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Integrability of exit times and ballisticity for random walks

in Dirichlet environment

Laurent Tournier1

We prove an equivalent condition of integrability for Green functions and the exit time of random walks in
random Dirichlet environment on finite digraphs, and apply this result to improve the ballisticity criterion given
by Enriquez and Sabot in [EnSa06].

1 Introduction

Since their introduction in the 70’s, models of random walks in random environment have mostly been
studied in the one dimensional case. Using specific features of this setting, like the reversibility of the
Markov chain, Solomon [So75] set a first milestone by proving simple explicit necessary and sufficient
conditions for transience, and a law of large numbers. In contrast, the multidimensional situation is still
poorly understood. A first general transience criterion was provided by Kalikow [Ka81], which Sznitman
and Zerner [SzZe99] later proved to imply ballisticity as well. Under an additional uniform ellipticity
hypothesis, Sznitman ([Sz01], [Sz04]) could weaken this ballisticity criterion, but not much progress
was made since then about the delicate question of sharpening transience or ballisticity criterions.

Another approach consists in deriving explicit conditions in more specific random environments.
Among them, Dirichlet environments, first studied by Enriquez and Sabot in [EnSa06], appear as
a natural choice because of their connection with oriented edge linearly reinforced random walks
(cf. [EnSa02]). Another interest in this case comes from the existence of algebraic relations involv-
ing Green functions. These allowed Enriquez and Sabot to show that Kalikow’s criterion is satisfied
under some simple condition, thus proving ballistic behaviour, and to give estimates of the limiting
velocity.

Defining Kalikow’s criterion raises the problem of integrability of Green functions on finite subsets.
While this property is very easily verified for a uniformly elliptic environment, it is no longer the case
in the Dirichlet situation. In [EnSa06], the condition on the environment allowed for a quick proof,
and the general case remained unanswered.

The main aim of this article is to state and prove a simple necessary and sufficient condition of
integrability of these Green functions in Dirichlet environment on general directed graphs. Integrability
conditions for exit times are then easily deduced. The ”sufficiency” part of the proof is the more delicate.
It procedes by induction on the size of the graph by going through an interesting quotienting procedure.

This sharpening of the integrability criterion, along with an additional trick, allows us to prove a
refined version of Enriquez and Sabot’s ballisticity criterion. The condition of non integrability may
also prove useful in further analysis of random walks in Dirichlet environment. Indeed, finite subsets
with non integrable exit times play the role of ”strong traps” for the walk. As a simple example, one
can prove that the existence of such a subset implies a null limiting velocity.

Next section introduces the notations, states the results and various corollaries. Section 3 contains
the proofs of the main result and corollary. Finally, section 4 proves the generalization of Enriquez and
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Sabot’s criterion.

2 Definitions and statement of the results

2.1 Dirichlet distribution

Let us first recall a few useful properties of the usual Dirichlet distribution. Let I be a finite set. The
set of probability distributions on I is denoted by Prob(I) :

Prob(I) =
{
(pi)i∈I ∈ RI

+

∣∣ ∑
i∈I pi = 1

}
.

Given a family (αi)i∈I of positive real numbers, the Dirichlet distribution of parameter (αi)i∈I is
the probability distribution D((αi)i∈I) on Prob(I) (the set of probability distributions on I) of density
:

(xi)i∈I 7→
Γ(
∑

i∈I αi)∏
i∈I Γ(αi)

∏

i∈I

xαi−1
i (∗)

with respect to the Lebesgue measure
∏

i6=i0
dxi (where i0 is any element of I) on the simplex Prob(I).

Notice that if (p1, p2) is a random variable sampled according to distribution D(α, β), then p1 is a
Beta variable of parameter (α, β). An easy computation shows that if (p1, . . . , pn) is a random variable
sampled according to D(α1, . . . , αn) then, for i = 1, . . . , n, the expected value of pi is αi∑

1≤j≤n αj
.

The following two important properties are simple consequences of the representation of a Dirich-
let random variable as a renormalized vector of independent gamma random variables (cf. for in-
stance [Wi63]). Let (pi)i∈I be a random variable distributed according to D((αi)i∈I). Then :

(Associativity) Let I1, . . . , In be a partition of I. The random variable
(∑

i∈Ik
pi

)
k∈{1,...,n}

on

Prob({1, . . . , n}) follows the Dirichlet distribution D((
∑

i∈Ik
αi)1≤k≤n).

(Restriction) Let J be a nonempty subset of I. The random variable
(

pi∑
j∈J pj

)
i∈J

on Prob(J)

follows the Dirichlet distribution D((αi)i∈J ) and is independent of
∑

j∈J pj (which follows a Beta
distribution B(

∑
j∈J αj,

∑
j /∈J αj) due to the associativity property).

2.2 Definition of the model

In order to deal with multiple edges, we define a directed graph as a quadruplet G = (V,E, head , tail )
where V and E are two sets whose elements are respectively called the vertices and edges of G,
endowed with two maps head : e 7→ e and tail : e 7→ e from E to V . An edge e ∈ E is thought of as an
oriented link from e (tail) to e (head), and the usual definitions apply. Thus, a vertex x is connected
to a vertex y in G if there is an oriented path from x to y, i.e. a sequence e1, . . . , en of edges with
ek = ek+1 for k = 1, . . . , n − 1, e1 = x and en = y. For brevity, we usually only write G = (V,E), the
tail and head of an edge e being always denoted by e and e.

In the following, we will usually deal with graphs G = (V ∪{∂}, E) possessing a cemetery vertex ∂.
In this case, we always suppose that :

(i) ∂ is a dead end: no edge in E exits this vertex, and random walks remain stuck at this point
once they have reached it ;
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(ii) every vertex is connected to ∂.

Let G = (V ∪ {∂}, E) be such a graph. For all x ∈ V , let Px designate the set of probability
distributions on the set of edges originating at x:

Px =
{
(pe)e∈E, e=x ∈ R{e∈E | e=x}

+

∣∣∣
∑

e∈E, e=x pe = 1
}
.

Then the set of environments is Ω =
∏

x∈V Px ⊂ RE. We will denote by ω = (ωe)e∈E the canonical
random variable on Ω.

Given a family ~α = (αe)e∈E of positive weights indexed by the set of edges of G, one can then define
Dirichlet distribution on environments of parameter ~α: this distribution on Ω =

∏
x∈V Px is the

product measure of Dirichlet distributions on each of the Px, x ∈ V :

P = P(~α) =
⊗

x∈V

D((αe)e∈E, e=x).

Note that this distribution does not satisfy the usual uniform ellipticity condition: there is no positive
constant bounding P-almost surely the transition probabilities ωe from above.

In the case of Zd, we always consider translation invariant distributions of environments, hence
the parameters are identical at each vertex and we only need to be given a 2d-uplet (αe)e∈V where
V =

{
e ∈ Zd

∣∣ |e| = 1
}
.

For any environment ω ∈ Ω, and x ∈ V , we denote by Px,ω the law of the Markov chain starting at
x with transition probabilities given by ω, and by (Xn)n≥0 the canonical process on V . The annealed
law starting at x ∈ V is then the following averaged distribution on random walks on G:

Px(·) =

∫
Px,ω(·)P(dω) = E[Px,ω(·)].

The associativity property of the Dirichlet distribution allows to reduce graphs with multiple edges
between two vertices to simple-edged ones. Consider indeed the graph G′ = (V,E′) deduced from G by
replacing multiple (oriented) edges by single ones bearing weights αe′ equal to the sum of the weights
of the edges they replace. On G, the quenched laws Px0,ω depend only on the sums

∑
e=x, e=y ωe for

x, y ∈ V and, thanks to associativity, the joint law under P of these sums is the Dirichlet distribution
relative to the graph G′. Hence the annealed laws on G and G′ are the same and, for the problems
we are concerned with, we may use G′ instead of G. We may therefore assume that, unless otherwise
explicitly stated, all graphs to be considered do not have multiple edges. We then denote by (x, y) the

edge from x to y, and we usually write ω(x, y) instead of ω(x,y).

We will need the following stopping times: TA = inf {n ≥ 1 | (Xn−1,Xn) /∈ A} for A ⊂ E, TU =

inf {n ≥ 0 | Xn /∈ U} for U ⊂ V and, for every vertex x, Hx = inf {n ≥ 0 | Xn = x} and H̃x =
inf {n ≥ 1 | Xn = x}.

If the random variable Ny denotes the number of visits of (Xn)n≥0 at site y, then the Green function
Gω of the random walk in the environment ω is given by:

for all x, y ∈ V , Gω(x, y) = Ex,ω[Ny] =
∑

n≥0

Px,ω(Xn = y).

Due to the assumptions (i) and (ii), Gω(x, y) is P-almost surely finite for all x, y ∈ V . The question
we are concerned with is the integrability of these functions under P, according to the value of ~α.
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2.3 Integrability conditions

The main quantity involved in our conditions is the sum of the coefficients αe over the edges e exiting
some set. Let us give a few last notations about sets of edges. For every subset A of E, define:

A = {e | e ∈ A} ⊂ V,

A = {e | e ∈ A} ⊂ V,

A = {e | e ∈ A} ∪ {e | e ∈ A} ⊂ V,

∂EA = {e ∈ E \ A | e ∈ A} ⊂ E,

and the sum of the coefficients of the edges ”exiting A”:

βA =
∑

e∈∂EA

αe.

A is said to be strongly connected if, for all x, y ∈ A, x is connected to y in A, i.e. there is an
(oriented) path from x to y through edges in A.

Our main result is the following:

Theorem 1. – Let G = (V ∪{∂}, E) be a finite directed graph and ~α = (αe)e∈E a family of positive real
numbers. We denote by P the Dirichlet distribution with parameter ~α. Let o ∈ V . For every s > 0, the
following statements are equivalent:

(i) E[Gω(o, o)s] <∞;

(ii) for every strongly connected subset A of E such that o ∈ A, βA > s.

Undirected graphs are directed graphs where edges come in pair: if (x, y) ∈ E, then (y, x) ∈ E as
well. In this case, the previous result translates into a statement on subsets of V . For any S ⊂ V , we
denote by βS the sum of the coefficients of the edges ”exiting S”:

βS =
∑

e∈S, e/∈S

αe.

For any strongly connected subset A of E, if S = A, we have βS ≤ βA and equality holds if A contains
every edge in E linking vertices of A and if the graph contains no loop (i.e. no edge exiting from and
heading to the same vertex). This remark yields:

Theorem 2. – Let G = (V ∪ {∂}, E) be a finite undirected graph without loop and (αe)e∈E a family of
positive real numbers. We denote by P the corresponding Dirichlet distribution. Let o ∈ V . For every
s > 0, the following statements are equivalent:

(i) E[Gω(o, o)s] <∞;

(ii) for all connected subsets S of V such that {o} ( S, βS > s.

In particular, we get the case of i.i.d. environments in Zd. Noticing that the non-empty subsets A
of edges of Zd with smallest ”exit sum” βA are the sets containing one single edge, the result may be
restated like this:

Theorem 3. – Let ~α = (αe)e∈V be a family of positive real numbers. We denote by P the translation
invariant Dirichlet distribution on environments on Zd deduced from ~α. Let U be a finite subset of Zd.
Set Σ =

∑
e∈V αe. Then for every s > 0, the following assertions are equivalent:
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(i) for all x ∈ U , E[Gω(x, x)s] <∞;

(ii) every edge e ∈ V such that there is x ∈ U with x+ e ∈ U satisfies: 2Σ > αe + α−e + s.

Assuming the hypothesis of theorem 1 relatively to all vertices instead of only one provides informa-
tion about exit times:

Corollary 4. – Let G = (V ∪ {∂}, E) be a finite directed strongly connected graph and (αe)e∈E a
family of positive real numbers. For every s > 0, the following properties are equivalent:

(i) for every vertex x, E[Ex,ω[TV ]s] <∞;

(ii) for every vertex x, E[Gω(x, x)s] <∞;

(iii) every non-empty strongly connected subset A of E satisfies βA > s;

(iv) there is a vertex x such that E[Ex,ω[TV ]s] <∞.

And in the undirected case:

Corollary 5. – Let G = (V ∪ {∂}, E) a finite connected undirected graph without loop, and (αe)e∈E

a family of positive real numbers. For every s > 0, the following properties are equivalent:

(i) for every vertex x, E[Ex,ω[TV ]s] <∞;

(ii) for every vertex x, E[Gω(x, x)s] <∞;

(iii) every connected subset S of V of cardinality ≥ 2 satisfies βS > s;

(iv) there is a vertex x such that E[Ex,ω[TV ]s] <∞.

Ballisticity criterion

We now consider the case of random walks in i.i.d. Dirichlet environment on Zd, d ≥ 1.

Let (e1, . . . , ed) denote the canonical basis of Zd, and V =
{
e ∈ Zd

∣∣ |e| = 1
}
. Let (αe)e∈V be positive

numbers. We will write either αi or αei
, and α−i or α−ei

, i = 1, . . . , d.

Enriquez and Sabot proved ballistic behaviour of the random walk in Dirichlet environment as soon
as max1≤i≤d |αi − α−i| > 1. Our improvement replaces l∞-norm by l1-norm:

Theorem 6. – If
d∑

i=1
|αi − α−i| > 1, then there exists v 6= 0 such that, P0-a.s.,

Xn

n
→n v, and the

following bound holds: ∣∣∣∣v −
Σ

Σ − 1
dm

∣∣∣∣
1

≤
1

Σ − 1
,

where Σ =
∑

e∈V αe, dm =
∑d

i=1
αi−α−i

Σ ei is the drift in the averaged environment, and |X|1 =∑d
i=1 |X · ei| for any X ∈ Rd.
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3 Proof of the main result

Let us first give a few words on the proof of theorem 1. Proving this integrability condition amounts
to bound the tail probability P(Gω(o, o) > t) from below and above.

In order to get the lower bound, we exhibit an event consisting of environments preventing the walk
from exiting easily from a given subset; this forces the mean exit time of this subset to be large.
However, getting a large number of returns to the starting vertex o requires an additional trick: one
needs to control from below the probability of some paths leading back to o. The key fact here is the
basic remark that at, at each vertex, there is at least one exiting edge whose transition probability is
greater than the inverse number of neighbours of that vertex. By restricting the probability space to
an event where, at each vertex, this (random) edge is fixed, we thus compensate for the non uniform
ellipticity of P and get the required bound.

The upper bound is more elaborate. First, using a method based on the above mentioned key fact,
we define a random subset C(ω) of edges such that o ∈ C(ω), either o or ∂ belongs to C(ω), and the
random walk can easily connect points through C(ω) : there is a positive constant c (depending only
on G) such that, for all distinct points x ∈ C(ω) and y ∈ C(ω), we have

Px,ω(Hy < H̃x ∧ TC(ω)) > c. (1)

Note that if ∂ ∈ C(ω), then Gω(o, o) = 1/Po,ω(H∂ < H̃o) ≤ 1/c and the desired tail probability is

trivial. Suppose now to the contrary that o ∈ C(ω). Bound (1) shows that a visit to any point of C(ω)
is likely to be followed up with a visit to o. Hence Gω(o, o) is on the order of the average total time
spent in C(ω) before H∂ . This total time decomposes into the sum of the time spent in C(ω) between
excursions out of C(ω). On the other hand, bound (1) shows as well that the average exit time out of
C(ω) (from any vertex of C(ω)) is on the order of 1/Σ where Σ =

∑
e∈∂EC(ω) ωe. It should then be

no surprise that Gω(o, o) can be bounded from above by Gω̃(õ, õ)/Σ (up to a constant factor), where
we introduced the quotient graph G̃ of G obtained by contracting the edges of C(ω) to a new vertex
õ, and ω̃ is a suitable environment on G̃. This inequality almost reduces the problem to a smaller
graph. Using properties of Dirichlet distributions, we are able to replace ω̃ by a Dirichlet environment
(lemma 8) and finally to carry out the induction argument. Note that the proof below is written in
terms of the probability Po,ω(H∂ < H̃o), which is just 1/Gω(o, o).

First implication (lower bound)

We suppose there exists a strongly connected subset A of E such that o ∈ A and βA ≤ 1. We shall
prove the stronger statement that E[Gω

A(o, o)] = ∞ where Gω
A is the Green function of the random walk

in the environment ω killed when exiting A.

Let ε > 0. Define the event Eε = {∀e ∈ ∂EA,
∑

e∈∂EA, e=x ωe ≤ ε}. On Eε, one has:

Eo,ω[TA] ≥
1

ε
.

Indeed, by Markov property, for all n ∈ N∗,

Po,ω(TA > n) = Eo,ω[TA > n− 1, PXn−1,ω(TA > 1)] ≥ Po,ω(TA > n− 1)min
x∈A

Px,ω(TA > 1)
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and, on Eε, for all x ∈ A = A, Px,ω(TA > 1) ≥ 1 − ε, hence:

Po,ω(TA > n) ≥ Po,ω(TA > n− 1)(1 − ε) ≥ · · · ≥ Po,ω(TA > 0)(1 − ε)n = (1 − ε)n.

Therefore,

Eo[TA] = E[Eo,ω[TA]] =

∫ ∞

0
P(Eo,ω[TA] ≥ t)dt ≥

∫ ∞

0
P(E1/t)dt.

Finally, we have P(Eε) ∼ε→0 Cε
βA where C is a positive constant (as can be seen from definition (∗)

of Dirichlet distribution), and βA ≤ 1, so that Eo[TA] = ∞. As TA =
∑

x∈ANA,x, where NA,x is the
number of visits at x before TA, there exists a vertex x ∈ A such that ∞ = Eo[NA,x] = E[Gω

A(o, x)].
The inequality Gω

A(o, x) ≤ Gω
A(x, x) then yields E[Gω

A(x, x)] = ∞.

In order to get the result on Gω
A(o, o), we have to refine this proof by considering an event where

there is a path from x to o whose transition probability is uniformly bounded from below.

To P-almost every environment ω, one can associate the subset of edges ~G(ω) containing only one
edge e exiting from every vertex 6= ∂, namely the one maximizing ω(e). Then, if e ∈ ~G(ω):

ωe ≥
1

ne
,

where nx is the number of neighbours of x ∈ V . In particular, there is a positive constant κ depending
only on G such that, if x is connected to y through a (simple) path π in ~G(ω) then Px,ω(π) ≥ κ.

The strongly connected subset A of E possesses at least one spanning tree T oriented towards o. Let
us denote by F the event {~G(ω) = T} (for ω ∈ F , every vertex of A is then connected to o in ~G(ω)).
One still has P(Eε∩F) ≥ P(Eε∩{∀e ∈ T, ωe > 1/2}) ∼ε→0 Cε

βA , where C is a positive constant. Then,
like previously, because βA ≤ 1:

E[Eo,ω[TA],F ] =

∫ ∞

0
P(Eo,ω[TA] ≥ t,F)dt ≥

∫ ∞

0
P(E1/t ∩ F)dt = +∞,

and subsequently there exists x ∈ A such that E[Gω
A(o, x),F ] = ∞, hence E[Gω

A(x, x),F ] = ∞. Now,
there is an integer l and a real number κ > 0 such that, if ω ∈ F , Px,ω(Xl = o) ≥ κ, which implies, on
F , thanks to Markov property:

Gω
A(x, x) ≤

1

κ
Gω

A(x, o) ≤
1

κ
Gω

A(o, o).

(indeed, Gω
A(x, x) =

∑
k≥0 Px,ω(Xk = x,H∂ > k) ≤

∑
k≥0

1
κPx,ω(Xk+l = o,H∂ > k + l) ≤ 1

κG
ω
A(x, o))

Therefore we get:

E[Gω
A(x, x),F ] ≤

1

κ
E[Gω

A(o, o),F ] ≤
1

κ
E[Gω

A(o, o)],

and finally E[Gω
A(o, o)] = ∞.

Converse implication (upper bound)

The proof of the other implication procedes by induction on the number of edges of the graph, through
quotienting by an appropriate subset of edges.

Definition. – If A is a strongly connected subset of edges of a graph G = (V,E, head , tail ), the quotient
graph of G obtained by contracting A to ã is the graph G̃ deduced from G by deleting the edges of A,
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replacing all the vertices of A by one new vertex ã, and modifying the endpoints of the edges of E \ A
accordingly. Thus the set of edges of G̃ is naturally in bijection with E \ A and can be thought of as a
subset of E.

In other words, G̃ = (Ṽ , Ẽ, h̃ead , t̃ail) where Ṽ = (V \ A) ∪ {ã} (ã being a new vertex), Ẽ = E \ A

and, if π denotes the projection from V to Ṽ (i.e. π|V \A = id and π(x) = ã if x ∈ A), h̃ead = π ◦ head

and t̃ail = π ◦ tail on Ẽ = E \ A. Notice that this quotient may well introduce multiple edges.

Let us first describe the construction of the subset C(ω) about to play the role of A in the definition.
This subset of ”easily visited edges” extends the idea underlying the definition of ~G(ω) in the previous
proof.

We define inductively a finite sequence e1 = (x1, y1), . . . , en = (xn, yn) of edges in the following way:
letting y0 = o, if e1, . . . , ek−1 have been defined, then ek is the edge in E which maximizes the exit
distribution out of Ck = {e1, . . . , ek−1} starting at yk−1 :

e 7→ Pyk−1,ω((XTCk
−1,XTCk

) = e),

and n is the least index ≥ 1 such that yn ∈ {o, ∂}. In words, the edge ek is, among the edges exiting
the set Ck(ω) of already visited edges, the one maximizing the probability for a random walk starting
at yk−1 to exit Ck(ω) through it; and the construction ends as soon as an edge ek heads at o or ∂.
Notice that C1 = ∅, hence TC1

= 1, and more generally if yk−1 /∈ {x1, . . . , xk−1}, then ek maximizes in
fact e 7→ ωe among the edges exiting yk−1: ek is the edge of ~G(ω) originating at yk−1. The assumption
that each vertex is connected to ∂ guarantees the existence of an exit edge out of Ck(ω) for k ≤ n, and
the finiteness of G ensures that n exists: the procedure ends. We set:

C(ω) = Cn+1 = {e1, . . . , en}.

Note that the maximizing edges, and thus C(ω), are well defined up to a zero Lebesgue measure set.

The support of the distribution of ω 7→ C(ω) writes as a disjoint union C = Co ∪ C∂ depending on
whether o or ∂ belongs to C(ω). For any C ∈ C, we let EC be the event {C(ω) = C}. On such an
event, we can get uniform lower bounds on some probabilities, as if a uniform ellipticity property held:

Proposition 7. – There exists a constant c > 0 such that, for all C ∈ C , for all x ∈ C \ {o}, for all
ω ∈ EC ,

Po,ω(Hx < H̃o ∧ TC) ≥ c.

Proof. Let ω ∈ EC . For k = 1, . . . , n, due to the choice of ek as a maximizer over E (or ∂ECk), we
have:

Pyk−1,ω((XTCk
−1,XTCk

) = ek) ≥ κ =
1

|E|
.

As yk 6= o as soon as k < n, we deduce, for such k, and for k = n if yn = ∂:

Pyk−1,ω(Hyk
< H̃o ∧ TC) ≥ Pyk−1,ω(XTCk

= yk) ≥ κ.

Then, by Markov property, for any x ∈ C = {y1, . . . , yn}, if x 6= o,

Po,ω(Hx < H̃o ∧ TC) ≥ κn ≥ c = κ|E|.

�

Let us now prove the upper bound itself. We prove the following property by induction on n ≥ 1:
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Induction hypothesis (at rank n) - For every directed graph G = (V ∪ {∂}, E) possessing at most n
edges (and such that every vertex is connected to ∂), for every parameter family (αe)e∈E and every vertex
o ∈ V , there exist real numbers C, r > 0 such that, for small ε > 0,

P(Po,ω(H∂ < H̃o) ≤ ε) ≤ Cεβ(− ln ε)r,

where β = min {βA | A is a strongly connected subset of E and o ∈ A}.

Initialization: if |E| = 1 (and o is connected to ∂), the only edge links o to ∂, so that Po,ω(H∂ <

H̃o) = 1, and the property is true (with any positive β).

Let n ≥ 1. We suppose the induction hypothesis to be true at rank n. Let G = (V ∪ {∂}, E) be a
graph with n + 1 edges (such that every vertex is connected to ∂), let o ∈ V , and (αe)e∈E be positive
real numbers. We apply to G the construction of ω 7→ C(ω) described before and use the notations
thereof.

Because of the finiteness of C(⊂ P(E)), it will be sufficient to prove the upper bound separately on
each of the events EC . Let C ∈ C.

If C ∈ C∂ , then ∂ ∈ C, and the proposition above provides c > 0 such that, on EC , Po,ω(H∂ < H̃o) ≥ c
hence, for small ε > 0,

P(Po,ω(H∂ < H̃o) ≤ ε, EC) = 0.

Therefore we may assume C ∈ Co. Then C is a strongly connected subset of E (due to the construction
method, for every pair of vertices of C, the first encountered one can be connected in C to the second
one; and o is encountered both first and last), and proposition 7 provides a constant c > 0 such that
for any x ∈ C \ {o} and ω ∈ EC ,

Po,ω(Hx < H∂ ∧ H̃o) ≥ c.

We consider the quotient graph G̃ = (Ṽ =(V \C)∪{∂, õ}, Ẽ=E\C, h̃ead , t̃ail ) obtained by contracting
C to a new vertex õ. Because Ẽ is a subset of E, we may endow the set Ω̃ of environments on G̃ with
the Dirichlet distribution of parameter (αe)e∈Ẽ

, again denoted by P. We may as well introduce another
distribution, namely the law under P of the quotient environment ω̃ defined the following way: for
every edge e ∈ Ẽ, if e /∈ ∂EC (i.e. if t̃ail(e) 6= õ), then ω̃e = ωe, where ω is the canonical random
variable on Ω̃, and if e ∈ ∂EC, then:

ω̃e =
ωe

Σ
,

where Σ =
∑

e∈∂EC ωe. In the following, we shall sometimes write an exponentG or G̃ on the probability
Px,ω to indicate which graph we consider.

The edges in C do not appear in G̃ anymore. In particular, G̃ has strictly less than n edges. In order
to apply induction with respect to the point õ, it suffices to check that each vertex is connected to ∂,
which results easily from the similar property for G. As the induction hypothesis applies to graphs
with simple edges, we denote by β̃ the exponent ”β” in the induction hypothesis corresponding now
to the graph G̃ once its multiple edges have been simplified (see page 3) and to õ. Then, using the
induction hypothesis, we have, for small ε > 0:

P(P G̃
õ,ω(H∂ < H̃õ) ≤ ε) ≤ Cεβ̃(− ln ε)r, (2)

where C, r > 0, and the left-hand side may equivalently refer to the graph G̃ or to its simple-edged
version, as explained earlier.
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We need to come back from G̃ to G. First it will be easier to do so with the environment ω̃. Notice
that, from o, one way for the walk to reach ∂ without coming back to o consists in exiting C without
coming back to o and then reaching ∂ without coming back to C. Thus we have, P(G)-a.s. on EC :

Po,ω(H∂ < H̃õ) ≥
∑

x∈C

Po,ω(Hx < H̃o ∧ TC ,H∂ < Hx + H̃C ◦ ΘHx)

=
∑

x∈C

Po,ω(Hx < H̃o ∧ TC)Px,ω(H∂ < H̃C)

≥ c
∑

x∈C

Px,ω(H∂ < H̃C)

= cΣ · Põ,ω̃(H∂ < H̃õ)

where the last equality comes from the definition of the quotient : both quantities correspond to the
same set of paths viewed in G and in G̃, and, for all x ∈ C, Px,ω-almost every path belonging to the

event {H∂ < H̃C} contains exactly one edge exiting from C so that the renormalization by Σ appears
exactly once when considering ω̃.

Thus, for some c′ > 0, we have:

P(PG
o,ω(H∂ < H̃o) ≤ ε, EC) ≤ P(Σ · P G̃

õ,ω̃(H∂ < H̃õ) ≤ c′ε, EC).

Remark that ω̃ does not follow a Dirichlet distribution because of the renormalization. We can
however reduce to the Dirichlet situation and thus procede to induction. This is the aim of the following
lemma, inspired by the restriction property of section 2.1. For readibility and tractability reasons, we
only state and prove it in the case of two Dirichlet random variables, though the generalization is fairly
straightforward:

Lemma 8. – Let (p1, . . . , pk+1) and (p′1, . . . , p
′
l+1) be random variables following, under the probability P ,

Dirichlet laws of respective parameters ~α and ~α′. We set Σ = p1 + . . .+ pk + p′1 + . . .+ p′l. Then there
exists C > 0 such that, for every positive measurable function f : Rk+l+1 → R,

E

[
f

(
Σ,
p1

Σ
, . . . ,

pk

Σ
,
p′1
Σ
, . . . ,

p′l
Σ

)]
≤ C · Ẽ

[
f(Σ̃, p̃1, . . . , p̃k, p̃′1, . . . , p̃

′
l)
]
,

where, under the probability P̃ , (p̃1, . . . , p̃k, p̃′1, . . . , p̃
′
l) is sampled from a Dirichlet distribution of pa-

rameter (α1, . . . , αk, α
′
1, . . . , α

′
l), Σ̃ is bounded and satisfies P̃ (Σ̃ < ε) ≤ C ′εα1+···+αk+α′

1
+···+α′

l for
every ε > 0, and these two variables are independent.

Proof. We set β = αk+1 and β′ = α′
l+1. Writing the index (·)i instead of (·)1≤i≤k and the same way

with j and l, the left-hand side of the statement equals:

∫
{
∑
i

xi ≤ 1,
∑
j

yj ≤ 1}

f


∑

i

xi +
∑

j

yj ,

(
xi∑

i xi +
∑

j yj

)

i

,

(
yj∑

i xi +
∑

j yj

)

j


φ((xi)i, (yj)j)

∏

i

dxi

∏

j

dyj ,

where for some positive c0, φ((xi)i, (yj)j) = c0

(∏
i
xαi−1

i

)
(1 −

∑
i
xi)

β

(
∏
j
y

α′
j−1

j

)
(1 −

∑
j
yj)

β′
. We

successively procede to the following changes of variable : x1 7→ u =
∑

i xi +
∑

j yj, then xi 7→ x̃i = xi

u
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for every i 6= 1, and yj 7→ ỹj =
yj

u for every j. The previous integral becomes :

∫
{ ∑

i6=1
x̃i +

∑
j ỹj ≤ 1,

1 − 1

u
≤
∑

j ỹj ≤ 1

u

} f


u, 1 −

∑

i6=1

x̃i +
∑

j

ỹj, (x̃i)i6=1 , (ỹj)


ψ(u, (x̃i)i6=1, (ỹj)j) du

∏

i6=1

dx̃i

∏

j

dỹj ,

where :

ψ(u, (xi)i6=1, (yj)j) = c0u

∑
i

αi+
∑
j

α′
j−1

(1−
∑
i6=1

x̃i−
∑
j
ỹj)

α1−1
∏
i6=1

x̃αi−1
i (1−u(1−

∑
j
ỹj))

β
∏
j
ỹ

α′
j−1

j (1−u
∑
j
ỹj)

β′
.

Bounding from above by 1 the last two factors of ψ where u appears, we get that the last quantity is
less than:

∫
{ ∑

i6=1
x̃i +

∑
j ỹj ≤ 1,

u ≤ 2

} f


u, 1 −

∑

i6=1

x̃i +
∑

j

ỹj, (x̃i)i6=1 , (ỹj)


 θ(u, (x̃i)i6=1, (yj)j) du

∏

i6=1

dx̃i

∏

j

dỹj ,

where θ(u, (x̃i)i6=1, (yj)j) = c0

(
1 −

∑
i6=1

x̃i −
∑
j
ỹj

)α1−1 ∏
i6=1

x̃αi−1
i

∏
j
ỹ

α′
j−1

j .

This rewrites, for some positive c1, as : c1Ẽ
[
f(Σ̃, p̃1, . . . , p̃k, p̃′1, . . . , p̃

′
l)
]
, with the notations of the

statement (we have here P̃ (Σ̃ < ε) = c
∫ ε
0 u

∑
i αi+

∑
j α′

j−1du = c′ε
∑

i αi+
∑

j α′
j ). �

Using the inequality before the lemma we get:

P(Po,ω(H∂ < H̃o) ≤ ε, EC) ≤ P(Σ · Põ,ω̃(H∂ < H̃õ) ≤ c′ε, EC)

≤ P(Σ · Põ,ω̃(H∂ < H̃õ) ≤ c′ε)

≤ C ′P(Σ̃ · Põ,ω(H∂ < H̃õ) ≤ c′ε),

where, under P, Σ̃ is a positive bounded random variable independent of ω such that P(Σ̃ ≤ ε) ≤ cεβC

for all ε > 0. The next result will be useful to conclude:

Lemma 9. – If X and Y are independent positive bounded random variables satisfying, for some real
numbers αX , αY , r > 0:

• there exists C > 0 such that P (X < ε) ≤ CεαX for all ε > 0 (or equivalently for small ε);

• there exists C ′ > 0 such that P (Y < ε) ≤ C ′εαY (− ln ε)r for small ε > 0,

then there exists a constant C ′′ > 0 such that, for small ε > 0:

P (XY ≤ ε) ≤ C ′′εαX∧αY (− ln ε)r+1

(and r + 1 can be replaced by r if αX 6= αY ).

Proof. We denote by MX and MY (deterministic) upper bounds of X and Y . We have, for ε > 0:

P (XY ≤ ε) = P

(
Y ≤

ε

MX

)
+ P

(
XY ≤ ε, Y >

ε

MX

)
.
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Let ε0 > 0 be such that the upper bound in the statement for Y is true as soon as ε < ε0. Then, for
0 < ε < ε0:

P (XY ≤ ε, Y >
ε

MX
) =

∫ MY

ε
MX

P

(
X ≤

ε

y

)
P (Y ∈ dy)

≤ C

∫ MY

ε
MX

(
ε

y

)αX

P (Y ∈ dy)

= CεαXE

[
1(Y ≥ ε

MX
)

1

Y αX

]

= CεαX

(∫ MY

ε
MX

P (
ε

MX
≤ Y ≤ x)

αXdx

xαX+1
+

1

MY
αX

)

≤ CεαX

(
αXC

′

∫ ε0

ε
MX

xαY (− lnx)r
dx

xαX+1
+ C ′′

)

≤ CεαX

(
αXC

′

∫ ε0

ε
MX

xαY −αX−1dx(− ln
ε

MX
)r + C ′′

)

≤ C ′′′εαX∧αY (− ln ε)r+1.

Indeed, if αY > αX , the integral converges as ε→ 0; if αY = αX , it is equivalent to − ln ε; if αY > αX ,
the equivalent becomes 1

εαX−αY
. And the formula is checked in every case (note that − ln ε > 1 for

small ε). �

In conclusion, using (2), the last lemma and the inequality right before it, we get constants c, r > 0
such that, for small ε > 0:

P(Po,ω(H∂ < H̃o) ≤ ε, EC) ≤ cεβC∧β̃(− ln ε)r+1.

Notice that β̃ ≥ β, where β is the exponent defined in the induction hypothesis. Indeed: let Ã be
a strongly connected subset of Ẽ such that õ ∈ Ã. Set A = Ã ∪ C ⊂ E. In view of the definition of
Ẽ, every edge exiting Ã corresponds to an edge exiting A and vice-versa (the only edges to be deleted
by the quotienting procedure are those of C). Thus, β

Ã
= βA, o ∈ A, and A is strongly connected

(because so are Ã and C, and õ ∈ Ã, o ∈ C). Hence we deduce β̃ ≥ β as expected.

Then βC ∧ β̃ ≥ βC ∧β = β because C is strongly connected and o ∈ C. This concludes the induction
(summing on all events EC , C ∈ C).

The result is then deduced from the induction property using the integrability of t 7→ (ln t)r

tβ
in the

neighbourhood of +∞ as soon as β > 1, and the following Markov chain identity:

Gω(o, o) =
1

P0,ω(H∂ < H̃o)
.

Remark: This proof gives the following more precise result: there exist c, C, r > 0 such that, for
large enough t,

c
1

tminA βA
≤ P(Gω(o, o) > t) ≤ C

(ln t)r

tminA βA
,

where the minimum is taken over all strongly connected subsets A of E such that o ∈ A.
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Proof of the corollary

We prove corollary 4, restated here:

Corollary. – Let G = (V ∪{∂}, E) be a finite oriented strongly connected graph and (αe)e∈E a family
of positive real numbers. For every s > 0, the following properties are equivalent:

(i) for every vertex x, E[Ex,ω[TV ]s] <∞;

(ii) for every vertex x, E[Gω(x, x)s] <∞;

(iii) every non-empty strongly connected subset A of E satisfies βA > s;

(iv) there is a vertex x such that E[Ex,ω[TV ]s] <∞.

Proof. The equivalence of (i) and (ii) results from the inequalities below: for every ω ∈ Ω, x ∈ V ,
s > 0,

Gω(x, x)s = Ex,ω[Nx]s ≤ Ex,ω[TV ]s =


∑

y∈V

Px,ω(Hy < H∂)Gω(y, y)




s

≤ |V |s
∑

y∈V

Gω(y, y)s.

Theorem 1 provides the equivalence of (ii) and (iii). The fact that (i) implies (iv) is trivial.

Let us suppose that (iii) is not satisfied: there is a strongly connected subset A of E such that βA ≤ 1.
Let o be a vertex. If o ∈ A, then Eo[TV ] ≥ E[Gω(o, o)] = ∞; and if o /∈ A, there exists (thanks to strong
connexity) a path π from o to some vertex x ∈ A which remains outside A (before x), and we recall
that theorem 1 proves E[Gω

A(x, x)] = ∞, hence thanks to spatial independence of the environment:

Eo[TV ] ≥ E[Gω(o, x)] ≥ E[Po,ω(π)Gω
A(x, x)] = E[Po,ω(π)] × E[Gω

A(x, x)] = ∞,

so that in both cases (o ∈ A, o /∈ A), Eo[TV ] = ∞. Thus, (iv) is not true. So (iv) implies (iii), and we
are done. �

Remark: Under most general hypotheses, (i) and (ii) are still equivalent (same proof). The equiva-
lence of (i) et (iv) can be shown to hold as well in the following general setting:

Proposition 10. – Let G = (V ∪{∂}, E) be a finite strongly connected graph endowed with a probability
measure P on the set of its environments satisfying:

• the transition probabilities ω(x, ·), x ∈ V , are independent under P;

• for all e ∈ E, P(ωe > 0) > 0.

If there exists x ∈ V such that Ex[TV ] = +∞, then for all y ∈ V , Ey[TV ] = +∞.

Proof. Suppose x ∈ V satisfies Ex[TV ] = +∞. We denote by A a subset of E satisfying Ex[TA] = +∞,
and being minimal (with respect to inclusion) among the subsets of E sharing this property. As E is
finite, the existence of such an A is straightforward.

Let y ∈ A: there is an e ∈ A such that e = y. Let us prove Ey[TA] = +∞. We have, by minimality of
A, Ex[TA\{e}] <∞. Let He = inf {n ≥ 1 | (Xn−1,Xn) = e}. Then:

Ex[TA] = Ex[TA,He < TA] + Ex[TA,He > TA]

≤ Ex[TA,He < TA] + Ex[TA\{e}],
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hence Ex[TA,He < TA] = +∞. Thus, using Markov property:

+∞ = Ex[TA − TA\{e} + 1,He < TA] = Ex[TA − (He − 1),He < TA]

≤ Ex[TA − (He − 1),He − 1 < TA] = Ex[TA ◦ ΘHe−1,He − 1 < TA]

= E[Ex,ω[EXHe−1,ω[TA],He − 1 < TA]] = E[Ee,ω[TA]Px,ω(He − 1 < TA)]

≤ Ee[TA],

which gives Ey[TA] = +∞ as announced.

Let z ∈ V . If z ∈ A, we have of course Ez[TV ] ≥ Ez[TA] = +∞. Suppose z ∈ V \A. By strong connexity
of G, one can find a simple path e1, · · · , en from z to a point y = en ∈ A such that e1, . . . , en /∈ A (take
any simple path from z to any point in A and stop it just before it enters A for the first time). Then,
by Markov property and using independence between the vertices in the environment:

Ez[TV ] ≥ Ez[TV ,Xi = ei for i = 1, . . . , n]

= E[ωe1
· · ·ωenEy,ω[TV + n]]

≥ E[ωe1
· · ·ωenEy,ω[TA + n]

= E[ωe1
] · · ·E[ωen ](Ey[TA] + n)

hence Ez[TV ] = +∞ because the first factors are positive and the last one is infinite via the first part
of the proof. This concludes. �

4 Proof of the ballisticity criterion

We now consider random walks in i.i.d. Dirichlet environment on Zd, d ≥ 1. Let (e1, . . . , ed) denote
the canonical basis of Zd, and V =

{
e ∈ Zd

∣∣ |e| = 1
}
. Let (αe)e∈V be positive numbers. We will write

either αi or αei
, and α−i or α−ei

, i = 1, . . . , d. Let us recall the statement of theorem 6:

Theorem – If
d∑

i=1
|αi − α−i| > 1, then there exists v 6= 0 such that, P0-a.s.,

Xn

n
→n v, and the following

bound holds: ∣∣∣∣v −
Σ

Σ − 1
dm

∣∣∣∣
1

≤
1

Σ − 1
,

where Σ =
∑

e∈V αe and dm =
∑d

i=1
αi−α−i

Σ ei is the drift under the averaged environment.

Proof. This proof relies on properties and techniques of [EnSa06], along with two improvements:
first, thanks to the previous sections, we are able to define the Kalikow random walk under weaker
conditions, namely those of the statement; second, we get a finer bound on the drift of this random
walk.

Let us recall a definition. Given a finite subset U of Zd and a point z0 ∈ U such that E[Gω
U (z0, z0)] <∞,

the Kalikow auxiliary random walk related to U and z0 is the Markov chain on U ∪ ∂V U (where
∂V U is the set of the vertices neighbouring U) given by the following transition probabilities:

for all z ∈ U and e ∈ V, ω̂U,z0
(z, z + e) =

E[Gω
U (z0, z)ω(z, z + e)]

E[Gω
U (z0, z)]

and ω̂U,z0
(z, z) = 1 if z ∈ ∂V U . For the sake of making formal computations rigorous, Enriquez

and Sabot first consider the generalized Kalikow random walk. Given an additional parameter
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δ ∈ (0, 1), it is defined like the previous walk except that, in place of Gω
U (z0, z), we use the Green

function of the random walk under the environment ω killed at rate δ and at the boundary of U :

Gω
U,δ(z0, z) = Ez0,ω

[
TU∑

k=0

δk1(Xk=z)

]

(and we don’t need any assumption on P anymore).

The following identity (equation (2) of [EnSa06]) was a consequence of an integration by part formula:
for all finite U ⊂ Zd, z ∈ U , e ∈ V, δ ∈ (0, 1),

ω̂U,z0,δ(z, z + e) =
1

Σ − 1

(
αe −

E[Gω
U,δ(z0, z)pω,δ(z, z + e)]

E[Gω
U,δ(z0, z)]]

)

where pω,δ(z, z + e)) = ω(z, z + e)(Gω
U,δ(z, z)− δGω

U,δ(z+ e, z)). Markov property for the killed random
walk shows that, for all z, the components of (pω,δ(z, z + e))e∈V are positive and sum up to 1: this is a
probability measure. Besides, after a short computation, it can be rewritten as:

pω,δ(z, z + e) = Pz,ω(X1 = z + e|H∂ < H̃z),

which highlights its probabilistic interpretation. Therefore the drift of the generalized Kalikow random
walk at z is:

d̂U,z0,δ(z) =
1

Σ − 1

(
d∑

i=1

(αi − α−i)ei − d̃

)
=

1

Σ − 1
(Σdm − d̃), (3)

where d̃ (depending on all parameters) is the expected value of the following probability measure:

E[Gω
U,δ(z0, z)pω,δ(z, z + ·)]

E[Gω
U,δ(z0, z)]

.

This measure is supported by V, hence d̃ belongs to the convex hull of V, which is the closed | · |1-unit
ball B|·|1:

|d̃|1 ≤ 1.

On the other hand, the assumption gives Σdm /∈ B|·|1, and the convexity of B|·|1 provides l ∈ Rd \ {0}
and c > 0 (depending only on the parameters (αe)e∈V) such that, for all X ∈ B|·|1,

Σdm · l > c > X · l.

Therefore, noting that our assumption implies Σ > 1, we have, for every finite subset U of Zd, every
z0, z ∈ U and δ ∈ (0, 1):

d̂U,z0,δ(z) · l =
1

Σ − 1
(Σdm · l − d̃ · l) ≥

Σdm · l − c

Σ − 1
> 0.

It is time to remark that theorem 3 applies under our condition: the hypothesis implies Σ > 1 so that,
for all i, 2Σ − αi − α−i > 1. This guarantees the integrability of Gω

U (z0, z) and allows us to make δ
converge to 1 in the last inequality (monotone convergence theorem applies because Gω

U,δ increases to
Gω

U as δ increases to 1). We get a uniform lower bound concerning the drift of Kalikow random walk:

d̂U,z0
(z) · l ≥

Σdm · l − c

Σ − 1
> 0.
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In other words, Kalikow’s criterion is satisfied for finite subsets U of Zd. As underlined in [EnSa06],
this is sufficient to apply Sznitman and Zerner’s law of large numbers ([SzZe99]), hence there is a
deterministic v 6= 0 such that, P-almost surely,

Xn

n
−→
n
v.

As for the bound on v, because of the similar bound for d̂U,z0,δ(z) given by the identity (3) and |d̃|1 ≤ 1,
it results from proposition 3.2 of [Sa04] (this proposition states that v is an accumulation point of the

convex hull of
{
d̂U,z0,δ(z)

∣∣∣ U finite, z0, z ∈ U
}

when δ tends to 1). �

Concluding remarks and computer simulations

In the case of Zd, we have provided a criterion for non-zero limiting velocity. One may prove the
following criterion as well, thanks to theorem 3:

Proposition 11. – If there exists i ∈ {1, . . . , d} such that αi + α−i ≥ 2Σ − 1, then :

P0-a.s.,
Xn

n
−→
n

0.

Indeed, the hypothesis implies that the exit time of any subset of edges containing an edge (x, x+ei),
where x ∈ Zd, is not integrable, and the proof follows by usual arguments using the independence in
the environment.

The question remains whether one of these criterions is sharp. Actually, computer simulations let
us think that neither is. We were especially able to find parameters such that exit times of all finite
subsets are integrable and the random walk has seemingly zero speed (more precisely, Xn looks to be
on the order of nκ for some 0 < κ < 1). Figure 1 shows some results obtained with (α1, α−1, α2, α−2) =
(0.5, 0.2, 0.1, 0.1). We performed 103 numerical simulations of trajectories of random walks up to time
nmax = 106 and compared the averaged values of yn = Xn · e1 with Cαn

α, where Cα is chosen so as
to make curves coincide at n = nmax . The first graph shows the average of yn and the second one the

maximum over n ∈ {105+1, . . . , 106} of
∣∣∣1 − yn

Cαnα

∣∣∣, as α varies. The minimizing α is 0.9, corresponding

to a small uniform relative error of .0044. However we could not yet prove that such an intermediary
regime happens.
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Figure 1: These plots refer to computer simulation : averages are taken over 103 trajectories up to
time 106 (see last part of the article)
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