn =
1

ω(n)
. However,

if ω(n) = 0, it gives Prann = 1 but we have no information on Θn. It is therefore not

possible to deduce all Θn for all words n in A(X)∗ from equation (4.2) and the condition

we set on Pran•. At this moment, there are two possibilities:

– either add a condition, like a derivation condition on moulds (see [17] p.25); it leads

to different prenormal forms, depending on the additional condition. This method

is the ”direct” method.

– The other possibility is an iterative method like Poincaré-Dulac. This is the method

we expose here.

As done usually (see [1] for instance), when looking for a (pre)normal form, we want to

write X −Xlin as a sum of resonant terms only. Hence we set the mould Pran• this way:

Prann = 0 if n is non-resonant.

Unfortunately, it seems too complicated to solve this equation at once. Nevertheless,

it is possible to do a calculable step-by-step procedure to obtain Pran• with the wanted

properties. The step-by-step procedure is explained in the next section.

5. A first approach to the Poincaré-Dulac normal form

5.1. The interest of being in a Lie algebra. — The idea of the step-by-step proce-

dure is to kill non-resonant terms Bn of order 1 (i.e. such that ℓ (n) = 1) at each step.

We saw that the normalizator Θ is an automorphism of C[[x]], that is a group-like

element of the free Lie algebra LC(A); it can therefore be written as an exponential of a

primitive element of this algebra, i.e. an exponential of a vector field V : we thus write

Θ = exp(V ), where V =
∑

•

V •B•,

with V • being alternal. After the mould writing of Θ, and by definition of the exponential

of a mould, we have:

Θ• = ExpV •,

hence equation (4.2) rewrites then:

ExpV • × I• = ∇ExpV • + Pran• × ExpV •. (5.1)

Still we set Prann = 0 if ω(‖n‖) 6= 0, but we have the same indetermination on V • as we

had on Θ•: we choose here to kill only non-resonant terms of order 1. The exponential

form of the normalisator, with the help of the Baker-Campbell-Hausdorff formula, leads

us to the following lemma:

Lemma 5.1. — Let X = Xlin +
∑

n∈A(X)

Bn a vector field in prepared form, with fixed

diagonal linear part Xlin of spectrum λ.

Choosing Θ = exp(V ), where V is defined by:

V n =





1

ω(n)
if ℓ (n) = 1 and ω(n) 6= 0;

0 otherwise;

the conjugate vector field Xnor = ΘXlinΘ
−1 has no resonant terms of order 1.
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Proof. — After the Baker-Campbell-Hausdorff formula (see [12]) we have:

Xnor =

+∞∑

n=0

(−1)n

n!
X(n),

where X(n+1) = [X(n), V ] and X(0) = X. Hence:

Xnor = Xlin +
∑

n∈A(X)

Bn − [Xlin, V ] − · · · ;

We set V =
∑

p∈A(X)∗

V pBp, then:

Xnor = Xlin +
∑

n∈A(X)

Bn −
∑

n∈A(X)∗

ω(‖n‖)V nBn − · · · ,

after lemma 4.1. Hence the given expression of V •.

Theorem 5.2. — Let V be the vector field V =
∑

•

V •B• where V • is the mould given

by:

V n =





1

ω(n)
if ℓ (n) = 1 and ω(n) 6= 0

0 otherwise.

We call simplified form of X the vector field Xsam = exp
(
V
)
X exp

(
−V
)
; it writes:

Xsam = Xlin +
∑

n∈A(X)∗

SamnBn,

and the mould Sam• has the following expression:

Samn =





0 if n = ∅,

0 if ℓ (n) = 1 and ω(n) 6= 0,

1 if ℓ (n) = 1 and ω(n) = 0;

for the other words, the mould Sam• is given by the following equation:

Sam• = ExpV • × I• × Exp(−V )• −∇ExpV • × Exp(−V )•.

Proof. — The field X = Xlin +
∑

•

I•B• has non-resonant terms only of length 1. If we

want them to vanish, we look for a simplified field Xsam = Xlin +
∑

•

Sam•B•, where we

set the mould Sam• as follows:

Samn =





0 if n = ∅,

0 if ℓ (n) = 1 and ω(n) 6= 0,

we do not know yet for other words n.

We keep the same equation as (5.1):

ExpV • × I• = ∇ExpV • + Sam• × ExpV •.
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By setting moreover that V n = 0 if ℓ (n) 6= 1 it is possible to solve this equation, and find

that:

V n =





0 if ω(n) = 0,
1

ω(n)
otherwise.

Hence the simplified vector field Xsam:

Xsam = exp

(
∑

n∈A(X)
ω(n)6=0

1

ω(n)
Bn

)
X exp

(
∑

n∈A(X)
ω(n)6=0

−
1

ω(n)
Bn

)
. (5.2)

The mould Sam• is then calculable, and we recall here its expression (see [3]):

Lemma 5.3. — The mould Sam• is given by:

– Sam∅ = 0;

– if ℓ (n) = 1 and ω(n) 6= 0, Samn = 0 (kills the non-resonant terms);

– if ℓ (n) = 1 and ω(s) = 0, Samn = 1;

– if r = ℓ (n) > 2 and ω1, . . . , ωr are different from 0,

Samn =
1

ω1 · · ·ωr

r∑

k=1

(−1)r−k(ωk(r − k) − ωk+1 − · · · − ωr)

(k − 1)!(r − k + 1)!
.

– If only one ωi vanishes,

Samn =
(−1)r−1

(i− 1)!(r − i)!ω1 · · ·ωi−1ωi+1 · · ·ωr

,

– If more than one ωi vanishes, then Samn = 0.

5.2. Proof of lemma 5.3. — Let us denote by V • the mould defined by:

V n =





1

ω(n)
if ℓ (n) = 1 and ω(n) 6= 0

0 otherwise
.

5.2.1. A first term...— We denote by C• the mould C• = exp(V •)× I•. We have C∅ = 0.

For a word n of length 1 we have:

Cn = (exp(V •))∅ In = 1.

For a word n of length r > 2,

Cn =
(
exp(V •)

)n1,...,nr−1

Inr

=





0 if at least one of the (ωi)16i6r−1 vanishes,
1

(r − 1)!ω1 · · ·ωr−1
otherwise.
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5.2.2. ...a second term...— We denote by D• = C• × exp(−V •), so D∅ = 0, and for a

word n of length 1, Dn = Cn = 1.

For a word n of length r > 2 we have:

Dn1,...,nr

= Cn1

(exp(−V •))n
2,...,nr

+ Cn1,n2

(exp(−V •))n
3,...,nr

+ · · · + Cn1,...,nr

.

There are then several cases:

– If at least one ωi is zero, 1 6 i 6 r− 1, then every Cn1,...,nj

, with j > i+ 1 vanishes

(after the calculus of Cn in 5.2.1); also every (exp(−V •))n
k,...,nr

vanishes for k 6 i.

Therefore Dn = Cn1,...,ni

(exp(−V •))n
i+1,...,nr

.

We have then for a word n:

Dn =





0 if another (ωl)16l6r
l 6=i

vanishes;

1

(i− 1)!ω1 · · ·ωi−1
×

(−1)r−i

(r − i)!ωi+1 · · ·ωr

if no other ωl, l 6= i is zero.

– if ωr vanishes, Dn = Cn1,...,nr

therefore:

Dn =





0 if one of the (ωl)16l6r−1 vanishes;
1

(r − 1)!ω1 · · ·ωr−1
otherwise.

– if no other ωi vanishes then

Dn1,...,nr

=
(−1)r−1

(r − 1)!ω2 · · ·ωr

+
1

ω1
×

(−1)r−2

(r − 2)!ω3 · · ·ωr

+ · · ·

+
1

(r − 2)!ω1 · · ·ωr−2
×

−1

ωr
+

1

(r − 1)!ω1 · · ·ωr−1
,

that is:

Dn1,...,nr

=
1

ω1 · · ·ωr

r∑

k=1

(−1)r−kωk

(k − 1)!(r − k)!
.

5.2.3. ...a third term...— We calculate now the following: E• = ∇ exp(−V •). Thanks

to the previous computations on the mould exponential, and by definition of ∇, we have

E∅ = 0; moreover, for a word n of length r > 1:

En1,...,nr

= (ω1 + · · · + ωr)(exp(−V •))n,

then

En =





0 if one at least of the (ωi)16i6r vanishes;
(ω1 + · · · + ωr)(−1)r

r!ω1 · · ·ωr

otherwise.

5.2.4. ... the last term. — We finally calculate the mould product F • = exp(V •) × E• ;

first, F ∅ = 0 ; for a word of length 1, Fn = En therefore Fn = 0 if ω(n) = 0 and Fn = −1

if ω(n) 6= 0 ; at last, for a word n of length r > 1 we have:

Fn1,...,nr

= (exp(V •))∅En + (exp(V •))n
1

En2,...,nr

+ · · · + (exp(V •))n
1,...,nr−1

Enr

.
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Thus, after the calculus of exp(V •) and E•, Fn vanishes if at least one of the ωi is zero.

If no ωi is zero, then:

Fn1,...,nr

=
(ω1 + · · · + ωr)(−1)r

r!ω1 · · ·ωr
+

1

ω1
×

(ω2 + · · · + ωr)(−1)r−1

(r − 1)!ω2 · · ·ωr
+ · · ·

+
1

(r − 1)!ω1 · · ·ωr−1
×

(−1)ωr

ωr

.

Finally:

Fn =





0 if one of the ωi is zero,

1

ω1 · · ·ωr

r∑

k=1

(−1)r−k+1(ωk + · · · + ωr)

(r − k + 1)!(k − 1)!
otherwise.

5.2.5. Expression of the sought mould. — As Sam• = F • +D•, we have

Sam∅ = F ∅ +D∅ = 0.

For a word of length 1, we get:

Samn =

{
1 if ω(n) = 0,

0 if ω(n) 6= 0.

The non-resonant terms of the field X thus vanish in the field Xsam. Moreover, for a word

n of length r > 2, we get:

– if there exists i and j, two different integers from {1, . . . , r} such as ωi = ωj = 0

then Dn = Fn = 0 therefore

Samn = 0.

– if one ωi exactly is zero, Fn = 0 and

Samn =
1

(i− 1)!ω1 · · ·ωi−1
·

(−1)r−1

(r − i)!ωi+1 · · ·ωr
.

– if every (ωi)16i6r is non zero, then

Dn =
1

ω1 · · ·ωr

r∑

k=1

(−1)r−kωk

(k − 1)!(r − k)!
,

Fn =
1

ω1 · · ·ωr

r∑

k=1

(−1)r−k+1(ωk + · · · + ωr)

(r − k + 1)!(k − 1)!
,

and

Samn =
1

ω1 · · ·ωr

r∑

k=1

(−1)r−k(ωk(r − k) − ωk+1 − · · ·ωr)

(k − 1)!(r − k + 1)!
.

The proof is now complete!

In order to put in evidence the universal feature of the moulds Sam we obtain under

the simplification procedure, we introduce the following one parameter family of complex

valued functions:
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Definition 5.4. — The Poincaré family is denoted by P = (Pq)q∈N∗ where Pq : Cq → Cq,

and defined by P1(z) = 1 if z = 0 and 0 otherwise, and for q > 2

Pq(z1, . . . , zq) =





1

z1 · · · zq

q∑

k=1

(−1)q−k zk(q − k) − zk+1 − · · · − zq
(k − 1)!(q − k + 1)!

, if z ∈ (C∗)q ,

(−1)q−1

(i− 1)!(q − i)!

1

z1 . . . zi−1zi+1 . . . zq
, if z ∈ Sq,i,

0 otherwise,

with Sq,i = (C∗)i−1 × {0} × (C∗)q−i.

Lemma 5.3 of this section can then be formulated as follows:

Lemma 5.5. — The simplification moulds Sam• is given by Sam∅ = 1 and Samn =

Pℓ(n)(n.λ) if ℓ (n) > 1.

The field Xsam has now no more non-resonant terms of length 1, but the transformation

X 7→ Xsam, that we denote simp, introduces non-resonant terms of length greater than 1,

as Samn is not always 0 when ℓ (n) > 2.

5.3. The first step. — Now that we have killed every non-resonant terms of length 1,

but introduced some more of length greater than 2, we have to iterate the transform...

however, if we want the iteration procedure to be writable in terms of moulds composition,

we must find a way to rewrite Xsam = Xlin +
∑

n∈A(X)∗

SamnBn as Xsam = Xlin +
∑

m∈A

Dm

where A is a new alphabet and (Dm)m∈A a new collection of homogeneous differential

operators. It is here natural at this time, since for every word n in A(X)∗, Bn is a

homogeneous differential operator of degree ‖n‖ (nevertheless, do not forget that the

most natural choice may not always be the best, as we will see in section 7). Hence the

new alphabet is:

A = A
(
X(1)

sam

)
=
{
‖n‖,n ∈ A(X)∗

}
⊂ Zν .

Let us write then X(1)
sam instead of Xsam, for it is the first of the iteration:

X(1)
sam = Xlin +

∑

m∈A

Dm, with Dm =
∑

n∈A(X)∗

‖n‖=m

SamnBn,

and do the transformation simp again. We get a X(2)
sam and:

X(2)
sam = Xlin +

∑

m∈A∗

SammDm.

Writing this in the old alphabet, we have, by definition of the composition of two moulds:

X(2)
sam = Xlin +

∑

n∈A(X)∗

(
Sam• ◦ Sam•

)n
Bn.
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6. The trimmed form

6.1. The simplification procedure. — We can construct a prenormal form by iterat-

ing the simplification procedure seen in the previous section.

Definition 6.1 (Trimmed form up to order r). — Let r be in N. The trimmed form

up to order r is defined as X(r)
sam, obtained from X after r successive simplifications:

X = X(0)
sam

simp1−−−→ X(1)
sam

simp2−−−→ · · ·
simpr−−−→ X(r)

sam,

where simpi is the automorphism of simplification defined by:

simpi = exp
(
Vi

)
,

with Vi the vector field associated to the mould V • on the alphabet A
(
X(i)

sam

)
defined

recursively by:

A
(
X(i)

sam

)
=
{
‖n‖,n ∈ A

(
X(i−1)

sam

)∗}
.

Theorem 5.2 leads us then to the following result:

Theorem 6.2. — For all r in N, the trimmed form up to order r X(r)
sam has a mould

expansion, i.e. there exists a mould denoted by Sam•
r in MC

(
A(X)

)
such that:

X(r)
sam = Xlin +

∑

•

Sam•
rB•.

Moreover the mould Sam•
r can be defined with the help of Sam•: For all r in N, we have:

Sam•
r = Sam• ◦ · · · ◦ Sam•

︸ ︷︷ ︸
r times

.

From now on, we denote either Sam•
r or

(
Sam•

)◦r
for the composition of r copies of

Sam•. Let us investigate now what is happening: we already saw that after the first step,

non-resonant terms of length 1 –actually, there are no others– vanished. We have then:

X(1)
sam = Xlin +

∑

n∈A(X)
ω(n)=0

Bn +
∑

m∈A(X)

∑

n∈A(X)∗

‖n‖=m

SamnBn

︸ ︷︷ ︸
Dm

.

Now we see from such a writing, that the simplification introduces new terms, which may

not be (and usually are not) resonant.

The main property of Sam•
r is that it is ”stationary” in this sense:

Theorem 6.3. — Let r be in N∗. For any word n in A∗ of length at most r, we have:

Samn
q = Samn

r , ∀q > r.

This theorem is deduced from the following lemma:

Lemma 6.4. — Let r be in N∗. For any word n in A∗ of length at most r, we have:

Samn
r+1 = Samn

r .
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Proof of the lemma. — The proof is done by induction on the length r.

For r = 1: let n be in A∗, we have:
(
Sam• ◦ Sam•

)n
=
(
Samn

)2
= Samn, after lemma 5.3.

We suppose now that r > 2 is fixed, and that for any p 6 r− 1, and any word n of length

at most p, Samn
p+1 = Samn

p . Let n = n1 · · ·nr be a word of length r. We have three cases:

(a). n is non-resonant, i.e. ω(‖n‖) 6= 0. In this case we write:

Samn
r+1 =

(
Sam• ◦ Sam•

r

)n

= Sam‖n‖Samn
r +

∑

26l6r
n1···nl=n

Sam‖n1‖,··· ,‖nl‖Samn1
r · · · Samnl

r .

As ω(‖n‖) 6= 0, by lemma 5.3, Sam‖n‖ = 0, hence Sam‖n‖Samn
r = Sam‖n‖Samn

r−1.

Moreover, in the second term, as l > 2, ℓ (nk) 6 r − 1 for any k in {1, . . . , l}, hence

by the induction assumption, Samnk
r = Samnk

r−1. Finally,

Samn
r+1 = Sam‖n‖Samn

r−1 +
∑

26l6r
n1···nl=n

Sam‖n1‖,··· ,‖nl‖Samn1

r−1 · · · Samnl

r−1

=
(
Sam• ◦ Sam•

r−1

)n

= Samn
r .

(b). n is resonant, i.e. ω(‖n‖) = 0, and ω(ni) = 0 for all i in {1, . . . , r}. In this case, we

write again:

Samn
r+1 =

(
Sam• ◦ Sam•

r

)n

= Sam‖n‖Samn
r +

∑

26l6r
n1···nl=n

Sam‖n1‖,··· ,‖nl‖Samn1
r · · · Samnl

r .

On the one hand, after lemma 5.3, Sam‖n‖ = 1, for ω(‖n‖) = 0; on the other hand,

for l in {2, . . . , r}, ω(‖nk‖) = 0 for all k in {1, . . . , l}, hence, still after lemma 5.3,

Sam‖n1‖,··· ,‖nl‖ = 0. Finally, Samn
r+1 = Samn

r .

(c). n is resonant, i.e. ω(‖n‖) = 0 and there is at least one (therefore two) ni in n such

that ω(ni) 6= 0. After lemma 5.3, Samni

= 0. In this last case, we write:

Samn
r+1 =

(
Sam•

r ◦ Sam•
)n

=
∑

16l6r−1
n1···nl=n

Sam‖n1‖···‖nl‖
r Samn1 · · · Samnl + Samn

r Samn1

· · · Samnr

.

By the induction assumption, for every l in {1, . . . , r − 1},

Sam‖n1‖···‖nl‖
r = Sam

‖n1‖···‖nl‖
r−1 ;

moreover:
∑

16l6r−1
n1···nl=n

Sam
‖n1‖···‖nl‖
r−1 Samn1 · · · Samnl =

(
Sam•

r−1 ◦ Sam•
)n

− Samn
r−1Samn1

· · · Samnr

.

Hence Samn
r+1 = Samn

r − Samn
r−1Samn1

· · · Samnr

+ Samn
r Samn1

· · · Samnr

. Now,

after lemma 5.3, the product Samn1

· · · Samnr

is zero. Finally, Samn
r+1 = Samn

r .
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6.2. The Poincaré-Dulac theorem. — We can define now the mould Tram• as follows:

Definition 6.5. — The mould Tram• is defined by Tram∅ = 0, and for a word n in A∗

of length r > 1,

Tramn = Samn
r = lim

p→+∞

((
Sam•

)◦p)n

The limit exists after theorem 6.3.

We define then the trimmed form.

Definition 6.6. — The trimmed form of X is the limit of the simplification procedure.

It is given by:

Xtram = Xlin +
∑

•

Tram•B•.

Now this result shows that the trimmed form is what we are looking for:

Theorem 6.7. — The trimmed form is a continuous prenormal form.

Proof. — Remember that Tram∅ = 0. By definition of Tram•, for a word of length 1,

Tramn = Samn, hence Tramn = 0 if ω(n) 6= 0. Now, for a word n of length greater than

2, by definition 6.5 of Tram• we have:

Tram• = Tram• ◦ Sam• (6.1)

= Sam• ◦ Tram•. (6.2)

We can then verify that Tramn = 0 if ω(‖n‖) 6= 0 by induction on the length r > 2 of n.

If n = n1n2 is in A∗, by definition of the composition of two moulds and after (6.1):

Tramn = Tram∅Samn + Tramn1

Samn2

+ TramnSam∅

= Tramn1

Samn2

= Samn1

Samn2

.

Now, after lemma 5.3, Tramn 6= 0 if and only if ω(n1) = ω(n2) = 0, and this is impossible

since ω(n1) + ω(n2) 6= 0. Hence Tramn = 0 if ω(‖n‖) 6= 0.

We fix r > 3 and suppose that Tramn = 0 if ω(‖n‖) 6= 0, for any word n of length

less than r − 1. Then if n is a word of length r such that ω(‖n‖) 6= 0 we have after

equation (6.2):

Tramn = Sam‖n‖Tramn +
∑

26l6r
n1···nl=n

Sam‖n1‖···‖nl‖Tramn1 · · ·Tramnl .

The term Sam‖n‖Tramn is 0, for ω(‖n‖) 6= 0. Now for each partition of n in l words

n1, . . . ,nl, where l > 2 there is at least one k in {1, . . . , l} such that ω(‖nk‖) 6= 0 (for

ω(‖n‖) =

l∑

j=1

ω(‖nj‖)). Hence by induction, Tramnk = 0. Therefore, Tramn = 0.
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7. The Hamiltonian case

We discuss here the application of the preceding sections to Hamiltonian operators. H

is a Hamiltonian function, in cartesian coordinates:

H(x, y) =

ν∑

i=1

λixiyi +
∑

(n,m)∈A(H)

anmx
nym,

where A(H) stands for the set of higher degrees and λ = (λ1, . . . , λν) an element of Cν .

We will denote A when there is no ambiguity. The Hamiltonian vector field then writes:

XH = Xlin +
∑

(n,m)∈A

Dnm,

where

Xlin = −
ν∑

i=1

λixi∂xi
+

ν∑

i=1

λiyi∂yi

and

Dnm = anm

ν∑

i=1

xn̂iym̂i(niyi∂yi
−mixi∂xi

),

and we denote n̂i = (n1, . . . , ni − 1, . . . , nν) (same for mi). Remark that Dnm is not an

homogeneous operator; however Dnmi defined as follows is a homogeneous operator of

degree (n̂i, m̂i):

Dnmi = anmx
n̂iym̂i(niyi∂yi

−mixi∂xi
), (7.1)

and Dnm =

ν∑

i=1

Dnmi. The preceding ”usual” decomposition in homogeneous operators of

section 3.1 does not lead to Hamiltonian operators. Nevertheless lemma 7.1 gives a way

to obtain Hamiltonian operators... when starting also from Hamiltonian ones.

The interesting thing about Dnm is that it is a Hamiltonian operator, i.e. it defines

a Hamiltonian vector field. We will frequently denote s = (n,m) a letter of A, and Ds

for Dnm. As previously, if s = s1 · · · sr is a word in A∗, Ds will be the composition

Ds1 · · ·Dsr . It is well-known that a prenormal form of a Hamiltonian vector field is also

a Hamiltonian vector field, and that the transformation which brings the former into the

latter is symplectic.

However, it is also important to keep in mind that we want successive canonical trans-

formations to preserve the Hamiltonian character, because, for example, if we want to

implement that prenormal form, a computer cannot do an infinite number of iterations.

Nevertheless, if we decomposeXH in homogeneous differential operators, as done before,

it is very difficult to know if we get Hamiltonian transformation!

The following lemma gives a first result on ”Hamiltonian-preserving” moulds and justi-

fies the use of the Dnm operators instead of usual homogeneous operators. We will need

this result in the next subsection.

Lemma 7.1. — Let M• be an alternal mould on an alphabet A∗. Let S• be a collection

of differential operators, such that Su is a Hamiltonian vector field for every u in A. Then

the sum
∑

u∈A∗

MuSu defines a Hamiltonian vector field.
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Proof. — The key is that if Su = XHu and St = XHt are Hamiltonian vector fields, then:

[Su, St] = {XHu ,XHt} = X{Hu,Ht},

where {, } is the usual Poisson bracket; hence [Su, St] is still Hamiltonian. Thus, by an

induction on r, for any word u = u1 · · · ur of A∗ of length r, S[u] is a Hamiltonian vector

field. We now use the projection lemma 2.12: M• being alternal, we have, if u is a word

of length r and σ(u) the set of words deduced from u by a permutation:

∑

u∈σ(u)

MuSu =
1

r

∑

u∈σ(u)

MuS[u].

Let us denote ∼ the equivalence relation on A∗ defined by:

u ∼ t ⇐⇒ there exists one permutation τ such as τ(u) = t.

We have u ∼ t ⇐⇒ ℓ (u) = ℓ (t) therefore A∗
∖
{∅} =

+∞∐

r=1

A∗
r and A∗

/
∼

=
+∞∐

r=1

A∗
r

/
∼

;

moreover M∅ = 0, for M• is alternal; hence the following equalities:
∑

u∈A∗

MuSu =
∑

r>1

∑

u∈A∗

r

MuSu

=
∑

r>1

∑

u∈A∗

r

/
∼

∑

u∈σ(u)

MuSu

=
∑

r>1

∑

u∈A∗

r

/
∼

1

r

∑

u∈σ(u)

MuS[u]

=
∑

r>1

1

r

∑

u∈A∗

r

MuS[u].

Hence the result.

From now on, for s = (n,m) in A(H), we denote ω(s) = ω(n,m) =
ν∑

j=1

λj(mj −nj). As

previously, a word s is resonant if ω(‖s‖) = 0. We have an analogous result as lemma 4.1:

Lemma 7.2. — For s = s1 · · · sr a word in A∗ of length r, we have:

XlinDs = DsXlin + ‖ω(s)‖Ds.

7.1. The limit of the simplification procedure. — We proceed as before, by asso-

ciating to XH a simplified vector field Xsam in the following way:

Xsam = exp

(
∑

s∈A(H)
ω(s)6=0

1

ω(s)
Ds

)
XH exp

(
∑

s∈A(H)
ω(s)6=0

−
1

ω(s)
Ds

)
.

The important thing is that

Xsam = Xlin +
∑

s∈A(H)∗

SamsDs,

with Sam• exactly the same mould as defined in lemma 5.3. The only things that change

are the alphabet and the operators. But the fact that Sam• is alternal is still true of
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course: Xsam is then, by lemma 7.1, a Hamiltonian vector field, and by definition of Sam•

a trimmed form of XH up to order 1.

We then want to rewrite Xsam as a sum Xlin+
∑

a∈A

∆a where A would be a new alphabet,

and there would be a simple law ⋆ such that ‖n‖⋆ = a for a word n of A(X)∗. The second

step would then be given by the composition Sam• ◦ Sam•. Unfortunately, we have not

been able, so far, to find such a new alphabet to make the iteration easy to formulate.

So, we changed –again!– the decomposition of the initial vector field XH , therefore the

alphabet, so that a mould iteration can be done.

7.2. Canonical simplification. — We define a new alphabet Ω(H), or Ω when there

is no ambiguity, by:

Ω(H) =
{
ω(s) with s ∈ A(H)}.

Remark that Ω is thus part of C and not anymore of Zν . We have then

H(x, y) =

ν∑

i=1

λixiyi +
∑

ω∈Ω

∑

(n,m)∈A(H)
ω(n,m)=ω

anmx
nym.

Definition 7.3. — For ω ∈ Ω, Dω is the Hamiltonian vector field induced by the sum

of monomials Hω(x, y) =
∑

(n,m)∈A(H)
ω(n,m)=ω

anmx
nym; we call this latter sum the Ω-homogeneous

component of degree ω of H. We write Dω = XHω .

The Dω are still Hamiltonian operators, as sum of such operators: in fact Dω =∑

(n,m)∈A(H)
ω(n,m)=ω

Dnm. We have thus XH = Xlin +
∑

ω∈Ω

Dω. This gives us the action of Xlin

on the Dω (analogous to lemma 7.2):

Lemma 7.4. —

XlinDω = DωXlin + ‖ω‖Dω for any word ω ∈ Ω∗.

The simplified field Xsam is obtained exactly the same way as above:

Xsam =

(
∑

ω∈Ω(H)
ω 6=0

1

ω
Dω

)
XH

(
∑

ω∈Ω(H)
ω 6=0

−
1

ω
Dω

)
,

and still:

Xsam = Xlin +
∑

ω∈Ω∗

Samω
Dω.

The mould Sam• is again defined as in lemma 5.3, but on the alphabet Ω, so for ω =

ω(s1) · · ·ω(sr) in Ω∗, we set Samω = Sams. Sam• is alternal, then Xsam is a Hamiltonian

vector field.

Now we want to iterate this process, as we did at the beginning of section 6. In order

to iterate, we must rewrite Xsam as:

Xsam = Xlin +
∑

ω̃∈Ω̃

D
(1)
ω̃
,
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where Ω̃ is the new alphabet, and D
(1)
ω̃

expresses with the Dω and is still Hamiltonian.

By definition, D
(1)
ω̃

is the Hamiltonian field coming from the sum
∑

ω(n,m)=ω̃

a(1)
nmx

nym in the

new Hamiltonian. So, for a ω̃ fixed, we must find the ω such that Dω gives rise to a vector

field coming from a Hω̃. The following theorem answers that question:

Theorem 7.5. — The new alphabet is Ω̃ = Ω; moreover for any ω̃ in Ω, D
(1)
ω̃

is Hamil-

tonian, and has the following expression:

D
(1)
ω =

∑

ω∈Ω∗

r

‖ω‖=ω̃

Samω
Dω.

Proof. — Remember first that Sam• is alternal, so we can still write:

∑

ω∈Ω∗

Samω
Dω =

∑

r>1

1

r

∑

ω∈Ω∗

r

Samω
D[ω];

and even ∑

ω∈Ω∗

‖ω‖=ω̃

Samω
Dω =

∑

r>1

1

r

∑

ω∈Ω∗

r

‖ω‖=ω̃

Samω
D[ω].

For two operators, Dω1 and Dω2, which respectively come from two Hamiltonians

Hω1(x, y) =
∑

n,m

ωnm=ω1

anmx
nym and Hω2(x, y) =

∑

p,q

ωpq=ω2

apqx
pyq,

we have actually:

[Dω1,Dω2 ] =
{
XH

ω1
,XH

ω2

}
= X{H

ω1 ,H
ω2},

and

{Hω1 ,Hω2} =

ν∑

i=1

∑

n,m,p,q

ωnm=ω1

ωpq=ω2

anmapqx
n̂+piym̂+qi(mipi − qini);

this is a sum (indexed by i) of monomial Hamiltonians whose each term has the same ω̃:

∀i, 1 6 i 6 ν, ω(n̂+ pi, m̂+ qi) = ω(n,m) + ω(p, q) = ω1 + ω2 = ω̃.

We thus can say that Ω̃ = {‖ω‖, ω ∈ Ω} = Ω. Now, remember that D
(1)
ω̃

is defined as

the Hamiltonian vector field coming from the Ω-homogeneous component of degree ω̃ of

the new Hamiltonian H(1); we conclude therefore that [Dω1 ,Dω2 ] appears in (and only in)

D
(1)
ω1+ω2 . Conversely, if ω̃ is fixed, only the operators D[ω] build on the words ω such that

‖ω‖ = ω̃ will appear in D
(1)
ω .

Hence the result:

D
(1)
ω̃

=
∑

r>1

1

r

∑

ω∈Ω∗

r

‖ω‖=ω̃

Samω
D[ω] =

∑

ω∈Ω∗

‖ω‖=ω̃

SamωDω.

which concludes the proof.

We may now cite the following:
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Theorem 7.6. — The trimmed form of XH is given by

Xtram = Xlin +
∑

•

Tram•
D•

where the alphabet is Ω(H) and Tram• the mould already defined in the previous section:

for a word ω of length r,

Tramω =
(
(Sam•)◦r

)ω
.

We know that, in case of Hamiltonian vector fields, there is only one prenormal (hence

normal) form. We have here a way to compute it; it would be interesting to compare it to

other classical ways.

8. Kolmogorov Theorem

In this section, we use the preceding trimmed form transformations to bring a Hamilto-

nian vector field into Kolmogorov’s normal form. The Kolmogorov’s theorem ensures the

persistence of a diophantine torus of a completely integrable Hamiltonian function under

a weak perturbation. We prove this theorem in the case of a perturbation of a special

form, see infra.

We define the algebra Aε of functions fε(p, q) : C × C → C of the form fε(p, q) =∑

s>0

εsfs(p, q) where the fs are trigonometric polynomials in q, the coefficients fs,k(p) of

which being polynomials in p, writing fs(p, q) =
∑

|k|6Ks

fs,k(p)e
ik·q.

We define A1
ε the subset of Aε of trigonometric polynomials in q, the coefficients of

which being homogeneous polynomials in p of degree 1.

We denote by D(Aε) the set of derivations over the algebra Aε, and by D1(Aε) the

subset of D(Aε), of derivations D of the form:

D = Aε(p, q)∂p +Bε(p, q)∂q,

with Aε(p, q), Bε(p, q) in A1
ε.

Moreover, we denote by D1
r(Aε) ⊂ D1(Aε) the subset of derivations of the form

Aε(p, q)∂p + Bε(p, q)∂q, Aε and Bε being in A1
ε, of which all the coefficients of εs, s 6 r

have no dependence in q.

Following [11] we deal here with Hamiltonian functions from Rν × Tν to R, where T is

the usual torus R/Z, and ω a vector of Rν being non-resonant, of the form:

Hε(p, q) = ω · p+
1

2
p2 + εf(q). (8.1)

The ”formal” Kolmogorov theorem is then:

Theorem 8.1. — Let Hε(p, q) be defined as in (8.1) and ω ∈ Rν being diophantine. There

exists a canonical formal transformation q = q′ + ε · · · , p = p′ + ε · · · , which brings Hε

into Kolmogorov normal form:

Hε(p, q) = ω · p+R(p, q, ε),

with R(p, q, ε) = O(p2).

More precisely, we will prove the following theorem, denoting by Xε the Hamiltonian

vector field coming from Hε, and by Xc the constant vector field ω · ∂q:
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Theorem 8.2. — Let us suppose that Xε has been brought into the following form:

Xr,ε(p, q) = ω ·∂q+
r∑

s=1

εs(as(p)∂p+bs(p)∂q)+
∑

s>r+1

εs
( Ns∑

l=1

as,l(p)e
il·q∂p+

Ms∑

l=1

bs,l(p)e
il·q∂q

)
,

where as(p), bs(p), as,l(p), bs,l(p) are in A1
ε. Then, there exists a canonical transformation

q = q′ + ε · · · , p = p′ + ε · · · , such that Xr,ε(p, q) = Xr+1,ε(p
′, q′).

The theorem we want to prove may be rewritten as follows:

Theorem 8.3. — If X −Xc ∈ D1
r(Aε), then Xsam −Xc ∈ D1

r+1(Aε).

Proof. — We write

X = Xc +

r∑

s=1

εrX0
s (p) +

∑

s>r+1

εs
(
X0

s (p) +
∑

k∈Zv

Xk
s (p, q)

)
,

where X0
s (p) is independent of q and Xk

s (p, q) = ei(k·q)

(
as,k(p)∂p + bs,k(p)∂q

)
.

We set then Bk =
∑

s>r+1

εsXk
s for k 6= 0 and B0 =

∑

s>1

εsX0
s .

Lemma 8.4. — For k ∈ Zν, Bk is a homogeneous differential operator of degree k in the

angles q. Moreover,

XcBk = i (k · ω)Bk.

We can then write X = Xc +
∑

k∈A∗

IkBk, where A = Zν is the alphabet, and I• the

mould already defined. We look for Θ =
∑

•

Θ•B•, with Θ = exp(V ) and V =
∑

•

V •B•.

The Campbell-Baker-Hausdorff formula ensures that:

ΘXΘ−1 = X − [X,V ] + · · · = Xc +
∑

k∈Zν

Bk − [Xc, V ] + h.o.t. , (8.2)

where h.o.t. stands for higher order (in ε) terms. Moreover, we set:

V • =





1

i (k · ω)
if ℓ (•) = 1 and k · ω 6= 0;

0 otherwise.

Then,

[Xc, V ] =
∑

k∈Zν

V k[Xc, Bk] +
∑

k∈A∗

ℓ(k)>2

V k[Xc, Bk] + · · · ,

hence, (8.2) rewrites:

Xc +
∑

k∈A

Bk −
∑

k∈A

i (ωk)V kBk

︸ ︷︷ ︸
(∗)

+
∑

k∈A∗

ℓ(k)>2

V k[Xc, Bk] + · · ·

︸ ︷︷ ︸
(∗∗)

The term (∗∗) is of order in ε at least r + 2, therefore we do not worry about it. The

term (∗) rewrites:

∑

k∈A

∑

s>r+1

εsXk
s −

∑

k∈A

i (ω · k)V k

( ∑

s>r+1

εsXk
s

)
,



MOULD CALCULUS FOR HAMILTONIAN VECTOR FIELDS 29

so, if we choose V k =
1

i (k · ω)
, for k · ω 6= 0, this latter expression vanishes, because

Xk
r+1 = 0 when k · ω = 0 (as ω is non-resonant).

We have again our transformation simp which brings X into Xsam. After the projection

lemma 2.12 we can write:

Xsam = Xc +
∑

r>1

1

r

∑

k∈A∗

SamkB[k].

Now we use the following lemma:

Lemma 8.5. —

∀D, D̃ ∈ D1(Aε), [D, D̃] ∈ D1(Aε).

That lemma and the projection lemma prove that Xsam is now in D1
r+1(Aε), hence, by

applying iteratively theorem 8.3, we are able to prove theorem 8.2 therefore theorem 8.1.

By this way, we are able to perform a trimmed form of a Hamiltonian vector field in

action-angle coordinates. It is defined by the mould Tram• exactly the same as before.

Moreover, remark that every simplification is a canonical transformation, so at every

step of the procedure is the vector field still Hamiltonian. That may be of great interest

in numerical applications.

9. Conclusion

We saw in this text different powerful aspects of moulds: the “complete calculability”

that is the universality, and the ability to be easily computed. A combinatory work (in

the free Lie algebras framework) lies underneath which induces a powerful union of results

both from algebra and analysis.

The principal tool we used here was the change of graduation in the decomposition of

a vector field, and we still hope to apply it to vector fields with no linear part, as E. Paul

in [14] in a future work.
Moreover, the seek for normal forms has not to be limited to vector fields. We also

intend to develop this kind of techniques to apply in PDEs.
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